ZhuWeihong

20 Reputation

5 Badges

10 years, 62 days

MaplePrimes Activity


These are replies submitted by ZhuWeihong

plot(1+(BesselJ(0, exp(t))+(2*BesselJ(1, 1)-BesselJ(0, 1))*BesselY(0, -exp(t))/(2*BesselY(1, -1)+BesselY(0, -1)))*exp(t)/((2*BesselJ(1, 1)-BesselJ(0, 1))*BesselY(1, -exp(t))/(2*BesselY(1, -1)+BesselY(0, -1))-BesselJ(1, exp(t))), t = -2 .. 2)> ans1 := dsolve({eq2, x(0) = -1, y(0) = -1}, numeric, [x(t), y(t)]);
> ans1(1.3617);
        [t = 1.3617, x(t) = HFloat(-3.902822445560783),  y(t) = HFloat(110431.41657939098)]
> ans1(-1.1646698);
     [t = -1.1646698, x(t) = HFloat(-0.31202567404723713),  y(t) = HFloat(-5.991828159068897e7)]

so the point x=1.3617 and x=-1.1646689 is singularity!

 

plot(1+(BesselJ(0, exp(t))+(2*BesselJ(1, 1)-BesselJ(0, 1))*BesselY(0, -exp(t))/(2*BesselY(1, -1)+BesselY(0, -1)))*exp(t)/((2*BesselJ(1, 1)-BesselJ(0, 1))*BesselY(1, -exp(t))/(2*BesselY(1, -1)+BesselY(0, -1))-BesselJ(1, exp(t))), t = -2 .. 2)> ans1 := dsolve({eq2, x(0) = -1, y(0) = -1}, numeric, [x(t), y(t)]);
> ans1(1.3617);
        [t = 1.3617, x(t) = HFloat(-3.902822445560783),  y(t) = HFloat(110431.41657939098)]
> ans1(-1.1646698);
     [t = -1.1646698, x(t) = HFloat(-0.31202567404723713),  y(t) = HFloat(-5.991828159068897e7)]

so the point x=1.3617 and x=-1.1646689 is singularity!

 

thank you very much

thank you very much

it wokers well,thanks u

it wokers well,thanks u

thank u ,it is a perfect answer!!

thank u ,it is a perfect answer!!

 than u vert much,  my problem solved prefectly, i learnd much form your answer.

 than u vert much,  my problem solved prefectly, i learnd much form your answer.

Page 1 of 1