## 14778 Reputation

11 years, 324 days

## Two solutions: n=522 or n=2004...

We have a Diophantine equation  4^27+4^1016+4^n=m^2. Rewrite it as follows

4^1016+4^27=(m-2^n)*(m+2^n)

Hence we find that  2^n<4^1016+4^27 .  Should be n <2033, as

is(2^2033>4^1016+4^27);

true

So it is enough to make exhaustive search for  n  from 1 to 2032:

L:=[]:

for n from 1 to 2032 do

m:=sqrt(4^27+4^1016+4^n):

if type(m, integer) then L:=[op(L), n]:  fi:

od:

L;

[522, 2004]

## Another simple way...

plot3d(5, x = -3*Pi .. 3*Pi, y = (1/2)*sin(x) .. (1/2)*sin(x)+4, color = white, filled = true, scaling = constrained, grid = [50, 11], orientation = [93, -14, -23], axes = none, lightmodel = light1);

## Simple way...

plot3d(5, x = -3*Pi .. 3*Pi, y = (1/2)*sin(x) .. (1/2)*sin(x)+4, color = white, filled = true, scaling = constrained, numpoints = 2500, orientation = [93, -14, -23], axes = none, lightmodel = light1);

## Manual solution...

Unfortunately, Maple cannot cope with this task:

assume(m, posint, n, posint):

is((2*m-1)^(2^n)-1 mod 2^(n+2) =0);

FAIL

But the problem is easily solved manually by induction, if we use the identity

(2*m-1)^(2^(n+1))-1=( (2*m-1)^(2^n)-1 )*((2*m-1)^(2^n)+1)

## Two animations...

Change in the normal curve   phi(x)=1/(sigma*sqrt(2*Pi))*exp(-(x-a)^2/(2*sigma^2))  as the parameter  a  is changing from  -2  to  3  (sigma=1) :

plots[animate](plot,[1/sqrt(2*Pi)*exp(-(x-a)^2/2),x=-5..6,thickness=2],a=[seq(-2+0.02*k,k=0..250)]);

Change in the normal curve   phi(x)=1/(sigma*sqrt(2*Pi))*exp(-(x-a)^2/(2*sigma^2))  as the parameter  sigma  is changing from  0.6  to  2  (a=1) :

plots[animate](plot,[1/sigma/sqrt(2*Pi)*exp(-(x-2)^2/2/sigma^2),x=-2..6,thickness=3],sigma=[ seq(0.6+k*0.005,k=0..280)]);

## Re...

See   PathInt , LineInt and SurfaceInt commands in  Student[VectorCalculus]  Subpackage.

## Exact solution...

Found an error in my previous solution. Offer exact solution found by the exhaustive search, pre considerably narrowed the search area.

Rewrite the system as follows {a+b=7.11-c-d, a*b=7.11/c/d} . Therefore, for  the specified values ​​of  c  and  d , the values  a  and  b  satisfy the quadratic equation  z^2+(c+d-7,11)*z+7,11/c/d=0 . Discriminant is equal to  (c+d-7.11)^2-4*7.11/c/d >=0 .

Build the domain:

plots[implicitplot]([c*d*(c+d-7.11)^2-4*7.11, c+d=7.11], color=[red, blue],c=0..7.11, d=0..7.11, numpoints=10000);

It is clearly seen that each variable must be in the range  0.7..3.2

restart;

R:=[infinity, []]:

for a from 0.7 by 0.01 to 7.11/4 do

for b from a by 0.01 to (7.11-a)/3 do

for c from b by 0.01 to (7.11-a-b)/2 do

for d from c by 0.01 to min(3.2,7.11-a-b-c) do

delta:=(7.11-(a+b+c+d))^2+(7.11-a*b*c*d)^2;

if delta

od: od: od: od:

[0., [1.20, 1.25, 1.50, 3.16]]

R;

## Solution...

It is better to write the procedure as follows. Then the number of factors can be arbitrary.

myproc1:=proc(L)   #  L is a list

convert(L, `*`);

end proc;

map(myproc1, [[3,4], [2,3,4,10], [5,2,1]]);

[12, 240, 10]

## Shorter...

fa:=proc(x)

local  i, j;

for i while x[i]=0 do; od;

for j from -1 by -1 while x[j]=0 do; od;

[i, ArrayNumElems(x)+j+1];

end proc;

## Solution of the problem...

Because your system contains two redundant unknowns is easy to check that it has infinitely many solutions in four-dimensional space. But you do not look for solutions in the whole space, and on a discrete finite set  a=0.01 ... 7.11 by 0.01  and so on. I think that there does not exist exact solutions on this set.

Natural formulation of the problem: on a given set of numbers to find a quartet  [a, b, c, d] , for which the left-hand sides of the system have the least differencies from the right-hand sides. As a measure of the difference consider  (7.11-(a+b+c+d))^2+(7.11-a*b*c*d)^2 . The procedure consists of two stages. To speed up work on the first stage we consider the wider step=0.1, and step=0.01 on the second stage near the optimum point of the  first stage.

restart:

R:=[infinity, []]:  # First stage

for a from 0.1 by 0.1 to 7.11 do

for b from a by 0.1 to 7.11 do

for c from b by 0.1 to 7.11 do

for d from c by 0.1 to 7.11 do

delta:=(7.11-(a+b+c+d))^2+(7.11-a*b*c*d)^2;

if delta<0.01 and delta<R[1] then R:=[delta, [a, b, c, d]]: fi:

od: od: od: od:

R;

a0:=R[2,1]: b0:=R[2,2]: c0:=R[2,3]: d0:=R[2,4]:  # Second stage

for a from a0-0.09 by 0.01 to a0+0.09 do

for b from b0-0.09 by 0.01 to b0+0.09 do

for c from c0-0.09 by 0.01 to c0+0.09 do

for d from d0-0.09 by 0.01 to d0+0.09 do

delta:=(7.11-(a+b+c+d))^2+(7.11-a*b*c*d)^2;

if delta<R[1] then R:=[delta, [a, b, c, d]]: fi:

od: od: od: od:

R;

[.11296e-3, [.8, 1.8, 1.9, 2.6]]  # Result of the first stage

[.266342400e-7, [.80, 1.76, 1.92, 2.63]]  # Result of the second stage

Verification:

7.11-convert([.80, 1.76, 1.92, 2.63],`+`);

7.11-convert([.80, 1.76, 1.92, 2.63],`*`);

0.

0.00016320

## Variant...

fa:=proc(x)

local L, i, j;

L:=[];

for i while x[i]=0 do

od;

L:=[op(L), i];

for j from -1 by -1 while x[j]=0 do

od;

[op(L), ArrayNumElems(x)+j+1];

end proc;

Example:

fa(<1|0|0|1|0|0>);

[1, 4]

## 4950...

It is easy to prove that in any interval  RealRange(n, n+1) , where  n is positive integer, function  x -> frac(x*floor(x)) - 1/2  has exactly n roots. Thereforу in  RealRange(1,100)  there are  add(n, n=1..99) = 4950  roots.

## Solution...

Use geometry package. Specify the coordinates of all the objects. The solution is obvious:

assume(y1>0, x2>0, x3>0, x3<x2):

point(A,0,0), point(B,x1,y1), point(C,x2,0), point(R,x3,0):

line(BC, [B, C]), line(AB, [A, B]), line(AC, [A, C]), ParallelLine(PR, R, BC):

intersection(P, PR, AB):

ParallelLine(PQ, P, AC):

intersection(Q, PQ, BC):

line(AQ, [A, Q]), line(BR, [B, R]):

intersection(M, PR, AQ), intersection(N, PQ, BR):

triangle(APM, [A, P, M]), triangle(PBN, [P, B, N]), triangle(RQC, [R, Q, C]):

S1, S2, S3:=area(APM), area(PBN), area(RQC);

is(S1+S2=S3);

## Solution...

3^((x+3)/(5*x-2))-4 >= 5*3^((9*x-7)/(5*x-2)):  #   The original inequality

convert((x+3)/(5*x-2), parfrac);

convert((9*x-7)/(5*x-2), parfrac);

# Change in the original inequality y=3^(17/5/(5*x-2))

solve(5*(3^(9/5))/y<=(3^(1/5))*y-4, y);  # Solution for y

solve(3^(17/5/(5*x-2))>=3*3^(4/5));  # The final result

## Another way...

restart;

with(RealDomain):

sys := {x = expand(a*(3*cos(t) - cos(3*t))), y = simplify(expand(a*(3*sin(t) - sin(3*t))))};

subs(sin(t)=solve(sys[2], sin(t)), subs(cos(t)=sqrt(1-sin(t)^2), sys[1]));

eq:=subs(y=abs(y), simplify(lhs(%)^2=rhs(%)^2)) ;

a:=1:   plots[implicitplot](eq, x=-4..4, y=-4..4, thickness=2, numpoints=10000);

 First 213 214 215 216 217 218 219 Last Page 215 of 231
﻿