GambiaMan

15 Reputation

2 Badges

8 years, 362 days

MaplePrimes Activity


These are questions asked by GambiaMan

Hello,

I have a procedure which plots a graph. I need the x-axes, which in this case is theta, to range between -3 and +3. However, I am not sure as to how I can create this restricted range. Any help is greatly appreciated! Thank you in advance!

Kind regards,

Gambia Man

with(plots):

a := 1.501*10^9:

Th := sqrt(4*Pi^2*a^3/(G*(Mh+Msat))):

HyperionOrbit := proc (`θIC`, `ωIC`, n, nopoints) local a, Mh, Msat, G, e, beta, M, Eqns, ICs, soln; option remember; global `ωH`, Th; a := 1.501*10^9; Mh := 5.5855*10^18; Msat := 5.6832*10^26; G := 6.67259/10^11; e := .232; beta := .89; M := Mh+Msat; Eqns := diff(theta(t), t) = omega(t), diff(omega(t), t) = -G*Msat*beta^2*(xH(t)*sin(theta(t))-yH(t)*cos(theta(t)))*(xH(t)*cos(theta(t))+yH(t)*sin(theta(t)))/(xH(t)^2+yH(t)^2)^2.5, diff(xH(t), t) = vxH(t), diff(vxH(t), t) = -G*M*xH(t)/(xH(t)^2+yH(t)^2)^(3/2), diff(yH(t), t) = vyH(t), diff(vyH(t), t) = -G*M*yH(t)/(xH(t)^2+yH(t)^2)^(3/2); ICs := xH(0) = a*(1+e), yH(0) = 0, vxH(0) = 0, vyH(0) = sqrt(G*M*(1-e)/(a*(1+e))), theta(0) = `θIC`, omega(0) = `ωIC`; soln := dsolve({Eqns, ICs}, numeric, maxfun = 0, output = array([seq(i, i = 0 .. n*Th, Th)])); plots:-odeplot(soln, [theta(t), omega(t)/`ωH`], 0 .. n*Th, numpoints = nopoints, labels = ["θ(t)","ω(t)/ωH"], axes = boxed, style = plottools:-point) end proc:

plots:-display(seq(HyperionOrbit(i, `ωH`*i, 1, 1), i = -3 .. 3))

 

NULL

NULL

 

Download Poincare_section_Boyd_plot.mw

with(plots):

a := 1.501*10^9:

Th := sqrt(4*Pi^2*a^3/(G*(Mh+Msat))):

HyperionOrbit := proc (`θIC`, `ωIC`, n, nopoints) local a, Mh, Msat, G, e, beta, M, Eqns, ICs, soln; option remember; global `ωH`, Th; a := 1.501*10^9; Mh := 5.5855*10^18; Msat := 5.6832*10^26; G := 6.67259/10^11; e := .232; beta := .89; M := Mh+Msat; Eqns := diff(theta(t), t) = omega(t), diff(omega(t), t) = -G*Msat*beta^2*(xH(t)*sin(theta(t))-yH(t)*cos(theta(t)))*(xH(t)*cos(theta(t))+yH(t)*sin(theta(t)))/(xH(t)^2+yH(t)^2)^2.5, diff(xH(t), t) = vxH(t), diff(vxH(t), t) = -G*M*xH(t)/(xH(t)^2+yH(t)^2)^(3/2), diff(yH(t), t) = vyH(t), diff(vyH(t), t) = -G*M*yH(t)/(xH(t)^2+yH(t)^2)^(3/2); ICs := xH(0) = a*(1+e), yH(0) = 0, vxH(0) = 0, vyH(0) = sqrt(G*M*(1-e)/(a*(1+e))), theta(0) = `θIC`, omega(0) = `ωIC`; soln := dsolve({Eqns, ICs}, numeric, maxfun = 0, output = array([seq(i, i = 0 .. n*Th, Th)])); plots:-odeplot(soln, [theta(t), omega(t)/`ωH`], 0 .. n*Th, numpoints = nopoints, labels = ["θ(t)","ω(t)/ωH"], axes = boxed, style = plottools:-point) end proc:

plots:-display(seq(HyperionOrbit(i, `ωH`*i, 1, 1), i = -3 .. 3))

 

NULL

NULL

 

Download Poincare_section_Boyd_plot.mw

Hello,

I have a question about poincare sections. I have this piece of code i need to analyse and I want to use a poincare section in order to so. How could I do it? I am interested in theta and omega. Any help is greatly appreciated! Thank you in advance!

Kind regards,

Gambia Man

with(plots):

a := 1.501*10^9:

Th := sqrt(4*Pi^2*a^3/(G*(Mh+Msat)));

1876321.326

 

0.3348672330e-5

(1)

HyperionOrbit := proc (`θIC`, `ωIC`) local a, Mh, Msat, G, e, beta, M, Eqns, ICs; global `ωH`, Th, soln; a := 1.501*10^9; Mh := 5.5855*10^18; Msat := 5.6832*10^26; G := 6.67259/10^11; e := .232; beta := .89; M := Mh+Msat; Eqns := diff(theta(t), t) = omega(t), diff(omega(t), t) = -G*Msat*beta^2*(xH(t)*sin(theta(t))-yH(t)*cos(theta(t)))*(xH(t)*cos(theta(t))+yH(t)*sin(theta(t)))/(xH(t)^2+yH(t)^2)^2.5, diff(xH(t), t) = vxH(t), diff(vxH(t), t) = -G*M*xH(t)/(xH(t)^2+yH(t)^2)^(3/2), diff(yH(t), t) = vyH(t), diff(vyH(t), t) = -G*M*yH(t)/(xH(t)^2+yH(t)^2)^(3/2); ICs := xH(0) = a*(1+e), yH(0) = 0, vxH(0) = 0, vyH(0) = sqrt(G*M*(1-e)/(a*(1+e))), theta(0) = `θIC`, omega(0) = `ωIC`; soln := dsolve({Eqns, ICs}, numeric); odeplot(soln, [theta(t), omega(t)/`ωH`], 0 .. 5*Th, numpoints = 2000, labels = ["θ(t)","ω(t)/ωH"], axes = boxed, size = [.25, .75]) end proc

``

 

Download New_Poincare_section.mw

Hello,

I would like to know how to do the following. If I received a plot of a graph, but I did not know it function, how could I get an accurate value for its maximum and minum points? Any help is greatly appreciated! Thank you in advance!

Kind regards,

Gambia Man

Hello,

I've been trying to collect points at certain intervals in my plot, however, the sample option doesn't seem to be working. Can anyone lend me a hand? Any help is greatly appreciated! Thank you in advance!

Kind regards,

Gam

with(plots):

a := 1.501*10^9:

Th := sqrt(4*Pi^2*a^3/(G*(Mh+Msat))):

HyperionOrbit := proc (`θIC`, `ωIC`, n) local a, Mh, Msat, G, e, beta, M, Eqns, ICs, soln; global `ωH`, Th; a := 1.501*10^9; Mh := 5.5855*10^18; Msat := 5.6832*10^26; G := 6.67259/10^11; e := .232; beta := .89; M := Mh+Msat; Eqns := diff(theta(t), t) = omega(t), diff(omega(t), t) = -G*Msat*beta^2*(xH(t)*sin(theta(t))-yH(t)*cos(theta(t)))*(xH(t)*cos(theta(t))+yH(t)*sin(theta(t)))/(xH(t)^2+yH(t)^2)^2.5, diff(xH(t), t) = vxH(t), diff(vxH(t), t) = -G*M*xH(t)/(xH(t)^2+yH(t)^2)^(3/2), diff(yH(t), t) = vyH(t), diff(vyH(t), t) = -G*M*yH(t)/(xH(t)^2+yH(t)^2)^(3/2); ICs := xH(0) = a*(1+e), yH(0) = 0, vxH(0) = 0, vyH(0) = sqrt(G*M*(1-e)/(a*(1+e))), theta(0) = `θIC`, omega(0) = `ωIC`; soln := dsolve({Eqns, ICs}, numeric, maxfun = 0); plots:-odeplot(soln, [theta(t), omega(t)/`ωH`], 0 .. n*Th, numpoints = 2000, labels = ["θ(t)","ω(t)/ωH"], axes = boxed, style = point, sample = [seq(i, i = 0 .. n*Th, Th)]) end proc:

HyperionOrbit(.5, 1.8*`ωH`, 10)

Error, (in plot/options2d) unexpected option: sample = [0, 1876321.326, 3752642.652, 5628963.978, 7505285.304, 9381606.630, 11257927.96, 13134249.28, 15010570.61, 16886891.93, 18763213.26]

 

``

``

 

Download Poincare_section.mw

bia Man

Hello,

I have an error in my code. I don't know where it came from. Earlier today I loaded this and it worked fine and now an error comes up. Any help is greatly appreciated! Thank you in advance!

Kind regards,

Gambia Man

with(plots):

``

HyperionOrbit := proc (`θIC`, `ωIC`) local a, Mh, Msat, G, e, beta, M, Eqns, Th, ICs, soln, `ωH`; a := 1.501*10^9; Mh := 5.5855*10^18; Msat := 5.6832*10^26; G := 6.67259/10^11; e := .232; beta := .89; M := Mh+Msat; Eqns := diff(theta(t), t) = omega(t), diff(omega(t), t) = -G*Msat*beta^2*(xH(t)*sin(theta(t))-yH(t)*cos(theta(t)))*(xH(t)*cos(theta(t))+yH(t)*sin(theta(t)))/(xH(t)^2+yH(t)^2)^2.5, diff(xH(t), t) = vxH(t), diff(vxH(t), t) = -G*M*xH(t)/(xH(t)^2+yH(t)^2)^(3/2), diff(yH(t), t) = vyH(t), diff(vyH(t), t) = -G*M*yH(t)/(xH(t)^2+yH(t)^2)^(3/2); Th := sqrt(4*Pi^2*a^3/(G*(Mh+Msat))); `ωH` := 2*Pi/Th; ICs := xH(0) = a*(1+e), yH(0) = 0, vxH(0) = 0, vyH(0) = sqrt(G*M*(1-e)/(a*(1+e))), theta(0) = `θIC`, omega(0) = `ωIC`; soln := dsolve({Eqns, ICs}, numeric); odeplot(soln, [theta(t), omega(t)/`ωH`], 0 .. 5*Th, numpoints = 2000, labels = ["θ(t)","ω(t)/ωH"], axes = boxed) end proc

HyperionOrbit(.5, 1.8*`ωH`)

Warning, The use of global variables in numerical ODE problems is deprecated, and will be removed in a future release. Use the 'parameters' argument instead (see ?dsolve,numeric,parameters)

 

Error, (in dsolve/numeric/SC/IVPpoints) unable to store '11.3097335529232/Th' when datatype=float[8]

 

``

``

``

 

Download Poincare_section.mw

1 2 3 4 Page 2 of 4