## 15 Reputation

6 years, 261 days

## Two systems inequalties...

Hello everybody,

Since acer gave me that tip I have derived two system of inequalities which are definitly solveable ('simplex'-command returns 'true'). As I don't have MAPLE 2015 I can't solve it with the 'PolyhedralSet'-command. If someone who has MAPLE 2015 could solve my two systems I would be very greatful.

First System:

S := PolyhedralSet([0 <= (1/25)*b11, 0 <= (1/25)*b22, 0 <= (1/25)*b33, 0 <= (1/25)*b44, 0 <= -(12/25)*b44+(1/25025)*b99+(4/275)*b2020-(306/5)*b11-(544/35)*b22-(16/5)*b33+17050058028932207659/392694612710400000, 0 <= (63/25)*b44-(2/3575)*b99-(9/55)*b2020+(12852/25)*b11+(612/5)*b22+(112/5)*b33-1859886463352366249/5342783846400000, 0 <= -(182/25)*b44+(1/275)*b99+(42/55)*b2020-(9282/5)*b11-(10608/25)*b22-(364/5)*b33+10569449395416434161/8630650828800000, 0 <= (273/25)*b44-(4/275)*b99-(91/55)*b2020+(15912/5)*b11+(3536/5)*b22+(2912/25)*b33-8902222402551338533/4315325414400000, 0 <= (1/25)*b99, 0 <= -(1001/25)*b44-(2/25)*b99+(273/25)*b2020-(68068/5)*b11-(14586/5)*b22-(2288/5)*b33+6773030323238725459/784604620800000, 0 <= (2574/25)*b44+(3/25)*b99-(182/5)*b2020+(918918/25)*b11+(38896/5)*b22+(6006/5)*b33-6049870521396536773/261534873600000, 0 <= -(3861/25)*b44-(24/175)*b99+(351/5)*b2020-(286416/5)*b11-(2100384/175)*b22-(9152/5)*b33+5465968075214691641/152562009600000, 0 <= (4004/25)*b44+(3/25)*b99-712028368745424949/18681062400000-(468/5)*b2020+(306306/5)*b11+(63648/5)*b22+(48048/25)*b33, 0 <= -(3003/25)*b44-(2/25)*b99+91*b2020-47124*b11-9724*b22-1456*b33+4579528093219020391/156920924160000, 0 <= (1638/25)*b44+(1/25)*b99-(1638/25)*b2020+(131274/5)*b11+(26928/5)*b22+(4004/5)*b33-4234170109213463609/261534873600000, 0 <= -(637/25)*b44-(4/275)*b99+(1911/55)*b2020-(259896/25)*b11-(10608/5)*b22-(1568/5)*b33+3935028629902940653/616475059200000, 0 <= (168/25)*b44+(1/275)*b99-(728/55)*b2020+(13923/5)*b11+(14144/25)*b22+(416/5)*b33-3671189442456764071/2157662707200000, 0 <= -(27/25)*b44-(2/3575)*b99+(189/55)*b2020-(2268/5)*b11-(459/5)*b22-(336/25)*b33+3432194498564787803/12466495641600000, 0 <= (2/25)*b44+(1/25025)*b99-(6/11)*b2020+34*b11+(48/7)*b22+b33-3183161946172621261/157077845084160000, 0 <= (1/25)*b2020], [b11, b22, b33, b44, b99, b2020])

Second System:

S := PolyhedralSet([0 <= (1/25)*b11, 0 <= (1/25)*b22, 0 <= (1/25)*b33, 0 <= (1/25)*b44, 0 <= (1/25)*b55, 0 <= 345191669480449831999/800296713216000000-(16/25)*b55+(1/25)*b2222+(136/25)*b2424-(3876/25)*b22-(15504/25)*b11-(816/25)*b33-(136/25)*b44+(16/25)*b2323, 0 <= -25293979664986612547/4850283110400000+7752*b11+(46512/25)*b22+(1836/5)*b33+(272/5)*b44+(24/5)*b55-(16/25)*b2222-(51/5)*b2323-(432/5)*b2424, 0 <= 232919249754745037087/7621873459200000+(24/5)*b2222+(3213/5)*b2424-(54264/5)*b22-46512*b11-(51408/25)*b33-(1428/5)*b44+(1904/25)*b2323-(112/5)*b55, 0 <= -18199906817625939708187/160059342643200000+176358*b11+(201552/5)*b22+(37128/5)*b33+(24752/25)*b44+(364/5)*b55-(112/5)*b2222-(1768/5)*b2323-(74256/25)*b2424, 0 <= 15915435843024617553637/53353114214400000-470288*b11-(529074/5)*b22-(95472/5)*b33-(12376/5)*b44-(4368/25)*b55+(364/5)*b2222+(5712/5)*b2323+(47736/5)*b2424, 0 <= -155188212801506414530249/266765571072000000-(4368/25)*b2222-(565488/25)*b2424+(5173168/25)*b22+(23279256/25)*b11+(918918/25)*b33+(116688/25)*b44-(68068/25)*b2323+(8008/25)*b55, 0 <= 12634824177137523264517/14550849331200000-(2288/5)*b55+(8008/25)*b2222+(204204/5)*b2424-(7759752/25)*b22-1410864*b11-(272272/5)*b33-(34034/5)*b44+(24752/5)*b2323, 0 <= -17918785204474788376271/17784371404800000-(2288/5)*b2222-(286416/5)*b2424+(1813968/5)*b22+1662804*b11+(1575288/25)*b33+(38896/5)*b44-(175032/25)*b2323+(2574/5)*b55, 0 <= 1250859221388992872117/1368028569600000-1534896*b11-(1662804/5)*b22-(286416/5)*b33-(175032/25)*b44-(2288/5)*b55+(2574/5)*b2222+(38896/5)*b2323+(1575288/25)*b2424, 0 <= -14808017336157878530991/22865620377600000+1108536*b11+(1193808/5)*b22+(204204/5)*b33+(24752/5)*b44+(8008/25)*b55-(2288/5)*b2222-(34034/5)*b2323-(272272/5)*b2424, 0 <= 94506049103260816178999/266765571072000000-(15519504/25)*b11-(3325608/25)*b22-(565488/25)*b33-(68068/25)*b44-(4368/25)*b55+(8008/25)*b2222+(116688/25)*b2323+(918918/25)*b2424, 0 <= -7819583644482461423387/53353114214400000-(4368/25)*b2222-(95472/5)*b2424+(1410864/25)*b22+264537*b11+(47736/5)*b33+(5712/5)*b44-(12376/5)*b2323+(364/5)*b55, 0 <= 7073211657159940574437/160059342643200000-82992*b11-(88179/5)*b22-(74256/25)*b33-(1768/5)*b44-(112/5)*b55+(364/5)*b2222+(24752/25)*b2323+(37128/5)*b2424, 0 <= -485168810809513208359/53353114214400000+18088*b11+(19152/5)*b22+(3213/5)*b33+(1904/25)*b44+(24/5)*b55-(112/5)*b2222-(1428/5)*b2323-(51408/25)*b2424, 0 <= 5439607437644420797/4850283110400000-(16/25)*b55+(24/5)*b2222+(1836/5)*b2424-(2584/5)*b22-2448*b11-(432/5)*b33-(51/5)*b44+(272/5)*b2323, 0 <= -47306404463031373249/800296713216000000+(1/25)*b55-(16/25)*b2222-(816/25)*b2424+(816/25)*b22+(3876/25)*b11+(136/25)*b33+(16/25)*b44-(136/25)*b2323, 0 <= (1/25)*b2222, 0 <= (1/25)*b2323, 0 <= (1/25)*b2424], [b11, b22, b33, b44, b55, b2222, b2323, b2424])

Hopefully MAPLE 2015 can solve these problems.

Best regards,

Lucas

## Two systems inequalties...

Hello everybody,

Since acer gave me that tip I have derived two system of inequalities which are definitly solveable ('simplex'-command returns 'true'). As I don't have MAPLE 2015 I can't solve it with the 'PolyhedralSet'-command. If someone who has MAPLE 2015 could solve my two systems I would be very greatful.

First System:

S := PolyhedralSet([0 <= (1/25)*b11, 0 <= (1/25)*b22, 0 <= (1/25)*b33, 0 <= (1/25)*b44, 0 <= -(12/25)*b44+(1/25025)*b99+(4/275)*b2020-(306/5)*b11-(544/35)*b22-(16/5)*b33+17050058028932207659/392694612710400000, 0 <= (63/25)*b44-(2/3575)*b99-(9/55)*b2020+(12852/25)*b11+(612/5)*b22+(112/5)*b33-1859886463352366249/5342783846400000, 0 <= -(182/25)*b44+(1/275)*b99+(42/55)*b2020-(9282/5)*b11-(10608/25)*b22-(364/5)*b33+10569449395416434161/8630650828800000, 0 <= (273/25)*b44-(4/275)*b99-(91/55)*b2020+(15912/5)*b11+(3536/5)*b22+(2912/25)*b33-8902222402551338533/4315325414400000, 0 <= (1/25)*b99, 0 <= -(1001/25)*b44-(2/25)*b99+(273/25)*b2020-(68068/5)*b11-(14586/5)*b22-(2288/5)*b33+6773030323238725459/784604620800000, 0 <= (2574/25)*b44+(3/25)*b99-(182/5)*b2020+(918918/25)*b11+(38896/5)*b22+(6006/5)*b33-6049870521396536773/261534873600000, 0 <= -(3861/25)*b44-(24/175)*b99+(351/5)*b2020-(286416/5)*b11-(2100384/175)*b22-(9152/5)*b33+5465968075214691641/152562009600000, 0 <= (4004/25)*b44+(3/25)*b99-712028368745424949/18681062400000-(468/5)*b2020+(306306/5)*b11+(63648/5)*b22+(48048/25)*b33, 0 <= -(3003/25)*b44-(2/25)*b99+91*b2020-47124*b11-9724*b22-1456*b33+4579528093219020391/156920924160000, 0 <= (1638/25)*b44+(1/25)*b99-(1638/25)*b2020+(131274/5)*b11+(26928/5)*b22+(4004/5)*b33-4234170109213463609/261534873600000, 0 <= -(637/25)*b44-(4/275)*b99+(1911/55)*b2020-(259896/25)*b11-(10608/5)*b22-(1568/5)*b33+3935028629902940653/616475059200000, 0 <= (168/25)*b44+(1/275)*b99-(728/55)*b2020+(13923/5)*b11+(14144/25)*b22+(416/5)*b33-3671189442456764071/2157662707200000, 0 <= -(27/25)*b44-(2/3575)*b99+(189/55)*b2020-(2268/5)*b11-(459/5)*b22-(336/25)*b33+3432194498564787803/12466495641600000, 0 <= (2/25)*b44+(1/25025)*b99-(6/11)*b2020+34*b11+(48/7)*b22+b33-3183161946172621261/157077845084160000, 0 <= (1/25)*b2020], [b11, b22, b33, b44, b99, b2020])

Second System:

S := PolyhedralSet([0 <= (1/25)*b11, 0 <= (1/25)*b22, 0 <= (1/25)*b33, 0 <= (1/25)*b44, 0 <= (1/25)*b55, 0 <= 345191669480449831999/800296713216000000-(16/25)*b55+(1/25)*b2222+(136/25)*b2424-(3876/25)*b22-(15504/25)*b11-(816/25)*b33-(136/25)*b44+(16/25)*b2323, 0 <= -25293979664986612547/4850283110400000+7752*b11+(46512/25)*b22+(1836/5)*b33+(272/5)*b44+(24/5)*b55-(16/25)*b2222-(51/5)*b2323-(432/5)*b2424, 0 <= 232919249754745037087/7621873459200000+(24/5)*b2222+(3213/5)*b2424-(54264/5)*b22-46512*b11-(51408/25)*b33-(1428/5)*b44+(1904/25)*b2323-(112/5)*b55, 0 <= -18199906817625939708187/160059342643200000+176358*b11+(201552/5)*b22+(37128/5)*b33+(24752/25)*b44+(364/5)*b55-(112/5)*b2222-(1768/5)*b2323-(74256/25)*b2424, 0 <= 15915435843024617553637/53353114214400000-470288*b11-(529074/5)*b22-(95472/5)*b33-(12376/5)*b44-(4368/25)*b55+(364/5)*b2222+(5712/5)*b2323+(47736/5)*b2424, 0 <= -155188212801506414530249/266765571072000000-(4368/25)*b2222-(565488/25)*b2424+(5173168/25)*b22+(23279256/25)*b11+(918918/25)*b33+(116688/25)*b44-(68068/25)*b2323+(8008/25)*b55, 0 <= 12634824177137523264517/14550849331200000-(2288/5)*b55+(8008/25)*b2222+(204204/5)*b2424-(7759752/25)*b22-1410864*b11-(272272/5)*b33-(34034/5)*b44+(24752/5)*b2323, 0 <= -17918785204474788376271/17784371404800000-(2288/5)*b2222-(286416/5)*b2424+(1813968/5)*b22+1662804*b11+(1575288/25)*b33+(38896/5)*b44-(175032/25)*b2323+(2574/5)*b55, 0 <= 1250859221388992872117/1368028569600000-1534896*b11-(1662804/5)*b22-(286416/5)*b33-(175032/25)*b44-(2288/5)*b55+(2574/5)*b2222+(38896/5)*b2323+(1575288/25)*b2424, 0 <= -14808017336157878530991/22865620377600000+1108536*b11+(1193808/5)*b22+(204204/5)*b33+(24752/5)*b44+(8008/25)*b55-(2288/5)*b2222-(34034/5)*b2323-(272272/5)*b2424, 0 <= 94506049103260816178999/266765571072000000-(15519504/25)*b11-(3325608/25)*b22-(565488/25)*b33-(68068/25)*b44-(4368/25)*b55+(8008/25)*b2222+(116688/25)*b2323+(918918/25)*b2424, 0 <= -7819583644482461423387/53353114214400000-(4368/25)*b2222-(95472/5)*b2424+(1410864/25)*b22+264537*b11+(47736/5)*b33+(5712/5)*b44-(12376/5)*b2323+(364/5)*b55, 0 <= 7073211657159940574437/160059342643200000-82992*b11-(88179/5)*b22-(74256/25)*b33-(1768/5)*b44-(112/5)*b55+(364/5)*b2222+(24752/25)*b2323+(37128/5)*b2424, 0 <= -485168810809513208359/53353114214400000+18088*b11+(19152/5)*b22+(3213/5)*b33+(1904/25)*b44+(24/5)*b55-(112/5)*b2222-(1428/5)*b2323-(51408/25)*b2424, 0 <= 5439607437644420797/4850283110400000-(16/25)*b55+(24/5)*b2222+(1836/5)*b2424-(2584/5)*b22-2448*b11-(432/5)*b33-(51/5)*b44+(272/5)*b2323, 0 <= -47306404463031373249/800296713216000000+(1/25)*b55-(16/25)*b2222-(816/25)*b2424+(816/25)*b22+(3876/25)*b11+(136/25)*b33+(16/25)*b44-(136/25)*b2323, 0 <= (1/25)*b2222, 0 <= (1/25)*b2323, 0 <= (1/25)*b2424], [b11, b22, b33, b44, b55, b2222, b2323, b2424])

Hopefully MAPLE 2015 can solve these problems.

Best regards,

Lucas

## @acer Thanks a lot for that tip. To...

@acer Thanks a lot for that tip. Too bad that my system doesn't have a solution, but i will come back to that command if I will have such a problem again.

Best regards and thanks to you all!

Lucas

## @Markiyan Hirnyk I know that it isn...

@Markiyan Hirnyk I know that it isn't obvious but the systems are the same. The varibales 'b' have been replaced by 'q'.

## @Thomas Richard Sorry for that!...

@Thomas Richard Sorry for that!

## @Markiyan Hirnyk Here it is. Unfort...

@Markiyan Hirnyk Here it is. Unfortunally my system is huge. Hopefully it is solveable:-) Thank you very much!

S := PolyhedralSet([0 <= -(1/102)*q89-(5/153)*q19+(14/153)*q910-(35/51)*q912-(154/51)*q913-(154/17)*q914-(1144/51)*q915-(5005/102)*q916-(5005/51)*q917-(28028/153)*q918, 0 <= -24899/42485300+(1848/14855)*q1112+(924/2971)*q1113+(10296/14855)*q1114+(21021/14855)*q1115+(8008/2971)*q1116+(72072/14855)*q1117+(24752/2971)*q1118-(168/14855)*q1011+(121/4545630)*q89+(962/6818445)*q19+(1162/6818445)*q910+(3703/454563)*q912+(57904/2272815)*q913+(10010/151521)*q914+(342628/2272815)*q915+(1422421/4545630)*q916+(274274/454563)*q917+(7475468/6818445)*q918+(1/14855)*q711, 0 <= -(6659408799120/183480564653)*q1318+(256108637268/183480564653)*q1314-(894317553360/183480564653)*q1316-(2847055980384/183480564653)*q1317-(42036120808887492/2725603787920315)*q1117-(162485283466551472/5996328333424693)*q1118-(2487882407472/2385247340489)*q1213+(132756144136/2752208469795)*q1215-(5378573995237926/2725603787920315)*q1114-(22951102431819513/5451207575840630)*q1115-(4540721487143884/545120757584063)*q1116+(7189213626172704/389761341672605045)*q1011-(569861234712/2385247340489)*q1013-(10763075201316564/35432849242964095)*q1112-(9943573294321422/7086569848592819)*q1113-(723997667972991031823/15012625663865095020)*q916-(72378481700872140437/750631283193254751)*q917-(2026158529918401961922/11259469247898821265)*q918-(148248876214862598028/48791033407561558815)*q913-(28991406401831886551/3252735560504103921)*q914-(82780323198322300516/3753156415966273755)*q915-(29508746540/183480564653)*q718-(20997379777762560949/2146805469932708587860)*q89+(144241306296542471191/1610104102449531440895)*q910-(145609125783432971611/214680546993270858786)*q912-(32983289493/1834805646530)*q715-(7637557928/183480564653)*q716-(15622277580/183480564653)*q717+(40057122/183480564653)*q710+(552603690487919/779522683345210090)*q711+(17712452274/2385247340489)*q713-(1227464667/183480564653)*q714-(7637557928/183480564653)*q616-(14580792408/183480564653)*q617-(236069972320/1651325081877)*q618-(51605691615637560499/1610104102449531440895)*q19-(587504456/550441693959)*q612-(1636619556/183480564653)*q614-(18467725199/917402823265)*q615-(1725829873768/917402823265)*q1516-(3294766122648/917402823265)*q1517-(10668766492384/1651325081877)*q1518+(369820687236/917402823265)*q1415+592881768854299449743991913223/779811801698110473654999436800, 0 <= -(9168348617792/183480564653)*q1318+(1771010059104/917402823265)*q1314-(1228757353824/183480564653)*q1316-(19588229492832/917402823265)*q1317-(319117263636483312/13628018939601575)*q1117-(3692812966308860576/89944925001370395)*q1118-(1320261916512/917402823265)*q1213+(2588742260104/41283127046925)*q1215-(41268711154843536/13628018939601575)*q1114-(17535008991924788/2725603787920315)*q1115-(103684751385265232/8176811363760945)*q1116+(4564476864729488/149908208335617325)*q1011-(302276231712/917402823265)*q1013-(6459628665745808/13628018939601575)*q1112-(5649973498926064/2725603787920315)*q1113-(5647626709723165124321/56297346239494106325)*q916-(2258498282266568487236/11259469247898821265)*q917-(63226629728687623013816/168892038718482318975)*q918-(353189900699233260208/56297346239494106325)*q913-(13914634551492294676/750631283193254751)*q914-(2582741668653190638412/56297346239494106325)*q915-(122053894144/550441693959)*q718-(12526481476588955911/619270808634435169575)*q89+(346036762433580457876/1857812425903305508725)*q910-(174624244942712347538/123854161726887033915)*q912-(113772570457/4587014116325)*q715-(157952098304/2752208469795)*q716-(21538922496/183480564653)*q717+(276140032/917402823265)*q710+(426121431259202/449724625006851975)*q711+(9393114164/917402823265)*q713-(8461719552/917402823265)*q714-(157952098304/2752208469795)*q616-(100514971648/917402823265)*q617-(976431153152/4953975245631)*q618-(123895686607253743084/1857812425903305508725)*q19-(12150161408/8256625409385)*q612-(11282292736/917402823265)*q614-(382043570636/13761042348975)*q615-(33653649381352/13761042348975)*q1516-(21415958697224/4587014116325)*q1517-(208040741630176/24769876228155)*q1518+(2403832098668/4587014116325)*q1415+1786574522652998663140172629921/1606755085916436415497938400000, 0 <= -(13164373400/183480564653)*q1318+(503685270/183480564653)*q1314-(30122755080/3119169599101)*q1316-(95733506880/3119169599101)*q1317-(1295425601628018/46335264394645355)*q1117-(885418493390032/17988985000274079)*q1118-(83401463640/40549204788313)*q1213+(2844777320/28072526391909)*q1215-(164037996938769/46335264394645355)*q1114-(1405748139792661/185341057578581420)*q1115-(418727678493194/27801158636787213)*q1116+(202893564676796/6625942808434285765)*q1011-(19113214500/40549204788313)*q1013-(322801405685906/602358437130389615)*q1112-(314391883386523/120471687426077923)*q1113-(108498461761709380207/1531287817714239692040)*q916-(5423220312828793475/38282195442855992301)*q917-(151814779006823659769/574232931642839884515)*q918-(11189057187909994741/2488342703785639499565)*q913-(4344872713065104575/331779027171418599942)*q914-(6202974140254345534/191410977214279961505)*q915-(174716110/550441693959)*q718-(3166729935357552821/218974157933136275961720)*q89+(21650627060990482079/164230618449852206971290)*q910-(21820462865013229067/21897415793313627596172)*q912-(442280489/12476678396404)*q715-(768750884/9357508797303)*q716-(524148330/3119169599101)*q717+(17471611/40549204788313)*q710+(113980289318561/79511313701211429180)*q711+(244686415/16696731383423)*q713-(576563163/43668374387414)*q714-(768750884/9357508797303)*q616-(489205108/3119169599101)*q617-(1397728880/4953975245631)*q618-(3866857751801806903/82115309224926103485645)*q19-(768750884/364942843094817)*q612-(384375442/21834187193707)*q614-(743291675/18715017594606)*q615-(36982105160/9357508797303)*q1516-(23534066920/3119169599101)*q1517-(67240191200/4953975245631)*q1518+(2641578940/3119169599101)*q1415+171241343910217764824071764771413/11135712528249017563793391957504000, 0 <= -(9906357699/733922258612)*q1318+(7088820057/14678445172240)*q1314-(11658992499/6238339198202)*q1316-(362863414683/62383391982020)*q1317-(6292860593330619/1853410575785814200)*q1117-(1451982038065587/239853133336987720)*q1118-(76012458291/202746023941565)*q1213+(41486613861/1247667839640400)*q1215-(2976055424280153/7413642303143256800)*q1114-(6541287464247291/7413642303143256800)*q1115-(83383198607961/46335264394645355)*q1116+(820420304050431/530075424674742861200)*q1011-(140282648793/1621968191532520)*q1013-(647045802280899/12047168742607792300)*q1112-(1768029136877619/4818867497043116920)*q1113-(9846696598365868283/2268574544761836580800)*q916-(492331240429740901/56714363619045914520)*q917-(13784838675966104131/850715454285688717800)*q918-(1068745257251265629/3686433635237984443800)*q913-(196869423791994583/245762242349198962920)*q914-(112555239885993781/56714363619045914520)*q915-(171718911/2935689034448)*q718-(303781804585864729/324406159900942631054400)*q89+(2022369578773464361/243304619925706973290800)*q910-(1958027389115308231/32440615990094263105440)*q912-(16123854789/2495335679280800)*q715-(1888908021/124766783964040)*q716-(1545470199/49906713585616)*q717+(39627441/499067135856160)*q710+(305905038952941/1060150849349485722400)*q711+(128727009/47704946809780)*q713-(2428596027/998134271712320)*q714-(1888908021/124766783964040)*q616-(3606097131/124766783964040)*q617-(19079879/366961129306)*q618-(352425231005780927/121652309962853486645400)*q19-(48433539/124766783964040)*q612-(809532009/249533567928080)*q614-(36369575613/4990671358561600)*q615-(1617977940579/1247667839640400)*q1516-(3088866977469/1247667839640400)*q1517-(16343211521/3669611293060)*q1518+(693419117391/2495335679280800)*q1415+54618457607068156947653495569133/1077378082854024375030653190144000, 0 <= -(917644080384/183480564653)*q1318+(1231479840096/6421819762855)*q1314-(123398472384/183480564653)*q1316-(1962246648384/917402823265)*q1317-(27462953246061816/13628018939601575)*q1117-(106283477260151856/29981641667123465)*q1118-(1711641108672/11926236702445)*q1213+(31608624432/4587014116325)*q1215-(3491980789821048/13628018939601575)*q1114-(7469001695205351/13628018939601575)*q1115-(2961984798679032/2725603787920315)*q1116+(342919929023784/149908208335617325)*q1011-(392176069632/11926236702445)*q1013-(6917956476602472/177164246214820475)*q1112-(6598311174442116/35432849242964095)*q1113-(22973209239311824003/4170173795518081950)*q916-(4593222442024826414/417017379551808195)*q917-(128580826442834360084/6255260693277122925)*q918-(9449311276490694256/27106129670867532675)*q913-(1839932266613790782/1807075311391168845)*q914-(1050711112523244452/417017379551808195)*q915-(4062353184/183480564653)*q718-(668774800334717489/596334852759085718850)*q89+(9161602033007831302/894502279138628578275)*q910-(420054277371199261/5421225934173506535)*q912-(11346105834/4587014116325)*q715-(5257162944/917402823265)*q716-(2150657568/183480564653)*q717+(358442928/11926236702445)*q710+(193107154238631/1948806708363025225)*q711+(85340933208/83483656917115)*q713-(5914308312/6421819762855)*q714-(5257162944/917402823265)*q616-(10036401984/917402823265)*q617-(3610980608/183480564653)*q618-(297721340691854198/81318389012602598025)*q19-(1752387648/11926236702445)*q612-(7885744416/6421819762855)*q614-(12709409664/4587014116325)*q615-(1232736352848/4587014116325)*q1516-(2353405764528/4587014116325)*q1517-(846727999936/917402823265)*q1518+(264157789896/4587014116325)*q1415+4316398232388175231895981617/45127997783455467225405060000, 0 <= 48990795660107325675906396256853/598895463704148843767039567462400-(72955347850/183480564653)*q1318+(4763106315/366961129306)*q1314-(10457282220/183480564653)*q1316-(31730009850/183480564653)*q1317-(44449576404807/545120757584063)*q1117-(2634042214544615/17988985000274079)*q1118-(25275835200/2385247340489)*q1213+(4978409359/3302650163754)*q1215-(20170702662663/2180483030336252)*q1114-(11214754063541/545120757584063)*q1115-(70015584343502/1635362272752189)*q1116+(89519227049/11992656666849386)*q1011-(5883053715/2385247340489)*q1013-(8038120471864/7086569848592819)*q1112-(66999259641790/7086569848592819)*q1113-(744156686378016205/9007575398319057012)*q916-(744478827211209769/4503787699159528506)*q917-(2085102030180618484/6755681548739292759)*q918-(167316977871157541/29274620044536935289)*q913-(296987240126438785/19516413363024623526)*q914-(85033302885108665/2251893849579764253)*q915-(1846947235/1100883387918)*q718-(23969029458216863/1288083281959625152716)*q89+(157248875545562696/966062461469718864537)*q910-(729787892208890893/644041640979812576358)*q912-(33509630/183480564653)*q715-(239016701/550441693959)*q716-(325931865/366961129306)*q717+(21728791/9540989361956)*q710+(1986817990444/233856805003563027)*q711+(184403615/2385247340489)*q713-(102435729/1467844517224)*q714-(239016701/550441693959)*q616-(152101537/183480564653)*q617-(7387788940/4953975245631)*q618-(107077854884491171/1932124922939437729074)*q19-(239016701/21467226064401)*q612-(34145243/366961129306)*q614-(915141689/4403533551672)*q615-(64719321667/1100883387918)*q1516-(41185022879/366961129306)*q1517-(1000207698490/4953975245631)*q1518+(9245617381/733922258612)*q1415, 0 <= (1211918262282/183480564653)*q1318-(487136049543/1834805646530)*q1314+(159478002684/183480564653)*q1316+(2577221368722/917402823265)*q1317-(14742804800445813/13628018939601575)*q1117-(52296686465388183/29981641667123465)*q1118+(177917260752/917402823265)*q1213-(35954045127/9174028232650)*q1215-(10737625140086481/54512075758406300)*q1114-(2004228218868057/5451207575840630)*q1115-(1758031324337106/2725603787920315)*q1116+(1724802788499399/299816416671234650)*q1011+(40574282427/917402823265)*q1013-(608678139880692/13628018939601575)*q1112+(20847526964964/2725603787920315)*q1113-(145563170706132179/81768113637609450)*q916-(58013426750768489/16353622727521890)*q917-(810096212949929542/122652170456414175)*q918-(4150398843841271/40884056818804725)*q913-(363682069202137/1090241515168126)*q914-(33453747029115959/40884056818804725)*q915+(10893731121/366961129306)*q718-(269662596023989/899449250013703950)*q89+(3741532467288287/1349173875020555925)*q910-(2451381736119631/89944925001370395)*q912+(30663770319/9174028232650)*q715+(7048884843/917402823265)*q716+(5767269417/366961129306)*q717-(147878703/3669611293060)*q710-(55574407259343/299816416671234650)*q711-(1258179669/917402823265)*q713+(9062851941/7339222586120)*q714+(7048884843/917402823265)*q616+(13456961973/917402823265)*q617+(4841658276/183480564653)*q618-(3085646811055291/2698347750041111850)*q19+(180740637/917402823265)*q612+(3020950647/1834805646530)*q614+(136750359291/36696112930600)*q615+(1402207759953/9174028232650)*q1516+(2676942087183/9174028232650)*q1517+(481566301398/917402823265)*q1518+170888970384621325582826446159/12545991781970605910990438400000-(600946182837/18348056465300)*q1415, 0 <= -4241591242739063454075533063/174957776022011965243108848000+(54421634880/183480564653)*q1318-(770850432/183480564653)*q1314+(9365099040/183480564653)*q1316+(24949226016/183480564653)*q1317+(63244400431968/2725603787920315)*q1117+(23909567111808/545120757584063)*q1118+(14161501728/2385247340489)*q1213-(3160907288/917402823265)*q1215+(4936935850704/2725603787920315)*q1114+(11567337674886/2725603787920315)*q1115+(6177204507936/545120757584063)*q1116+(2140087791744/35432849242964095)*q1011+(3535200288/2385247340489)*q1013-(167310579744/35432849242964095)*q1112+(27616067354088/7086569848592819)*q1113-(4738954354596434/1251052138655424585)*q916-(1852020914972984/250210427731084917)*q917-(51014267419182704/3753156415966273755)*q918+(145484910465008/1251052138655424585)*q913-(833503270475912/1084245186834701307)*q914-(2179012578352852/1251052138655424585)*q915+(192992160/183480564653)*q718+(137315136508058/178900455827725715655)*q89-(1469243838589688/536701367483177146965)*q910-(3172228284620276/35780091165545143131)*q912+(93873591/917402823265)*q715+(49950912/183480564653)*q716+(102172320/183480564653)*q717-(3405744/2385247340489)*q710-(202459844508/35432849242964095)*q711-(802905732/16696731383423)*q713+(56194776/1284363952571)*q714+(49950912/183480564653)*q616+(95360832/183480564653)*q617+(514645760/550441693959)*q618-(1012028063068168/536701367483177146965)*q19+(16650304/2385247340489)*q612+(74926368/1284363952571)*q614+(114566676/917402823265)*q615+(123275384232/917402823265)*q1516+(235343915352/917402823265)*q1517+(254022003872/550441693959)*q1518-(26416153764/917402823265)*q1415, 0 <= (309070456275/183480564653)*q1318-(57956712165/733922258612)*q1314+(37457308350/183480564653)*q1316+(128822210055/183480564653)*q1317+(394236087292215/1090241515168126)*q1117+(7812129031092575/11992656666849386)*q1118+(127612193940/2385247340489)*q1213+(8297479729/2201766775836)*q1215+(175527784399905/4360966060672504)*q1114+(403112379060321/4360966060672504)*q1115+(103060952796550/545120757584063)*q1116+(8036942759265/311809073338084036)*q1011+(57312803205/4770494680978)*q1013+(33460657292265/7086569848592819)*q1112+(628490090258625/14173139697185638)*q1113+(3404509905211682365/12010100531092076016)*q916+(425910511012792715/750631283193254751)*q917+(4772708784118725233/4503787699159528506)*q918+(399332244828748357/19516413363024623526)*q913+(169543796234046206/3252735560504103921)*q914+(194190157117270321/1501262566386509502)*q915+(5857373375/733922258612)*q718+(114778302866322767/1717444375946166870288)*q89-(739555048791325739/1288083281959625152716)*q910+(299620907036532095/78065653452098494104)*q912+(1353462663/1467844517224)*q715+(758013025/366961129306)*q716+(3100962375/733922258612)*q717-(206730825/19081978723912)*q710-(25431315734335/623618146676168072)*q711-(881211030/2385247340489)*q713+(974588175/2935689034448)*q714+(758013025/366961129306)*q616+(1447115775/366961129306)*q617+(11714746750/1651325081877)*q618+(5592962464513585/29274620044536935289)*q19+(758013025/14311484042934)*q612+(324862725/733922258612)*q614+(2971774981/2935689034448)*q615-(107867236477/733922258612)*q1516-(205928360547/733922258612)*q1517-(833519554595/1651325081877)*q1518+281973893199348795191457411971/2037059400354247767915100569600+(46228815633/1467844517224)*q1415, 0 <= -(1022234357872/183480564653)*q1318+(212607833724/917402823265)*q1314-(132289068912/183480564653)*q1316-(2164731240672/917402823265)*q1317-(7613430584977308/13628018939601575)*q1117-(8634780072826544/8176811363760945)*q1118-(152641425552/917402823265)*q1213-(5101096/41283127046925)*q1215-(594313775529474/13628018939601575)*q1114-(3247457957578471/27256037879203150)*q1115-(2230856047768348/8176811363760945)*q1116-(19817394275728/13628018939601575)*q1011-(34691228712/917402823265)*q1013+(1549310144228/13628018939601575)*q1112-(277507983371066/2725603787920315)*q1113+(20537299618559046869/225189384957976425300)*q916+(2006534858989854011/11259469247898821265)*q917+(55270383317411755766/168892038718482318975)*q918-(177617533231089812/56297346239494106325)*q913+(69464798146912721/3753156415966273755)*q914+(97262675510962780/2251893849579764253)*q915-(13939565276/550441693959)*q718-(45775792743328781/2477083234537740678300)*q89+(122447901875602079/1857812425903305508725)*q910+(528751848427073341/247708323453774067830)*q912-(26307518419/9174028232650)*q715-(18039437416/2752208469795)*q716-(2459923284/183480564653)*q717+(31537478/917402823265)*q710+(11248771884301/81768113637609450)*q711+(1073776054/917402823265)*q713-(966398433/917402823265)*q714-(18039437416/2752208469795)*q616-(11479641992/917402823265)*q617-(111516522208/4953975245631)*q618+(84343190495103169/1857812425903305508725)*q19-(1387649032/8256625409385)*q612-(1288531244/917402823265)*q614-(43845858511/13761042348975)*q615+(66314248/13761042348975)*q1516+(42199976/4587014116325)*q1517+(409942624/24769876228155)*q1518+4380898230584912444694494917/183629152676164161771192960000-(4736732/4587014116325)*q1415, 0 <= (22292180376/183480564653)*q1318-(27229649634/6421819762855)*q1314+(3117098952/183480564653)*q1316+(48156996096/917402823265)*q1317+(388303820222346/13628018939601575)*q1117+(1526752418957136/29981641667123465)*q1118+(39789627768/11926236702445)*q1213-(4741332904/13761042348975)*q1215+(45291350478213/13628018939601575)*q1114+(15996406357449/2180483030336252)*q1115+(41033332117302/2725603787920315)*q1116-(18578924935452/1948806708363025225)*q1011+(9201434868/11926236702445)*q1013+(76646186833482/177164246214820475)*q1112+(111804948690831/35432849242964095)*q1113+(5033096401615586773/150126256638650950200)*q916+(251684713545973946/3753156415966273755)*q917+(7047554471837940851/56297346239494106325)*q918+(552394476407872069/243955167037807794075)*q913+(40229024617094465/6505471121008207842)*q914+(287627869843175722/18765782079831368775)*q915+(95890234/183480564653)*q718+(12105222192169043/1651388823025160452200)*q89-(1042584322034743061/16101041024495314408950)*q910+(996857451561337961/2146805469932708587860)*q912+(1055028009/18348056465300)*q715+(124093244/917402823265)*q716+(50765418/183480564653)*q717-(8460903/11926236702445)*q710-(20295952465119/7795226833452100900)*q711-(2012116947/83483656917115)*q713+(279209799/12843639525710)*q714+(124093244/917402823265)*q616+(236905284/917402823265)*q617+(767121872/1651325081877)*q618+(180407136805140112/8050520512247657204475)*q19+(124093244/35778710107335)*q612+(186139866/6421819762855)*q614+(596389297/9174028232650)*q615+(61637327752/4587014116325)*q1516+(117671262072/4587014116325)*q1517+(381030753376/8256625409385)*q1518+33359490106269856537692896673299/779811801698110473654999436800000-(13207998804/4587014116325)*q1415, 0 <= -(2753147113145/366961129306)*q1318+(3019810374009/10274911620568)*q1314-(183333598305/183480564653)*q1316-(1174529516589/366961129306)*q1317-(70029338557207029/10902415151681260)*q1117-(72986660381304397/6541449091008756)*q1118-(39912929562/183480564653)*q1213+(508500939947/66053003275080)*q1215-(37932222581075823/43609660606725040)*q1114-(79110185400142897/43609660606725040)*q1115-(5754712678871156/1635362272752189)*q1116+(247112244144647/21804830303362520)*q1011-(36502192683/733922258612)*q1013-(793881860695693/5451207575840630)*q1112-(1086238725627253/2180483030336252)*q1113+(5436133189158368565869/360303015932762280480)*q916+(271993902004108577293/9007575398319057012)*q917+(7619607181776808751533/135113630974785855180)*q918+(40968196098050339459/45037876991595285060)*q913+(8340727262209840663/3002525132773019004)*q914+(310313682299292210539/45037876991595285060)*q915-(147255649255/4403533551672)*q718+(1083838035950750129/360303015932762280480)*q89-(7757535510504271961/270227261949571710360)*q910+(7484683531554677231/36030301593276228048)*q912-(55031463487/14678445172240)*q715-(19056613433/2201766775836)*q716-(25986291045/1467844517224)*q717+(133263031/2935689034448)*q710+(13445313871051/130828981820175120)*q711+(3967104031/2568727905142)*q713-(57169840299/41099646482272)*q714-(19056613433/2201766775836)*q616-(12126935821/733922258612)*q617-(147255649255/4953975245631)*q618+(1365597493305359377/135113630974785855180)*q19-(1465893341/6605300327508)*q612-(19056613433/10274911620568)*q614-(369077726017/88070671033440)*q615-(6610512219311/22017667758360)*q1516-(4206689594107/7339222586120)*q1517-(10216246157117/9907950491262)*q1518+1496117523524899685786299913569/5982971665376112325345050624000+(944358888473/14678445172240)*q1415, 0 <= -241843974823477279657579596541/228516278885893179093040128000+(9708433063875/183480564653)*q1318-(1496481843285/733922258612)*q1314+(1302613021710/183480564653)*q1316+(4149629499015/183480564653)*q1317+(127617236207704971/5451207575840630)*q1117+(492852484992822591/11992656666849386)*q1118+(279267205140/183480564653)*q1213-(50336683397/733922258612)*q1215+(65611723170277557/21804830303362520)*q1114+(139733761744790577/21804830303362520)*q1115+(6900265409172954/545120757584063)*q1116-(3482010587812743/119926566668493860)*q1011+(127909447785/366961129306)*q1013+(1271539476744957/2725603787920315)*q1112+(2295573782087817/1090241515168126)*q1113+(1647347930886895460951/20016834218486793360)*q916+(41172291138732682292/250210427731084917)*q917+(2305179126920258914507/7506312831932547510)*q918+(12932896137729017471/2502104277310849170)*q913+(1268499047105041325/83403475910361639)*q914+(94174419818178572327/2502104277310849170)*q915+(172187110095/733922258612)*q718+(3665698966244030401/220185176403354726960)*q89-(25236875683897198909/165138882302516045220)*q910+(25480555956918639871/22018517640335472696)*q912+(38505023739/1467844517224)*q715+(22283037777/366961129306)*q716+(91157881815/733922258612)*q717-(467476317/1467844517224)*q710-(245002371424923/239853133336987720)*q711-(1987632720/183480564653)*q713+(28649619999/2935689034448)*q714+(22283037777/366961129306)*q616+(42540344847/366961129306)*q617+(114791406730/550441693959)*q618+(2258262161428007434/41284720575629011305)*q19+(571359943/366961129306)*q612+(9549873333/733922258612)*q614+(86220442581/2935689034448)*q615+(1963130652483/733922258612)*q1516+(3747794882013/733922258612)*q1517+(5056548650335/550441693959)*q1518-(841341708207/1467844517224)*q1415, 0 <= (653578061661/733922258612)*q1318-(500625932103/14678445172240)*q1314+(43966731501/366961129306)*q1316+(1397763548181/3669611293060)*q1317+(38405287561116357/109024151516812600)*q1117+(13517792075623367/21804830303362520)*q1118+(304604691237/11926236702445)*q1213-(91269922667/73392225861200)*q1215+(19489284104849559/436096606067250400)*q1114+(8344612492803993/87219321213450080)*q1115+(517484399913173/2725603787920315)*q1116-(1111702977707763/2834627939437127600)*q1011+(558398674071/95409893619560)*q1013+(4808644083286197/708656984859281900)*q1112+(9278442416189877/283462793943712760)*q1113+(369493692214691096647/400336684369735867200)*q916+(18468918896003926469/10008417109243396680)*q917+(517010083908376206239/150126256638650950200)*q918+(2927289464757208957/50042085546216983400)*q913+(1479652749146463283/8673961494677610456)*q914+(21124262456819097493/50042085546216983400)*q915+(11569203681/2935689034448)*q718+(10771525010360345501/57248145864872229009600)*q89-(73705115634539376029/42936109398654171757200)*q910+(74313658733201178179/5724814586487222900960)*q912+(64613116323/146784451722400)*q715+(7485955323/7339222586120)*q716+(6124872537/2935689034448)*q717-(2041624179/381639574478240)*q710-(100496667662993/5669255878874255200)*q711-(8679983931/47704946809780)*q713+(9624799701/58713780688960)*q714+(7485955323/7339222586120)*q616+(14291369253/7339222586120)*q617+(3856401227/1100883387918)*q618+(13168418452516001743/21468054699327085878600)*q19+(2495318441/95409893619560)*q612+(3208266567/14678445172240)*q614+(144770026611/293568903444800)*q615+(3559526984013/73392225861200)*q1516+(6795460605843/73392225861200)*q1517+(1833695719037/11008833879180)*q1518+12690244979668170465810619327589/196875563347846431218619187200000-(1525511564577/146784451722400)*q1415, 0 <= (4703110087962/183480564653)*q1318-(1822909385583/1834805646530)*q1314+(629392981932/183480564653)*q1316+(10044434905362/917402823265)*q1317+(178867070916236703/13628018939601575)*q1117+(62614057246128843/2725603787920315)*q1118+(678326042592/917402823265)*q1213-(847504238581/27522084697950)*q1215+(93337474927493511/54512075758406300)*q1114+(49400132825781738/13628018939601575)*q1115+(19414074848674506/2725603787920315)*q1116-(496084468756779/27256037879203150)*q1011+(155253569427/917402823265)*q1013+(3701634878585952/13628018939601575)*q1112+(3093951119459706/2725603787920315)*q1113+(6466279875162597246757/75063128319325475100)*q916+(1293028620951301725491/7506312831932547510)*q917+(18100080228003561035248/56297346239494106325)*q918+(100473833450492575139/18765782079831368775)*q913+(39819081314769022871/2502104277310849170)*q914+(147840347568060211207/3753156415966273755)*q915+(41783539369/366961129306)*q718+(1298455546723263337/75063128319325475100)*q89-(9010630622667089458/56297346239494106325)*q910+(9076655111482312543/7506312831932547510)*q912+(58454232837/4587014116325)*q715+(27036407827/917402823265)*q716+(22120697313/366961129306)*q717-(567197367/3669611293060)*q710-(6422667710061/13628018939601575)*q711-(33765272013/6421819762855)*q713+(243327670443/51374558102840)*q714+(27036407827/917402823265)*q616+(51614960397/917402823265)*q617+(167134157476/1651325081877)*q618+(6451005670911464699/112594692478988212650)*q19+(2079723679/2752208469795)*q612+(81109223481/12843639525710)*q614+(523262030291/36696112930600)*q615+(11017555101553/9174028232650)*q1516+(21033514284783/9174028232650)*q1517+(34054261222982/8256625409385)*q1518-(4721809329237/18348056465300)*q1415-113877140115859081450984985812867/244304676336191253284922900480000, 0 <= (3060165521350/183480564653)*q1318-(234991082205/366961129306)*q1314+(411261288900/183480564653)*q1316+(1308539086470/183480564653)*q1317+(3749195676406845/545120757584063)*q1117+(19775266189087675/1635362272752189)*q1118+(1142344655760/2385247340489)*q1213-(74675355601/3302650163754)*q1215+(1912171187767665/2180483030336252)*q1114+(2042715802397011/1090241515168126)*q1115+(6069594528316550/1635362272752189)*q1116-(113273568885505/14173139697185638)*q1011+(261701949285/2385247340489)*q1013+(951290338199740/7086569848592819)*q1112+(4473198414647200/7086569848592819)*q1113+(44787149982473925145/2251893849579764253)*q916+(179094233232889907065/4503787699159528506)*q917+(501351466733459977642/6755681548739292759)*q918+(36772485506427177563/29274620044536935289)*q913+(71739381761114355001/19516413363024623526)*q914+(20483804052496671623/2251893849579764253)*q915+(81317921125/1100883387918)*q718+(100123017234940727/24770832345377406783)*q89-(35706769727120297393/966062461469718864537)*q910+(90080583344210368070/322020820489906288179)*q912+(3028944163/366961129306)*q715+(10523495675/550441693959)*q716+(14350221375/366961129306)*q717-(956681425/9540989361956)*q710-(13965198087895/42519419091556914)*q711-(8134934495/2385247340489)*q713+(4510069575/1467844517224)*q714+(10523495675/550441693959)*q616+(6696769975/183480564653)*q617+(325271684500/4953975245631)*q618+(25538412485064116035/1932124922939437729074)*q19+(10523495675/21467226064401)*q612+(1503356525/366961129306)*q614+(40709192111/4403533551672)*q615+(970779622813/1100883387918)*q1516+(617768850881/366961129306)*q1517+(15002957807110/4953975245631)*q1518-(138682803259/733922258612)*q1415-19219952048030440968785090599031/85556494814878406252434223923200], [q1011, q1013, q1112, q1113, q1114, q1115, q1116, q1117, q1118, q1213, q1214, q1215, q1314, 1316, q1317, q1318, q1415, q1417, q1418, q1516, q1517, q1518, q1617, q1618, q1718, q19, q612, q614, q615, q616, q617, q618, q710, q711, q713, q714, q715, q716, q717, q718, q89, q910, q912, q913, q914, q915, q916, q917, q918])

## PolyhedralSets...

@Markiyan Hirnyk Thanks for the command! Since the system isn't solveable I have to enlarge the system with more variables. Then I would like to use your technique but your technique only works in MAPLE 2015. But I just have Maple 16, so the command doesn't work on my computer:-( Do you have an idea what I can do with MAPLE 16??

Thanks a lot!

Best regards,

Lucas

 Page 1 of 1
﻿