1511 Reputation

8 years, 339 days

Compute Integral in Maple numerically ?...

Maple 2023

I what compute integral numerically with Precision 14 Digits. I try with:

```evalf[2](Int(abs(sin(x^4))/(sqrt(x) + x^2), x = 0 .. infinity, method = _d01amc, methodoptions = [maxintervals = 50000]));# Works with 2 digits only.
```

I tried all the options and I failed to calculate with more precision.

with change variable: x = -ln(t) I got:

`evalf[2](Int((ln(t)^2 - sqrt(-ln(t)))*abs(sin(ln(t)^4))/(ln(t)*(ln(t)^3 + 1)*t), t = 0 .. 1, method = _d01akc, methodoptions = [maxintervals = 500]));#Gives an error!!!`

Thanks.

Solving PDE with imaginary unit ?...

Maple 2022

I want solve PDE equation with imaginary unit ,but Maple give me an Error:

 >
 (1)
 >
 >
 >
 >
 >
 >
 >

If I delete Imaginary unit from equation Maple give me a solution.

Thanks .

Maple 2020

Hi, I am trying to add some useful inverse Laplace transforms to Maple's integral tables. I am frustrated that these transforms will only be recognized  if they are entered in exactly the same format. For example, if I type:

restart;

with(inttrans):

addtable(invlaplace, 1/(s^y*sqrt(a + s^x)), Sum(a^n*sqrt(Pi)*t^(-1 + (1/2 + n)*x + y)/(GAMMA(1/2 - n)*GAMMA(1 + n)*GAMMA(1/2*x + n*x + y)), n = 0 .. infinity), s, t, {a, x, y}, y::Range(-infinity, infinity), x::Range(-infinity, infinity), a::Range(-infinity, infinity));

savetable(invlaplace, `InvlaplaceTable.m`):

Then:

restart;

with(inttrans):

invlaplace(1/(s^y*sqrt(a + s^x)), s, t);#Ok works for general

invlaplace(1/(s^3*sqrt(a + s^x)), s, t);# Dosen't WORK ?# For y = 3.

invlaplace(1/(s^3*sqrt(s^3 + a)), s, t);# Dosen't WORK ?# For y = 3. and x = 3

value(eval(invlaplace(1/(s^y*sqrt(a + s^x)), s, t), [y = 3, x = 3]))#Workaround !!!

Thanks.

Bug in n-th derivative of the Zeta func...

Maple 2019

Hi!

How to calculate  a value in MAPLE:

My code:

evalf(eval(diff(n*Zeta(n, 3), n), n = 3)); give me:

#-0.3740436824 + 3.*eval(diff(Zeta(n, 3), n), {n = 3}) ,it should be only:-0.3740436824

OR:

fdiff(n*Zeta(n, 3), [n], n = 3);

#fdiff(n -> n*Zeta(n, 3), [1], [3]) ???

It's a Bug  or (As Designed / Not a Bug) ?

Mathematica code:

D[n*Derivative[n][Zeta][3], n] /. n -> 3 // N;

(* -0.374044*)

Maple 2018

Hi, fairly simple question,

I solve a simple equation:

solve(x^x = 4, allsolutions, explicit);

#(2*(I*Pi*_Z7+ln(2)))/LambertW(_Z9, 2*ln(2)+(2*I)*Pi*_Z7)

Maple  gave me solution with prefix _Z for integer values, but why  _Z9 must be exactly equal  Zero  to be correct ?.

If _Z9 is integer it can also take other values than zero ?

 1 2 3 4 5 6 7 Page 1 of 7
﻿