MichaelVio

45 Reputation

5 Badges

6 years, 89 days

MaplePrimes Activity


These are replies submitted by MichaelVio

@dharr 

Please advise on solving the Planck.mw and plot the solution for h(nu) with E=ν⸱h(nu). Thus, for nu2 =9.733521364*10^16 =>h(nu2)= 3.348222989*10^(-17) eV*s and the same energy of 3.259eV for nu1 = 7.889275211*10^14 =>h(nu2)=4.135667697*10^(-15) eV*s  With the partular case the plot 

with the supposition that k = 1/2 eV/K, thus kT=>1.380649*10^(-23)*297/(1.60217*10^(-19));
=0.02559, so kT should be the energy close to 0.5 and could be assimilated to an energy E0

[1]
 

restart;

with(PDEtools, dchange):with(plots):

with(Units):

Automatically loading the Units[Simple] subpackage
 

 

kernelopts(maxdigits);

38654705646

(1)

Digits:=10;

10

(2)

params:={k= 1.380649*10^(-23)*Unit(J/K),rb=5.293*10^(-11)*Unit(m),he=4.135667697*10^(-15)*Unit(eV*s),
ec= 1.602176634*10^(-19)*Unit(C),Tq=1.765*10^(-19)*Unit(s),
c= 299792458*Unit(m/s),T=297*Unit(K),nu1=7.880979442*10^14*Unit(s^(-1)),E1=3.259*Unit(eV)};

{E1 = 0.5221493608e-18*Units:-Unit(J), T = 297*Units:-Unit(K), Tq = 0.1765000000e-18*Units:-Unit(s), c = 299792458*Units:-Unit(m/s), ec = 0.1602176634e-18*Units:-Unit(C), he = 0.6626070096e-33*Units:-Unit(m^2*kg/s), k = 0.1380649000e-22*Units:-Unit(m^2*kg/(s^2*K)), nu1 = 0.7880979442e15*Units:-Unit(1/s), rb = 0.5293000000e-10*Units:-Unit(m)}

(3)

NV:=8*Pi*Tq*nu^2*he(nu)*nu/(exp(he(nu)*nu/(k*T) - 1));

8*Pi*Tq*nu^3*he(nu)/exp(he(nu)*nu/(k*T)-1)

(4)

E:=nu*h(nu);

nu*h(nu)

(5)

ic:=h(7.889275211*10^14)=4.135667697*10^(-15);

h(0.7889275211e15) = 0.4135667697e-14

(6)

de:=diff(NV,nu)-h(nu)*nu;

24*Pi*Tq*nu^2*he(nu)/exp(he(nu)*nu/(k*T)-1)+8*Pi*Tq*nu^3*(diff(he(nu), nu))/exp(he(nu)*nu/(k*T)-1)-8*Pi*Tq*nu^3*he(nu)*((diff(he(nu), nu))*nu/(k*T)+he(nu)/(k*T))/exp(he(nu)*nu/(k*T)-1)-nu*h(nu)

(7)

dsolve({de});

{he(nu) = -k*T*LambertW((1/8)*(_C1-(Int(nu*h(nu), nu)))*exp(-1)/(Pi*Tq*nu^2*k*T))/nu}

(8)

#Thus, for k=3/2*k*T we have the solution

c:=299792458;nu1:=7.880979442*10^14;c/nu1;ec:= 1.602176634*10^(-19);k:= 1/2;E1:=3.259*ec;T:=297;Tq:=1.765*10^(-19);;he := h/ec;

299792458

 

0.7880979442e15

 

0.3804000000e-6

 

0.1602176634e-18

 

1/2

 

0.5221493650e-18

 

297

 

0.1765000000e-18

 

0.6241509074e19*h

(9)

NV:=8*Pi*Tq*nu^2*he(nu)*nu/(exp(he(nu)*nu/(k*T) - 1));

27.68689003*nu^3*h(nu)/exp(0.4203036413e17*nu*h(nu)-1)

(10)

ic1:=h(9.489275211*10^16)=4.135667697*10^(-17);

h(0.9489275211e17) = 0.4135667697e-16

(11)

de:=diff(NV,nu)-h(nu)*nu;

83.06067009*nu^2*h(nu)/exp(0.4203036413e17*nu*h(nu)-1)+27.68689003*nu^3*(diff(h(nu), nu))/exp(0.4203036413e17*nu*h(nu)-1)-27.68689003*nu^3*h(nu)*(0.4203036413e17*h(nu)+0.4203036413e17*nu*(diff(h(nu), nu)))/exp(0.4203036413e17*nu*h(nu)-1)-nu*h(nu)

(12)

evalf(simplify(dsolve({de,ic1},h(nu),series)));

h(nu) = series(0.4135667697e-16-0.4060327648e71635144604154866*(nu-0.9489275211e17)+0.3287671071e143270289208309765*(nu-0.9489275211e17)^2-0.3549395354e214905433812464664*(nu-0.9489275211e17)^3+0.4310949299e286540578416619563*(nu-0.9489275211e17)^4-0.5584961425e358175723020774462*(nu-0.9489275211e17)^5+O((nu-0.9489275211e17)^6),nu = 0.9489275211e17,6)

(13)

h0(nu):=convert(%,polynom);

h(nu) = 0.3852956650e71635144604154883-0.4060327648e71635144604154866*nu+0.3287671071e143270289208309765*(nu-0.9489275211e17)^2-0.3549395354e214905433812464664*(nu-0.9489275211e17)^3+0.4310949299e286540578416619563*(nu-0.9489275211e17)^4-0.5584961425e358175723020774462*(nu-0.9489275211e17)^5

(14)

odetest(h0(nu), [de,ic1], series);

Error, (in odetest/series) numeric exception: overflow

 

 

evalf(c/(3*10^(-9)));1/ec;

0.9993081933e17

 

0.6241509074e19

(15)

plot(h(nu),nu=10^14..1.2*10^17);

Warning, unable to evaluate the function to numeric values in the region; see the plotting command's help page to ensure the calling sequence is correct

 

 

#All we have to do is to fit the constant k=1/2 so for lambda=3.08nm and for lambda=380.4nm we have E=3.259 eV

9.733521364*10^16Hz & ;

 

restart; # With the particular case the plot below

with(PDEtools, dchange):with(plots):

with(Units):

Automatically loading the Units[Simple] subpackage
 

 

kernelopts(maxdigits);

38654705646

(16)

Digits:=20;

10

(17)

params:={k= 1.380649*10^(-23)*Unit(J/K),rb=5.293*10^(-11)*Unit(m),he=4.135667697*10^(-15)*Unit(eV*s),
ec= 1.602176634*10^(-19)*Unit(C),Tq=1.765*10^(-19)*Unit(s),
c= 299792458*Unit(m/s),T=297*Unit(K),nu1=7.880979442*10^14*Unit(s^(-1)),E1=3.259*Unit(eV)};

{E1 = 0.5221493608e-18*Units:-Unit(J), T = 297*Units:-Unit(K), Tq = 0.1765000000e-18*Units:-Unit(s), c = 299792458*Units:-Unit(m/s), ec = 0.1602176634e-18*Units:-Unit(C), he = 0.6626070096e-33*Units:-Unit(m^2*kg/s), k = 0.1380649000e-22*Units:-Unit(m^2*kg/(s^2*K)), nu1 = 0.7880979442e15*Units:-Unit(1/s), rb = 0.5293000000e-10*Units:-Unit(m)}

(18)

NV:=8*Pi*Tq*nu^2*he*nu/(exp(he*nu/(k*T) - 1));

8*Pi*Tq*nu^3*he/exp(he*nu/(k*T)-1)

(19)

E:=diff(NV,nu);

24*Pi*Tq*nu^2*he/exp(he*nu/(k*T)-1)-8*Pi*Tq*nu^3*he^2/(exp(he*nu/(k*T)-1)*k*T)

(20)

solve(E=0);

{T = T, Tq = Tq, he = he, k = k, nu = 0}, {T = T, Tq = Tq, he = 0, k = k, nu = nu}, {T = T, Tq = 0, he = he, k = k, nu = nu}, {T = (1/3)*he*nu/k, Tq = Tq, he = he, k = k, nu = nu}

(21)

#Thus, for k=3/2*k*T we have the solution

c:=299792458;nu1:=7.880979442*10^14;c/nu1;ec:= 1.602176634*10^(-19);k:= 1/2;E1:=3.259*ec;T:=297;Tq:=1.765*10^(-19);h := 6.62607015*10^(-34);he := h/ec;

299792458

 

0.7880979442e15

 

0.3804000000e-6

 

0.1602176634e-18

 

1/2

 

0.5221493650e-18

 

297

 

0.1765000000e-18

 

0.6626070150e-33

 

0.4135667697e-14

(22)

NV:=8*Pi*Tq*nu^2*he*nu/(exp(he*nu/(k*T) - 1));

0.1834552756e-31*nu^3/exp(0.2784961412e-16*nu-1)

(23)

NV;

0.1834552756e-31*nu^3/exp(0.2784961412e-16*nu-1)

(24)

eval(eval(NV,{E(nu)=E__nu1,nu=nu1}),params);

0.2387994260e14

(25)

E:=diff(NV,nu);

0.5503658268e-31*nu^2/exp(0.2784961412e-16*nu-1)-0.5109158634e-48*nu^3/exp(0.2784961412e-16*nu-1)

(26)

solve(E=0);

0., 0.1077214207e18

(27)

evalf(subs(nu=c/(3*10^(-9)),E));

6.682779197

(28)

evalf(c/(3*10^(-9)));1/ec;

0.9993081933e17

 

0.6241509074e19

(29)

plot(E,nu=10^14..1.2*10^17);

 

#All we have to do is to fit the constant k=1/2 so for lambda=3.08nm and for lambda=380.4nm we have B=3.259 eV

 

evalf(c/(9.993081933*10^16));evalf(c/(380*10^(-9)));evalf(subs(nu=c/(380.4*10^(-9)),E));evalf(subs(nu=c/(3.08*10^(-9)),E));

0.3000000001e-8

 

0.7889275211e15

 

0.9023714125e-1

 

9.086107279

(30)

evalf(c/(3.08*10^(-9)));evalf(c/(9.733521364*10^16));

0.9733521364e17

 

0.3079999999e-8

(31)

evalf(subs(nu=c/(345*10^(-9)),E));evalf(subs(nu=c/(315*10^(-9)),E));evalf(subs(nu=c/(10^4*10^(-9)),E));

 


 

Download Planck.mw

Cap 5 Paragraph 63 Black-body Radiation (63.4) page 184 . 

 

@dharr 

I have the first partial solution:

The equation that fits the dimensional units is   and we assume E-=ν⸱h. The LHS has dimensions of energy J (or eV), and the RHS we have Tq=[s] and ν^3=[s^-3]. The exponential is nondimensional, and h has dimension h=[J*s] Derive h with respect to t is [J*s/s] =[J]

h =[J*s]. Deriving h with respect to t is divided by seconds [J*s/s] =[J]. So RHS=LHS [J]

Please advice 

restart;

with(PDEtools, dchange):with(plots):

with(Units):

Automatically loading the Units[Simple] subpackage
 

 

kernelopts(maxdigits);

38654705646

(1)

Digits:=10;

10

(2)

params:={k= 1.380649*10^(-23)*Unit(J/K),rb=5.293*10^(-11)*Unit(m),he=4.135667697*10^(-15)*Unit(eV*s),
ec= 1.602176634*10^(-19)*Unit(C),Tq=1.765*10^(-19)*Unit(s),
c= 299792458*Unit(m/s),T=297*Unit(K),nu1=7.880979442*10^14*Unit(s^(-1)),E1=3.259*Unit(eV)};

{E1 = 0.5221493608e-18*Units:-Unit(J), T = 297*Units:-Unit(K), Tq = 0.1765000000e-18*Units:-Unit(s), c = 299792458*Units:-Unit(m/s), ec = 0.1602176634e-18*Units:-Unit(C), he = 0.6626070096e-33*Units:-Unit(m^2*kg/s), k = 0.1380649000e-22*Units:-Unit(m^2*kg/(s^2*K)), nu1 = 0.7880979442e15*Units:-Unit(1/s), rb = 0.5293000000e-10*Units:-Unit(m)}

(3)

NV:=8*Pi*Tq*nu^2*he*nu/(exp(he*nu/(k*T) - 1));

8*Pi*Tq*nu^3*he/exp(he*nu/(k*T)-1)

(4)

E:=diff(NV,nu);

24*Pi*Tq*nu^2*he/exp(he*nu/(k*T)-1)-8*Pi*Tq*nu^3*he^2/(exp(he*nu/(k*T)-1)*k*T)

(5)

solve(E=0);

{T = T, Tq = Tq, he = he, k = k, nu = 0}, {T = T, Tq = Tq, he = 0, k = k, nu = nu}, {T = T, Tq = 0, he = he, k = k, nu = nu}, {T = (1/3)*he*nu/k, Tq = Tq, he = he, k = k, nu = nu}

(6)

#Thus, for k=3/2*k*T we have the solution

c:=299792458;nu1:=7.880979442*10^14;c/nu1;ec:= 1.602176634*10^(-19);k:= 1/2;E1:=3.259*ec;T:=297;Tq:=1.765*10^(-19);h := 6.62607015*10^(-34);he := h/ec;

299792458

 

0.7880979442e15

 

0.3804000000e-6

 

0.1602176634e-18

 

1/2

 

0.5221493650e-18

 

297

 

0.1765000000e-18

 

0.6626070150e-33

 

0.4135667697e-14

(7)

NV:=8*Pi*Tq*nu^2*he*nu/(exp(he*nu/(k*T) - 1));

0.1834552756e-31*nu^3/exp(0.2784961412e-16*nu-1)

(8)

NV;

0.1834552756e-31*nu^3/exp(0.2784961412e-16*nu-1)

(9)

eval(eval(NV,{E(nu)=E__nu1,nu=nu1}),params);

0.2387994260e14

(10)

E:=diff(NV,nu);

0.5503658268e-31*nu^2/exp(0.2784961412e-16*nu-1)-0.5109158634e-48*nu^3/exp(0.2784961412e-16*nu-1)

(11)

solve(E=0);

0., 0.1077214207e18

(12)

evalf(subs(nu=c/(3*10^(-9)),E));

6.682779197

(13)

evalf(c/(3*10^(-9)));1/ec;

0.9993081933e17

 

0.6241509074e19

(14)

plot(B,nu=10^14..1.2*10^17);

 

#All we have to do is to fit the constant k=1/2 so for lambda=3.08nm and for lambda=380.4nm we have B=3.259 eV

 

evalf(c/(9.993081933*10^16));evalf(c/(380*10^(-9)));evalf(subs(nu=c/(380.4*10^(-9)),B));evalf(subs(nu=c/(3.08*10^(-9)),B));

0.3000000001e-8

 

0.7889275211e15

 

0.9023714125e-1

 

9.086107279

(15)

evalf(c/(3.08*10^(-9)));evalf(c/(9.733521364*10^16));

0.9733521364e17

 

0.3079999999e-8

(16)

evalf(subs(nu=c/(345*10^(-9)),B));evalf(subs(nu=c/(315*10^(-9)),B));evalf(subs(nu=c/(10^4*10^(-9)),B));

.1093758750

 

.1307980197

 

0.1343086142e-3

(17)

 

k:=0.4640872608;


Download phot.mw

@dharr 

The equation that fits the dimensional units is ; where t=1/ν and we assume E-=ν⸱h(nu). The LHS has dimensions of energy J (or eV), and the RHS we have Tq^3=[s^3] and ν^3=[s^-3]. The exponential is nondimensional, and h has dimension h=[J*s] Derive h with respect to t is [J*s/s] =[J]

h =[J*s]. Deriving h with respect to t is divided by seconds [J*s/s] =[J]. So RHS=LHS [J]

I'm working on the program and will be back soon.

@dharr 

In the case that I change the equation, like in file fot.mw

And change the equation so E(nu)=nu*h(nu) and d/d(nu)(E(nu))=nu*d/d(nu)(h(nu))+h(nu);

and the equation is:  

Could you do the plot?

restart;

with(PDEtools, dchange):with(plots):

with(Units):

Automatically loading the Units[Simple] subpackage
 

 

kernelopts(maxdigits);

38654705646

(1)

Digits:=30;

30

(2)

params:={k= 1.3806490000*10^(-23)*Unit(J/K),rb=5.293*10^(-11)*Unit(m),
ec= 1.602176634*10^(-19)*Unit(C),Tq=1.765*10^(-19)*Unit(s),
c= 299792458*Unit(m/s),T=297*Unit(K),a=1,nu1=7.880979442*10^15*Unit(s^(-1)),E1=3.259*Unit(eV)};

{E1 = 0.522149360725642886832993280287e-18*Units:-Unit(J), T = 297*Units:-Unit(K), Tq = 0.176500000000000000000000000000e-18*Units:-Unit(s), a = 1, c = 299792458*Units:-Unit(m/s), ec = 0.160217663400000000000000000000e-18*Units:-Unit(C), k = 0.138064900000000000000000000000e-22*Units:-Unit(m^2*kg/(s^2*K)), nu1 = 7880979442000000.000000000*Units:-Unit(1/s), rb = 0.529300000000000000000000000000e-10*Units:-Unit(m)}

(3)

c:=299792458;nu1:=7.880979442*10^15;c/nu1;ec:= 1.602176634*10^(-19);k:=1.3806490000*10^(-23);E1:=3.259;T:=297;Tq:=1.765*10^(-19);

299792458

 

7880979442000000.000000000

 

0.380400000033396864176212883463e-7

 

0.160217663400000000000000000000e-18

 

0.138064900000000000000000000000e-22

 

3.259

 

297

 

0.176500000000000000000000000000e-18

(4)

de:=nu*diff(h(nu),nu)+h(nu)=(((nu*h(nu)-Tq^2*8*Pi*nu*h(nu)/(exp(nu*h(nu)/(k*T)-1)))*(exp(nu*h(nu)/(k*T)-1))^2)/(Tq^2*8*Pi*nu)/(exp(nu*h(nu)/(k*T)-nu*h(nu)/(k*T))*((exp(nu*h(nu)/(k*T)))-nu*h(nu)/(k*T)*(exp(nu*h(nu)/(k*T)))-1)));

nu*(diff(h(nu), nu))+h(nu) = 0.127723473498619951824413776992e37*(nu*h(nu)-0.782941437942341091303183058694e-36*nu*h(nu)/exp(243871061146125264521.757765153*nu*h(nu)-1))*(exp(243871061146125264521.757765153*nu*h(nu)-1))^2/(nu*(exp(243871061146125264521.757765153*nu*h(nu))-243871061146125264521.757765153*nu*h(nu)*exp(243871061146125264521.757765153*nu*h(nu))-1.))

(5)

dsolve({de,h(nu1)=E1/nu1});

h(nu) = RootOf(-ln(nu)+ln(7880979442000000)+Int(-(1562500000000000000000000000000000000000000000000/3991358546831873494512930531)*(243871061146125264521757765153*_a*exp((243871061146125264521757765153/1000000000)*_a)-1000000000*exp((243871061146125264521757765153/1000000000)*_a)+1000000000)/(_a*(391470718971170545651591529347*exp((243871061146125264521757765153/1000000000)*_a-1)-500000000000000000000000000000000000000000000000000000000000000000*exp((243871061146125264521757765153/500000000)*_a-2))), _a = _b .. 407374999999999999999999999998338018199/125000000000000000000000000000000000000)-(Int(-(1562500000000000000000000000000000000000000000000/3991358546831873494512930531)*(243871061146125264521757765153*_a*exp((243871061146125264521757765153/1000000000)*_a)-1000000000*exp((243871061146125264521757765153/1000000000)*_a)+1000000000)/(_a*(391470718971170545651591529347*exp((243871061146125264521757765153/1000000000)*_a-1)-500000000000000000000000000000000000000000000000000000000000000000*exp((243871061146125264521757765153/500000000)*_a-2))), _a = _b .. _Z)))/nu

(6)

invals:=eval({f1=nu1*Tq,E1=E1/(k*T),f2=1e18*Unit(s^(-1))*Tq},params);

{f1 = 0.139099287151300000000000000000e-2, f2 = .176500000000000000000000000000*Units:-Unit(1/s), 0.522149360725642886832993280287e-18*Units:-Unit(J) = 794775788275222237076.408556634}

(7)

sol:=dsolve(eval({de,h(7.880979442*10^15)=4.135667697*10^(-15)},{a=1} union invals),h(nu),numeric,stiff=true);

Error, (in dsolve/numeric/SC/firststep) unable to evaluate the partial derivatives of f(x,y) for stiff solution

 

odeplot(sol,nu=eval(f1..f2,invals),labels=[nu/Tq,E/k/T]);

Error, (in Units:-Simple:-=) the following expressions imply incompatible dimensions: {nu = 0.139099287151300000000000000000e-2 .. .176500000000000000000000000000*Units:-Unit(1/s)}

 
 

Diff(sol(nu),nu);
dchange({nu=f/Tq},%,[f],'params'=Tq); # chain rule
dsdnu:=simplify(eval(%,sol(f)=sol_f));

Diff(sol(nu), nu)

 

0.176500000000000000000000000000e-18*(diff(sol(f), f))

 

0.

(8)

 E(nu):= (3.9965*10^(-15)*ln(nu)+8.941594733*10^(-20))

0.399650000000000000000000000000e-14*ln(nu)+0.894159473300000000000000000000e-19

(9)

plot(E(nu),nu=10^14..10^18);        

 

E(nu):= -(3.9965*10^(-30)*ln(1/nu)-8.941594733*10^(-20));        

-0.399650000000000000000000000000e-29*ln(1/nu)+0.894159473300000000000000000000e-19

(10)

plot(E(nu),nu=c*10^14..c*10^18);

Download fot.mw

Please fit the new vision to the file plg.mw to fulfill the work, and check with the old work.

Please apply the same method to verify it for the Gamma ray.

Download plg.mw

PGam.docxplgOld.mw

You are right, Professor Et is for the same energy, depending on the period of oscillation. Is the same energy with dependence on (t=1/nu), like the attached file...

Download plm4.mw

PEdoc.docx

Details are provided in the attached document for the proper equation.

Please advice.

It's ok, "I would propose writing e=E/kT as a dimensionless energy." YES

Thanks for the dimensional analysis.

Could we move on?

I'm looking forward to your suggestions!

Tq is in seconds

rb in meter 

E in Joule

c in m/s

V = volume in m^3

N*V=J*s^3/m^3

k constant Boltzmann

si ec electron change 

And we can have as an Initial condition Nu 1 with the energy that I specify; or a boundary condition

Nu2:= 9.993081933*10^16 => E:= 0.

Please advice 

initial condition:

nu1:=c/(380.4*10^(-9));E(nu1)=3.259*1.6*10^(-19);

thus: E(7.880979442*10^14) = 5.214400000*10^(-19);

@acer And on plkG.mw the T9 does not plot...

at file Aud2e.mw the command plot(E(nu),nu=10..60000);#???? neither plot([Re,Im](E(nu)),nu=10..6*10^4);#????

Aud2e.mwPlanckML.mwplkG.mw

Wish you well

@acer I tried writing again E(nu):=% it dosent work

please help

@acer ok

how do I close the post?

@acer Yes it's ok, please take a look at 3 maple files where I put a question mark ("????") at the plots that are inconsistent....Aud2e.mwPlanckML.mwplkG.mw

@acer 

Yes, you are right.... that is the issue  E(0):=3.259*ec;

1 2 3 Page 1 of 3