## 827 Reputation

11 years, 204 days

## Use Ctrl-K...

I asked the same question a couple on months age

inserts a new execution group before the cursor.

For pasted text you could try F3 to split the text at the postition of the cursor.

from the menu should also work.

## Is this what you mean?...

Here are two possible ways assuming I have understood you question correctly. I renamed your list to l to avoid confusion.

 >
 >
 >
 (1)
 >
 (2)
 > ~# Or use seq
 >
 (3)
 > A[4]
 (4)
 >

## Incorrect square brackets []use ()...

Square brackets are incorrect use parenthesis ()

`1/2*int(D__11*diff(w, x, x)^2 + 2*D__12*diff(w, x, x)*diff(w, y, y) + 4*D[66]*diff(w, x, y)^2 + D[22]*diff(w, y, y)^2 - 2*q*w, [x = 0 .. b, y = 0 .. a])`

I got

`(((144*D__11*c[1]^2)/(5*a^8*b^3) - 72*D__11*c[1]^2/(a^7*b^4) + 64*D__11*c[1]^2/(a^6*b^5) - 24*D__11*c[1]^2/(a^5*b^6) + 4*D__11*c[1]^2/(a^4*b^7))*a^9)/18 + ((-(576*D__11*c[1]^2)/(5*a^8*b^2) + 288*D__11*c[1]^2/(a^7*b^3) - 256*D__11*c[1]^2/(a^6*b^4) + 96*D__11*c[1]^2/(a^5*b^5) - 16*D__11*c[1]^2/(a^4*b^6))*a^8)/16 + ((((288*D__12*c[1]^2/(a^8*b^8) + 1024*D[66]*c[1]^2/(a^8*b^8))*b^7)/7 + ((-864*D__12*c[1]^2/(a^7*b^8) - 3072*D[66]*c[1]^2/(a^7*b^8))*b^6)/6 + ((864*D__11*c[1]^2/(a^8*b^6) + 912*D__12*c[1]^2/(a^6*b^8) + 3328*D[66]*c[1]^2/(a^6*b^8))*b^5)/5 + ((-1728*D__11*c[1]^2/(a^7*b^6) - 384*D__12*c[1]^2/(a^5*b^8) - 1536*D[66]*c[1]^2/(a^5*b^8))*b^4)/4 + ((1152*D__11*c[1]^2/(a^6*b^6) + 48*D__12*c[1]^2/(a^4*b^8) + 256*D[66]*c[1]^2/(a^4*b^8))*b^3)/3 - 144*D__11*c[1]^2/(a^5*b^4) + 24*D__11*c[1]^2/(a^4*b^5))*a^7)/14 + ((((-864*D__12*c[1]^2/(a^8*b^7) - 3072*D[66]*c[1]^2/(a^8*b^7))*b^7)/7 + ((2592*D__12*c[1]^2/(a^7*b^7) + 9216*D[66]*c[1]^2/(a^7*b^7))*b^6)/6 + ((-576*D__11*c[1]^2/(a^8*b^5) - 2736*D__12*c[1]^2/(a^6*b^7) - 9984*D[66]*c[1]^2/(a^6*b^7))*b^5)/5 + ((1152*D__11*c[1]^2/(a^7*b^5) + 1152*D__12*c[1]^2/(a^5*b^7) + 4608*D[66]*c[1]^2/(a^5*b^7))*b^4)/4 + ((-768*D__11*c[1]^2/(a^6*b^5) - 144*D__12*c[1]^2/(a^4*b^7) - 768*D[66]*c[1]^2/(a^4*b^7))*b^3)/3 + 96*D__11*c[1]^2/(a^5*b^3) - 16*D__11*c[1]^2/(a^4*b^4))*a^6)/12 + ((16*D[22]*c[1]^2*b/a^8 - 72*D[22]*c[1]^2/a^7 + ((912*D__12*c[1]^2/(a^8*b^6) + 3328*D[66]*c[1]^2/(a^8*b^6) + 864*D[22]*c[1]^2/(a^6*b^8))*b^7)/7 + ((-2736*D__12*c[1]^2/(a^7*b^6) - 9984*D[66]*c[1]^2/(a^7*b^6) - 576*D[22]*c[1]^2/(a^5*b^8))*b^6)/6 + ((144*D__11*c[1]^2/(a^8*b^4) + 2888*D__12*c[1]^2/(a^6*b^6) + 10816*D[66]*c[1]^2/(a^6*b^6) + 144*D[22]*c[1]^2/(a^4*b^8) - 2*q*c[1]/(a^4*b^4))*b^5)/5 + ((-288*D__11*c[1]^2/(a^7*b^4) - 1216*D__12*c[1]^2/(a^5*b^6) - 4992*D[66]*c[1]^2/(a^5*b^6) + 4*q*c[1]/(a^3*b^4))*b^4)/4 + ((192*D__11*c[1]^2/(a^6*b^4) + 152*D__12*c[1]^2/(a^4*b^6) + 832*D[66]*c[1]^2/(a^4*b^6) - 2*q*c[1]/(a^2*b^4))*b^3)/3 - 24*D__11*c[1]^2/(a^5*b^2) + 4*D__11*c[1]^2/(a^4*b^3))*a^5)/10 + ((-32*D[22]*c[1]^2*b^2/a^8 + 144*D[22]*c[1]^2*b/a^7 + ((-384*D__12*c[1]^2/(a^8*b^5) - 1536*D[66]*c[1]^2/(a^8*b^5) - 1728*D[22]*c[1]^2/(a^6*b^7))*b^7)/7 + ((1152*D__12*c[1]^2/(a^7*b^5) + 4608*D[66]*c[1]^2/(a^7*b^5) + 1152*D[22]*c[1]^2/(a^5*b^7))*b^6)/6 + ((-1216*D__12*c[1]^2/(a^6*b^5) - 4992*D[66]*c[1]^2/(a^6*b^5) - 288*D[22]*c[1]^2/(a^4*b^7) + 4*q*c[1]/(a^4*b^3))*b^5)/5 + ((512*D__12*c[1]^2/(a^5*b^5) + 2304*D[66]*c[1]^2/(a^5*b^5) - 8*q*c[1]/(a^3*b^3))*b^4)/4 + ((-64*D__12*c[1]^2/(a^4*b^5) - 384*D[66]*c[1]^2/(a^4*b^5) + 4*q*c[1]/(a^2*b^3))*b^3)/3)*a^4)/8 + (((64*D[22]*c[1]^2*b^3)/(3*a^8) - 96*D[22]*c[1]^2*b^2/a^7 + ((48*D__12*c[1]^2/(a^8*b^4) + 256*D[66]*c[1]^2/(a^8*b^4) + 1152*D[22]*c[1]^2/(a^6*b^6))*b^7)/7 + ((-144*D__12*c[1]^2/(a^7*b^4) - 768*D[66]*c[1]^2/(a^7*b^4) - 768*D[22]*c[1]^2/(a^5*b^6))*b^6)/6 + ((152*D__12*c[1]^2/(a^6*b^4) + 832*D[66]*c[1]^2/(a^6*b^4) + 192*D[22]*c[1]^2/(a^4*b^6) - 2*q*c[1]/(a^4*b^2))*b^5)/5 + ((-64*D__12*c[1]^2/(a^5*b^4) - 384*D[66]*c[1]^2/(a^5*b^4) + 4*q*c[1]/(a^3*b^2))*b^4)/4 + ((8*D__12*c[1]^2/(a^4*b^4) + 64*D[66]*c[1]^2/(a^4*b^4) - 2*q*c[1]/(a^2*b^2))*b^3)/3)*a^3)/6 + ((-(16*D[22]*c[1]^2*b^4)/(3*a^8) + 24*D[22]*c[1]^2*b^3/a^7 - (288*D[22]*c[1]^2*b^2)/(7*a^6) + 32*D[22]*c[1]^2*b/a^5 - (48*D[22]*c[1]^2)/(5*a^4))*a^2)/4 + (2*D[22]*c[1]^2*b^5)/(9*a^7) - D[22]*c[1]^2*b^4/a^6 + (12*D[22]*c[1]^2*b^3)/(7*a^5) - (4*D[22]*c[1]^2*b^2)/(3*a^4) + (2*D[22]*c[1]^2*b)/(5*a^3)`

## Roots are real on x axis but give comple...

This shows basically what is happening and why Maple gives answers you have. The are correct.

## B:=...

You had set B= Omega. Needs to be B:=Omega

 >
 >

 >

 >

## Try.....

Try setting q:=p^2. That will get rid of the fractional exponents.

## Two ways around it....

Here are two potential ways around you issue.

 could use double delayed evaluation quotes   '' ...   '' but then can't use a^2*b^5 or  enclose computation an square brackets

## expand may work for you...

I checked this in Maple 18 (not Maple 2018) and Maple 2022.  I don't have Maple 2020 installed anymore.

`eq := solve(expand((20 + 20*T + 2*T*(T + 1))*exp(-T) - 10*exp(-2*T) - 2*T - 10.0))`

`eq := 1.411454823, 0.`

`1.411454823, -0., 0.`

If you use 10 instead of 10.0 the numerical answers need to be extracted using "allvalues(%)" In this case Maple 18 returns four root solutions but only evaluates two of the to numerical values. Maple 2022 returns two root solutions

Beyond that I have no explination.

## 1st use the LinearAlgebra package then d...

Firstly you are better off using the modern LinearAlgebra package. I converted some of you code to suit.

I created a matrix Hnew is what you are looking for

 > restart;
 > kernelopts(version);
 (1)
 > with(LinearAlgebra);
 (2)
 > alias(phi = phi(x, t), chi = chi(x, t), psi = psi(x, t), rho = rho(x, t));
 (3)
 >
 > H[1]:=Matrix([[epsilon[1]*phi[1],conjugate(epsilon[2])*(phi[1]),conjugate(chi[1]),0],
 > [epsilon[2]*psi[1],-conjugate(epsilon[1])*(psi[1]),0,conjugate(rho[1])],
 > [-chi[1],0,conjugate(epsilon[1])*conjugate(phi[1]),conjugate(epsilon[2])*conjugate(phi[1])],
 > [0,rho[1],-epsilon[2]*conjugate(psi[1]),epsilon[1]*conjugate(psi[1])]]);
 >
 >
 (4)
 > H[2]:=Matrix([[epsilon[1]*phi[2],conjugate(epsilon[2])*(phi[2]),conjugate(chi[2]),0],
 > [epsilon[2]*psi[2],-conjugate(epsilon[1])*(psi[2]),0,conjugate(rho[2])],
 > [-chi[2],0,conjugate(epsilon[1])*conjugate(phi[2]),conjugate(epsilon[2])*conjugate(phi[2])],
 > [0,rho[2],-epsilon[2]*conjugate(psi[2]),epsilon[1]*conjugate(psi[2])]]);
 (5)
 > Lambda[1]:=Matrix([[lambda[1],0,0,0],[0,lambda[1],0,0],[0,0,conjugate(lambda[1]),0],[0,0,0,conjugate(lambda[1])]]);
 (6)
 > Lambda[2]:=Matrix([[lambda[2],0,0,0],[0,lambda[2],0,0],[0,0,conjugate(lambda[2]),0],[0,0,0,conjugate(lambda[2])]]);
 (7)
 > H11:=H[1].Lambda[1];
 (8)
 > H12:=H[2].Lambda[2];
 (9)
 > H13:=H[1].Lambda[1].Lambda[1];
 (10)
 > H14:=H[2].Lambda[2].Lambda[2];
 (11)
 > H115:=Matrix([H[1],H[2]]);
 (12)
 > H15:=Matrix([H11,H12]);
 (13)
 > H116:=Matrix([[H115],[H15]]);
 (14)
 > H16:=Matrix([H13,H14]);
 (15)
 >
 (16)
 >

## Try this...

A is the name of the vector.

A[1]:=5

In you other equation. use A[1]....  C[1]... not a[1]... c[1]...

## Two Ways...

There are two basic ways to do this. 1st extend a list. This is highly ineffecient when the list grows long as Maple creats copies of the list.

The better way is to use a programmable Array( ) as opposed to Array[ ]

I have shown both is the attached.

This is an example as I do not know how you achieved you results. There are two basic ways.

 (1)

 (2)

 (3)

 (4)

 (5)

 (6)

 (7)

 (8)

## Is this what you mean....

Edit:- @max125 correctly pointed out I missed the minus sign in front of the x^2. I posted the revised answer in the reply to him.

Look at this and see if that is what you want.

 (1)

 (2)

 (3)

 (4)

 (5)

 (6)

 (7)

 (8)

 (9)

 (10)

 (11)

 (12)

 (13)

## How did you install...

If you are using windows

Always with this programs like Maple I install them using the hidden administrator account in windows. i learn't this the hard way using the Solidworks CAD systtem.

When I first used Maple in 2012 I forgot to do the above and had all sorts of problems until I reinstalled as above.

Might help.

## an equation or implicitplot or intersect...

`f-0.001-g #gives the intersection curve.`

there ae=re two basic ways to show it implicitplot or in 3D intersectplot.

 >
 (1)
 >
 >
 >
 (2)
 >
 (3)
 >
 >
 (4)
 >