Kitonum

16895 Reputation

24 Badges

12 years, 335 days

MaplePrimes Activity


These are answers submitted by Kitonum

We can numerically parameterize this curve by polar angle and then do any animations, for example:

restart; 
f1 := sqrt((x+0.500000000)^2+y^2)+sqrt((x-0.500000000)^2+(y-1)^2)+sqrt((x-1.050000000)^2+(y+1)^2)+sqrt((x-0.500000000)^2+(y+0.500000000)^2)+sqrt((x-1)^2+(y-1)^2)-7: 
X := t->fsolve(eval(f1, [x = r*cos(t), y = r*sin(t)]), r = 0 .. 20)*cos(t): 
Y := t->fsolve(eval(f1, [x = r*cos(t), y = r*sin(t)]), r = 0 .. 20)*sin(t): 
plots:-animate(plot, [[X, Y, 0 .. a]], a = 0 .. 2*Pi, frames = 60);

                      

 

The code below works in Maple 2018.2:
 

restart;
F := proc(t)
local A, B, C;
uses plottools, plots;
A:=line([-2,0], [cos(t)-2, sin(t)], color=blue,thickness=3);
B:=line([cos(t)-2, sin(t)], [t, sin(t)], color=blue,thickness=3);
C:=plot(sin(x), x=0..t, view=[-3..7, -5..5],thickness=3);
display(A,B,C);
end proc:

plots:-animate(F,[theta],theta=0..2*Pi,background=plot([cos(t)-2,sin(t),t=0..2*Pi],thickness=3),
scaling=constrained,axes=none);

 

You can just skip this option:

restart;
p1 := plot([[0,0], [1,1]]);

                                 


If you want the plot of a function  f(x)  without labels, then define the function in operator form, for example:

restart;
plot(x->x^2, -2..2);

 

restart;
f := a*b+a*c+a+b+c;
s:=select(has, {op(f)}, a) minus {a*b};
# or
s:=select(has,{op(f)} minus {a*b}, a);

Output:       {a, a*c}

restart;
eq2 := ln(2*u^2 + u - 1) = -c - 2*ln(x);
sol:=[solve(eq2,u)];
simplify(sol[1]);
applyop(t->sqrt(simplify(t^2)), [2,2], %);

                                               

 

restart;
f:=x->3+(exp(x^2)+exp(1))/(exp(x^2)-exp(1));
P:=plot(f, -5..5, -3..8, color=blue, discont);
g:=x->f(a)-1/D(f)(a)*(x-a); # Equation of normal to f(x) at the point x=a
x0:=0:
M:=f(0);
d:=sqrt(a^2+(f(a)-g(0))^2):
a:=fsolve(g(0)-M=d, a=1..2);
R:=evalf(d);
y0:=evalf(g(0));
# (x-x0)^2+(y-y0)^2=R^2 - Equation of the circle
plots:-display(P, plottools:-circle([x0,y0],R, color=red), scaling=constrained);

                

We use a numerical solution ( fsolve  instead of  solve ) because the  solve  command cannot find any solution (returns NULL)

restart;
B[0] := (1/24)*x^4/h^4:
B[1] := -(1/24)*(5*h^4-20*h^3*x+30*h^2*x^2-20*h*x^3+4*x^4)/h^4:
B[2] := (1/24)*(155*h^4-300*h^3*x+210*h^2*x^2-60*h*x^3+6*x^4)/h^4:
B[3] := -(1/24)*(655*h^4-780*h^3*x+330*h^2*x^2-60*h*x^3+4*x^4)/h^4:
B[4] := (1/24)*(625*h^4-500*h^3*x+150*h^2*x^2-20*h*x^3+x^4)/h^4:
piecewise(seq(op([x>n*h and x<=(n+1)*h,B[n]]), n=0..4), 0);

 


Your surface  f(x,y)  is blocking this ellipse a little, and I raised the ellipse a little:

restart;
with(plots):
f := (x,y) -> x^2 + y^2 - 12*x + 16*y;
display(plot3d(f(x, y), x = -9 .. 9, y = -9 .. 9), pointplot3d([[6, -8, f(6, -8)]], color = red, symbol = solidcircle, symbolsize = 18), view = [-4.2 .. 8.2, -8.2 .. 4.2, -100 .. 100], spacecurve([cos(t), sin(t), 1 - 12*cos(t) + 15*sin(t)+1], t = 0 .. 2*Pi, thickness=2, color=red, orientation = [-15, 68, 5]));

                      

As an easier way you can use  plots:-textplot  command instead, which can easily specify any color.

Example:

restart;
P:=plot(sin(x), x=0..2*Pi, thickness=2, size=[900,400]):
T:=plots:-textplot([[3.5,1,"Plot of "],[4,1,sin(x),color=red]], font=[TIMES,18]):
plots:-display(P,T, scaling=constrained);

           

When you solve the equation  abs(sin(x)+y^2+y+I*x)  for  y , you are assuming x and y are real numbers. But Maple does not know this and simply solves this equation in the complex domain for the variable  y . For real numbers, it is obvious that   sqrt(u^2+v^2)=0  is equivalent to the system  {u=0,v=0}

A := evalc(abs(sin(x)+y^2+y+I*x)); 
[solve]({op([1, 1, 1], A), op([1, 2, 1], A)})

                                         A := sqrt((sin(x)+y^2+y)^2+x^2)
                                         [ {x = 0, y = -1}, {x = 0, y = 0}]

Example:

restart;
plots:-contourplot(abs(sin(x) + y^2 + y + x*I), x = -6 .. 6, y = -5 .. 5, contours = [seq(1/2^n, n = 1 .. 3), seq(2^n, n = 1 .. 5)], numpoints = 10000, thickness = 2, color = black, filledregions = true, coloring=["LightCyan","Red"]);

                    

In Maple 2018.2, you get the expected result. Of course, formally it will only be a right-sided derivative (as indicated by vv). The code is much shorter if you notice that your function is just  ln(2+5*t)  for  t>=0  and use the differentiate operator  D :

eval(diff(ln(piecewise(t=0,2,2+5*t)),t), t=0);
D(t->ln(2+5*t))(0);

                                               5/2
                                               5/2

The following works as expected:

restart;
B := x^4 - 4*x^3/(2 + p) - 6*(p - 1)*x^2/((3 + p)*(2 + p)) - 4*p*(p - 5)*x/((4 + p)*(3 + p)*(2 + p)) - (p - 1)*(p^2 - 15*p - 4)/((5 + p)*(4 + p)*(3 + p)*(2 + p));
for p from -1 to 5000 do
    A[p] := fsolve(B, x, complex);
end do:
ptlist := convert(A,list):
plots:-complexplot(ptlist, x = -1 .. 1.5, y = -0.5 .. 0.5, style = point);

 

It is well known that most of the differential equations cannot be solved symbolically, only numerically. To do this, you must provide an initial condition and use the  numeric  option.

Example:

restart;
Sol:=dsolve({diff(y(x), x) = (6*y(x)^5 - 3*y(x)*x^2 - 20*y(x)^3*x)/(-4*x^3 + 30*y(x)^2*x^2 - 30*y(x)^4 + 7*y(x)^6), y(0)=1}, y(x), numeric);
plots:-odeplot(Sol, [x,y(x)], x=0..1, color=red);

                                            Sol:=proc(x_rkf45) ... end proc
                               

 

Example:

restart;
plots:-polarplot(cos(3*phi*Pi/180), phi=0..360, angularunit=degrees);

                      

 

1 2 3 4 5 6 7 Last Page 1 of 258