MathPrincess123

15 Reputation

One Badge

1 years, 358 days

MaplePrimes Activity


These are replies submitted by MathPrincess123

@Carl Love Again thank you :) 

I have what should be LAST question !

Say in this: FRAM3.mw, where A = [0,0,0,0,0,0,0,0,0,0,0,0], a simple example. 

I have newNSR, resNSR := [39624288*Q^9 + 22722480*Q^8 + 12198720*Q^7 + 5937360*Q^6 + 2581152*Q^5 + 947896*Q^4 + 268224*Q^3 + 50448*Q^2 + 3808*Q + 24, 836*Q^9 + 594*Q^8 - 648*Q^7 - 418*Q^6 + 540*Q^5 - 99*Q^4 - 88*Q^3 + 54*Q^2 - 12*Q + 1], P -> subs(Q = q^(1/d), subsindets(P, identical(Q)^posint, p -> q^(op(2, p)/d))). 

Before the change, 

NSR := 39624288*q^9 + 22722480*q^8 + 12198720*q^7 + 5937360*q^6 + 2581152*q^5 + 947896*q^4 + 268224*q^3 + 50448*q^2 + 3808*q + 24

and 

delta := 836*q^9 + 594*q^8 - 648*q^7 - 418*q^6 + 540*q^5 - 99*q^4 - 88*q^3 + 54*q^2 - 12*q + 1

If I was to perform long division by hand on this, I'd get 24 as my 0th coefficient in the quotient. Why am I getting 900552/19? Is there a way to take these quotient similarly as long division? 

Let me know if the question makes sense---

Thank you!

@Carl Love You're a life saver thank you !

Just another tiny problem. I've attached the same code with a case where FractionalExponentAdjuster returns a polynomial with a Q^{-1}. Then, the call quo(new[],Q,'r') isn't working: Error, (in quo) arguments must be polynomial in Q. I've noticed that taking out that negative exponent term makes it work just fine.

Is there a way to make it so that FractionalExponentAdjuster returns polynomial with only positive powers? 

FrameShape.mw

Thanks again. Sorry if it's an "easy" question. I'm new at maple!  

@Ronan 
 It's long ! The #ed A's are other values for which i need that final divison to be simplified. 

restart

with(PolynomialTools)

with(SNAP)

infolevel[PolynomialTools] := 1

NULL

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

(1)

NULL

[1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2]

(2)

NULL

[0, 0, 0, 0, 0, 0, 0, 0, 1/2, 1/2, 1/2, 1/2]

(3)

NULL

[1/6, 1/6, 1/6, 1/6, 1/6, 1/6, 5/6, 5/6, 5/6, 5/6, 5/6, 5/6]

(4)

NULL

NULL

NULL

A := [0, 0, 0, 0, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2]

[0, 0, 0, 0, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2]

(5)

``

``

``

t1 := expand(sum((-1)^n*q^((1/2)*(n+1/2+m)^2), n = -10 .. 10))

``

t11 := sort(eval(t1, m = A[1]), q, ascending)

NULL

t12 := sort(eval(t1, m = A[2]), q, ascending)

t13 := sort(eval(t1, m = A[3]), q, ascending)

t14 := sort(eval(t1, m = A[4]), q, ascending)

t15 := sort(eval(t1, m = A[5]), q, ascending)

t16 := sort(eval(t1, m = A[6]), q, ascending)

t17 := sort(eval(t1, m = A[7]), q, ascending)

t18 := sort(eval(t1, m = A[8]), q, ascending)

t19 := sort(eval(t1, m = A[9]), q, ascending)

t110 := sort(eval(t1, m = A[10]), q, ascending)

t111 := sort(eval(t1, m = A[11]), q, ascending)

t112 := sort(eval(t1, m = A[12]), q, ascending)

``

NULL

a1 := sort(convert(expand(t11*t12*t13*t14*t15*t16*t17*t18*t19*t110*t111*t112/(2*sqrt(q))), rational), q, ascending)

a := convert(series(a1, q, 10), polynom)

t2 := sort(sum(q^((1/2)*(n+1/2+m)^2), n = -10 .. 10), q, ascending)

t21 := sort(eval(t2, m = A[1]), q, ascending)

NULL

t22 := sort(eval(t2, m = A[2]), q, ascending)

t23 := sort(eval(t2, m = A[3]), q, ascending)

t24 := sort(eval(t2, m = A[4]), q, ascending)

t25 := sort(eval(t2, m = A[5]), q, ascending)

t26 := sort(eval(t2, m = A[6]), q, ascending)

t27 := sort(eval(t2, m = A[7]), q, ascending)

t28 := sort(eval(t2, m = A[8]), q, ascending)

t29 := sort(eval(t2, m = A[9]), q, ascending)

t210 := sort(eval(t2, m = A[10]), q, ascending)

t211 := sort(eval(t2, m = A[11]), q, ascending)

t212 := sort(eval(t2, m = A[12]), q, ascending)

NULL

b1 := expand(sort(convert(sort(expand(t21*t22*t23*t24*t25*t26*t27*t28*t29*t210*t211*t212/(2*sqrt(q))), q, ascending), rational), q, ascending))

b := convert(series(b1, q, 10), polynom)

t3 := sort(sum(q^((1/2)*(n+m)^2), n = -10 .. 10), q, ascending)

t31 := sort(eval(t3, m = A[1]), q, ascending)

``

t32 := sort(eval(t3, m = A[2]), q, ascending)

t33 := sort(eval(t3, m = A[3]), q, ascending)

t34 := sort(eval(t3, m = A[4]), q, ascending)

t35 := sort(eval(t3, m = A[5]), q, ascending)

t36 := sort(eval(t3, m = A[6]), q, ascending)

t37 := sort(eval(t3, m = A[7]), q, ascending)

t38 := sort(eval(t3, m = A[8]), q, ascending)

t39 := sort(eval(t3, m = A[9]), q, ascending)

t310 := sort(eval(t3, m = A[10]), q, ascending)

t311 := sort(eval(t3, m = A[11]), q, ascending)

t312 := sort(eval(t3, m = A[12]), q, ascending)

c1 := sort(convert(sort(expand(t31*t32*t33*t34*t35*t36*t37*t38*t39*t310*t311*t312/(2*sqrt(q))), q, ascending), rational), q, ascending)

c := convert(series(c1, q, 10), polynom)

t4 := sort(sum((-1)^n*q^((1/2)*(n+m)^2), n = -10 .. 10), q, ascending)

NULL

t41 := convert(sort(eval(t4, m = A[1]), q, ascending), rational)

NULL

t42 := convert(sort(eval(t4, m = A[2]), q, ascending), rational)

t43 := convert(sort(eval(t4, m = A[3]), q, ascending), rational)

t44 := convert(sort(eval(t4, m = A[4]), q, ascending), rational)

t45 := convert(sort(eval(t4, m = A[5]), q, ascending), rational)

t46 := convert(sort(eval(t4, m = A[6]), q, ascending), rational)

t47 := convert(sort(eval(t4, m = A[7]), q, ascending), rational)

t48 := convert(sort(eval(t4, m = A[8]), q, ascending), rational)

t49 := convert(sort(eval(t4, m = A[9]), q, ascending), rational)

t410 := convert(sort(eval(t4, m = A[10]), q, ascending), rational)

t411 := convert(sort(eval(t4, m = A[11]), q, ascending), rational)

t412 := convert(sort(eval(t4, m = A[12]), q, ascending), rational)

d1 := sort(expand(t41*t42*t43*t44*t45*t46*t47*t48*t49*t410*t411*t412/(2*sqrt(q))), q, ascending)

d := convert(series(d1, q, 10), polynom)

``

NULL

Delta := sort(expand(product(1-q^m, m = 1 .. 10)), q, ascending)

delta := expand(Delta^12)

deltaa := convert(series(delta, q, 10), polynom)

``

left := sort(convert(series(a+b, q, 10), polynom), q, ascending)

NULL

right := sort(convert(series(c-d, q, 10), polynom), q, ascending)

NULL

NULL

RR := sort(expand(left-right), q, ascending)

``

NSR := sort(expand(left+right), q, ascending)

NULL

rr1 := RR/deltaa

NULL

nsr1 := NSR/deltaa

``

   

NULL

NULL

``

Error, (in SNAP:-Quotient) invalid input: the first two arguments must evaluate as univariate polynomials with numeric coefficients

 

 

Download FrameShape.mw

@Ronan Didnt work - probably because of the csgn(p) that shows up?

Page 1 of 1