acer

20445 Reputation

29 Badges

15 years, 23 days

Social Networks and Content at Maplesoft.com

MaplePrimes Activity


These are answers submitted by acer

Perhaps the question is asking for something like the following (where the flow units will be in m^3/s).

(If you are being asked a homework question on the trapezoidal and midpoint methods then will you not have covered those in lectures?)

restart;

d := x -> x*(10-x)/25;

proc (x) options operator, arrow; (1/25)*x*(10-x) end proc

v := x -> x*(10-x)/100;

proc (x) options operator, arrow; (1/100)*x*(10-x) end proc

ig := x -> d(x)*v(x);

proc (x) options operator, arrow; d(x)*v(x) end proc

exact := int(ig(x), x=0..10);

4/3

evalf(%);

1.333333333

# Compound trapezoidal rule, written explicitly
  (2.5 - 0)*( ig(0) + ig(2.5) )/2
+ (5 - 2.5)*( ig(2.5) + ig(5) )/2
+ (7.5 - 5)*( ig(5) + ig(7.5) )/2
+ (10 - 7.5)*( ig(7.5) + ig(10) )/2;

1.328125000

# Compound trapezoidal rule, as formula
h := (10 - 0)/4:
evalf( h * ( ig(0)
             + add( ig(0 + i*h), i=1..3)
             + ig(10) ) );

1.328125000

abs(exact - %);

0.5208333e-2

# Compound midpoint rule, written explicitly
 (2.5 - 0)*( ig((0 + 2.5)/2) )
+ (5 - 2.5)*( ig((2.5 + 5)/2) )
+ (7.5 - 5)*( ig((5 + 7.5)/2) )
+ (10 - 7.5)*( ig((7.5 + 10)/2) );

1.337890625

# Compound midpoint rule, as formula
h := (10 - 0)/4:
evalf( h * add( ig( h*(2*i - 1)/2 ), i=1..4) );

1.337890625

abs(exact - %);

0.4557292e-2

 

Download trmdpt.mw

It seems that you have avoided reading the Maple help pages for LinearAlgebra.

(check for mistakes)

restart;

A := <<1,1>|<1,0>>;

Matrix(2, 2, {(1, 1) = 1, (1, 2) = 1, (2, 1) = 1, (2, 2) = 0})

(u,w) := <1,0>, <1,2>;

u, w := Vector(2, {(1) = 1, (2) = 0}), Vector(2, {(1) = 1, (2) = 2})

2*u+w;

Vector(2, {(1) = 3, (2) = 2})

A^3;

Matrix(2, 2, {(1, 1) = 3, (1, 2) = 2, (2, 1) = 2, (2, 2) = 1})

A^(-1);

Matrix(2, 2, {(1, 1) = 0, (1, 2) = 1, (2, 1) = 1, (2, 2) = -1})

with(LinearAlgebra):

Determinant(A);

-1

CharacteristicPolynomial(A,z);

z^2-z-1

x=LinearSolve(A,u);

x = (Vector(2, {(1) = 0, (2) = 1}))

x=LinearSolve(A,w);

x = (Vector(2, {(1) = 2, (2) = -1}))

 

v[1] := <1,0>;

Vector(2, {(1) = 1, (2) = 0})

for i from 2 to 10 do
  v[i] := A.v[i-1];
end do;

Vector(2, {(1) = 1, (2) = 1})

Vector(2, {(1) = 2, (2) = 1})

Vector(2, {(1) = 3, (2) = 2})

Vector(2, {(1) = 5, (2) = 3})

Vector(2, {(1) = 8, (2) = 5})

Vector(2, {(1) = 13, (2) = 8})

Vector(2, {(1) = 21, (2) = 13})

Vector(2, {(1) = 34, (2) = 21})

Vector[column](%id = 18446883841807642006)

seq(seq(v[i][j],j=2..1,-1),i=1..10);

0, 1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 8, 8, 13, 13, 21, 21, 34, 34, 55

[seq(v[i][1],i=1..10)];

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

[seq(combinat[fibonacci](n), n=1..10)];

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

 

Download lahw.mw

There is no such command, RTABLE.

The name RTABLE is a protected name, and is utilized as an inert function call for printing purposes. For example, the procedure `print/rtable` uses such calls for formatting, in a way that the GUI understands and deals with. Printing rtables (Matrix,Array,Vector) has some special situations.

This is undocumented, and I am hard pressed to imagine a good reason why anyone would want to display using such calls. Your remarks about "messing up the order of things like sums" is pretty opaque.

Relying on undocumented behavior for complicated, customized display effects is a bad idea.

I am wary of the methodology that the local proc may return expressions with an unknown number or escaped locals -- possibly without pattern in their naming, but it's difficult to judge without knowing full details. On the surface it sounds like a programming mistake. I would prefer to utilize `tools/genglobal` to produce a new unassigned global name safely than to escape a local (which is poor practice).

In examples such as for your new edit, with alpha as the dummy variable of integration, assumptions during subsequent computation would more usually be placed on x the name appearing in the limit of integration.

Your question is not about simplify (or even assuming) per se. It is about programmatic access to (and use of) the names appearing in the expression returned from the procedure. It is about handling escaped locals programmatically -- or, IMO, whether it would better practice to use a better approach that does not return escaped locals.

restart;

getdeps:=proc(ee)
local nm;
  [indets(ee,And(name,Not(:-constant),
                  ':-satisfies'(nm->depends(ee,nm))))[]];
end proc:

getnondeps:=proc(ee)
local nm;
  [indets(ee,And(name,Not(:-constant),
                 Not(':-satisfies'(nm->depends(ee,nm)))))[]];
end proc:

foo:=proc(x)
local int_result,alpha;
local integrand:=1/ln(x^2+1);

int_result:= int(integrand,x);
if has(int_result,'int') then  #did not integrate
   int_result:=Int(subs(x=alpha,integrand),alpha=0..x);
fi;

  return int_result;
end proc:

int_result:=foo(x);

Int(1/ln(alpha^2+1), alpha = 0 .. x)

getdeps(int_result);

[x]

getnondeps(int_result);

[alpha]

 

Download deps.mw

You can easily programmatically generate conditions from the dependent (or independent) variable names, and use those in a call to simplify (or other command) under `assuming`. That's generally quite straightforward, once you have lists of such names with which to further program.

I will repeat that I think it is poor practice to return escaped locals from a procedure. The fact that they are subsequently awkward to deal with programmatically is just one reason that it's poor. Instead, I suggest passing in a global name of your own choice or generating new (safely non-assigned) global names using `tools/genglobal` and a base name of your own choice. I realize that `tools/genglobal` is undocumented, but its usage it simple. It exists because it is used by Library routines quite a bit. It serves a rather frequently occurring programmatic purpose. I used it as a key part of an Answer to your Question of 07/07/2020 and another Question of 19/09/2020, both of which have similarities in vein to this thread.

Here is something, numerically,

restart;

f := x^4*sin(x^2 + y^3)^2*ln(y) + 2*y*x:

fx := diff(f,x);

4*x^3*sin(y^3+x^2)^2*ln(y)+4*x^5*sin(y^3+x^2)*ln(y)*cos(y^3+x^2)+2*y

fy := diff(f,y);

6*x^4*sin(y^3+x^2)*ln(y)*y^2*cos(y^3+x^2)+x^4*sin(y^3+x^2)^2/y+2*x

H := Int(sqrt(fx^2 + fy^2 + 1), [x = 0 .. 4, y = 1 .. 5]):

evalf[6](evalf[15](Int(op(H),epsilon=1e-6,method=_CubaCuhre)));

21351.1

evalf[6](evalf[15](Int(op(H),epsilon=1e-5,method=_CubaDivonne)));

21351.1

 

Download cuba_surfint.mw

Here is one way to generate it as a list of column Vectors. (I haven't looked at whether it is an efficient way, or whether it scales up well, etc. I suspect that it may be wasteful in terms of producing unnecessary collectible garbage.)

Also, do you really need all of them at once (like this), rather than comptuing with them one at a time?

restart;

kernelopts(version);

`Maple 17.02, X86 64 LINUX, Sep 5 2013, Build ID 872941`

with(StringTools):

(parse~@Vector@Explode)~(Generate(3,"012"));

[Vector(3, {(1) = 0, (2) = 0, (3) = 0}), Vector(3, {(1) = 0, (2) = 0, (3) = 1}), Vector(3, {(1) = 0, (2) = 0, (3) = 2}), Vector(3, {(1) = 0, (2) = 1, (3) = 0}), Vector(3, {(1) = 0, (2) = 1, (3) = 1}), Vector(3, {(1) = 0, (2) = 1, (3) = 2}), Vector(3, {(1) = 0, (2) = 2, (3) = 0}), Vector(3, {(1) = 0, (2) = 2, (3) = 1}), Vector(3, {(1) = 0, (2) = 2, (3) = 2}), Vector(3, {(1) = 1, (2) = 0, (3) = 0}), Vector(3, {(1) = 1, (2) = 0, (3) = 1}), Vector(3, {(1) = 1, (2) = 0, (3) = 2}), Vector(3, {(1) = 1, (2) = 1, (3) = 0}), Vector(3, {(1) = 1, (2) = 1, (3) = 1}), Vector(3, {(1) = 1, (2) = 1, (3) = 2}), Vector(3, {(1) = 1, (2) = 2, (3) = 0}), Vector(3, {(1) = 1, (2) = 2, (3) = 1}), Vector(3, {(1) = 1, (2) = 2, (3) = 2}), Vector(3, {(1) = 2, (2) = 0, (3) = 0}), Vector(3, {(1) = 2, (2) = 0, (3) = 1}), Vector(3, {(1) = 2, (2) = 0, (3) = 2}), Vector(3, {(1) = 2, (2) = 1, (3) = 0}), Vector(3, {(1) = 2, (2) = 1, (3) = 1}), Vector(3, {(1) = 2, (2) = 1, (3) = 2}), Vector(3, {(1) = 2, (2) = 2, (3) = 0}), Vector(3, {(1) = 2, (2) = 2, (3) = 1}), Vector(3, {(1) = 2, (2) = 2, (3) = 2})]

 

Download vecsplode.mw

restart;
ee:=Int(x^x,x=0..1);

Int(x^x, x = 0 .. 1)

evalf(ee);

.7834305107

subs(x^x=exp(x*ln(x)),ee);

Int(exp(x*ln(x)), x = 0 .. 1)

temp1:=convert(%,Sum);

Int(Sum((x*ln(x))^_k1/factorial(_k1), _k1 = 0 .. infinity), x = 0 .. 1)

svar:=lhs(op([1,2],temp1));

_k1

Sum(Int(op([1,1],temp1),op([2],temp1)),op([1,2],temp1));

Sum(Int((x*ln(x))^_k1/factorial(_k1), x = 0 .. 1), _k1 = 0 .. infinity)

subsop(1=IntegrationTools:-Change(op([1],%),u=-ln(x),u),%);

Sum(Int((-1)^_k1*exp(-u*(_k1+1))*u^_k1/factorial(_k1), u = 0 .. infinity), _k1 = 0 .. infinity)

temp2:=simplify(eval(%,Int=int)) assuming svar::nonnegint;

Sum((-1)^_k1*(_k1+1)^(-_k1-1), _k1 = 0 .. infinity)

ans:=subs(svar=n,Sum(eval(op(1,temp2),svar=svar-1),svar=map(`+`,rhs(op(2,temp2)),1)));

Sum((-1)^(n-1)*n^(-n), n = 1 .. infinity)

evalf(ans);

.7834305107

 

Download funintegral.mw

vv mentioned doing it by hand. The only heavy lifting in the above is in the evaluation of the integral (inside the sum) following the call to Change. One could recognize a GAMMA call for that -- followed by cancellation of the factorial terms.

Try specifying the labels with the option as,

  labels = [:-D[m1], c]

or,

  labels = [`#msub(mi("D"),mi("m1"))`, c]

or (if you prefer the font in upright Roman),

  labels = [`#msub(mtext("D"),mtext("m1"))`, c]

labels_glob.mw

 

You can specify a predicate which does a table lookup on the entries.

Using a key (to specify the quality to compare) should be more efficient, which could matter if you have many items to sort.

Listsort_ac.mw

You get the comparison of strings automatically. Hence the only thing you needed to add is supplying a comparison that did the table lookup of the quality by which you wished to sort.

evalb("Concrete" < "Timber");

                true

materiallist[1]["material"], materiallist[2]["material"];

           "Timber", "Steel"

evalb(materiallist[1]["material"] < materiallist[2]["material"]);

               false

Have a look at these references, which mention difficulties for the floating-point computation:

  wikipedia

  Matlab help

The first of those also points at the Schur decomposition (see also SchurForm in Maple).

Do either of these get the kind of effect that you want in your Maple 13, with exact integer multiples of Pi/2 as the displayed tickmarks?

plot(sin(x), x=-2*Pi..2*Pi,
     axis[1]=[tickmarks=[seq(i/2*Pi=i/2*Pi,i=-4..4)]]);

plot(sin(x), x=-2*Pi..2*Pi,
     xtickmarks=[seq(i/2*Pi=i/2*Pi,i=-4..4)]);

The result of calling the ImageTools:-Read command is an m-by-n-by-3 Array, where the three layers are the red, green, and blue components of the pixel colors.

In the code below, you don't necessarily have to wrap the extracted layers with calls to Matrix as I did, ie. you could also just leave them as three m-by-n Arrays.

You also don't need to rescale; I only did that to make the example fit nicer in the page.

note: the embedded images look cleaner in the actual Maple GUI. This forum site doesn't render them as nicely.

restart;

with(ImageTools):

origimg := Read(cat(kernelopts(datadir),"/excavator.jpg")):

img := Scale(origimg, 0.5):

Embed(img);

imgR := Matrix(img[..,..,1]):  # red layer
imgG := Matrix(img[..,..,2]):  # green layer
imgB := Matrix(img[..,..,3]):  # blue layer

Embed(imgR);

Embed(imgG);

Embed(imgB);

 

image_rgb.mw

Do you care whether there are other roots outside lambda=-1..1, eg. approximately lambda=1.163 and lambda=-1.332?

What kind of evidence would "confirm" matters acceptably to you?

You haven't shown how the expression was constructed, so we cannot know whether rounding or other numeric error occurred, and whether the floating-point coefficients within it are adequately accurate.

restart

Digits := 16

P := -(9958.466892*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+2.439889255))*(-0.1557978257e-4*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.261007e-4*k-0.2660838513e-4*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k-4.82063*10^(-11)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^5+9.4151*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)+8.9899*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)+8.9599*10^(-6)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)-7.64058733*10^(-7)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^4+4.55915*10^(-6)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^3+2.83*10^(-16)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^8+0.2699913289e-4*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k-0.1833461551e-4*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda+4.534365311*10^(-11)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^6+4.611637585*10^(-6)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^3-0.1833342214e-4*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*lambda-2.26*10^(-15)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^7-3.056762083*10^(-6)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^3-4.54*10^(-11)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^6-4.610017127*10^(-6)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^3+7.19049*10^(-11)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^5+6.110608393*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)-1.519459*10^(-15)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^7-4.605558319*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^3-1.519459*10^(-15)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^7+1.14531*10^(-6)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^4+1.150803103*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^4-1.150701960*10^(-6)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^4+2.83*10^(-16)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^8+2.29*10^(-15)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^7-7.2*10^(-11)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^5-1.805990298*10^(-11)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^6-0.2642338092e-4*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*k-6.11292*10^(-6)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)+0.1981472958e-3*lambda^3-0.1674000840e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+4.607967783*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^3+1.445217*10^(-10)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^5-1.14560*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^4+1.140719237*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^4-2.723097*10^(-11)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^6+1.899324*10^(-16)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^8+3.055413*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^3+1.899324*10^(-16)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^8-3.010540298*10^(-11)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^6+2.72995*10^(-11)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^6+1.14719*10^(-6)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^4-2.16324*10^(-10)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^5-0.158580e-4*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-7.637931745*10^(-7)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^4+3.055990782*10^(-6)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^3-2.168014321*10^(-10)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^5-3.054641904*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^3+2.83*10^(-16)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^8-7.2367*10^(-11)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^5-2.86*10^(-16)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^8+1.899324*10^(-16)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^8+2.83*10^(-16)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^8-1.519459*10^(-15)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^7+0.183311e-4*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda-0.16e-4*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.1069489149e-4*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-2.86*10^(-16)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^8-1.445703114*10^(-10)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^5+0.2875578036e-4*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)-0.1069507987e-4*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-1.144560151*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^4-4.48946*10^(-11)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^6+2.29*10^(-15)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^7-0.2565264181e-4+2.169902*10^(-10)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^5-0.835512256e-4*lambda^2+3.012211408*10^(-11)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^6-0.1910578434e-3*lambda^4-8.931240077*10^(-6)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)-9.3922*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)+0.106924e-4*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-1.14257*10^(-6)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^4+0.3073879707e-4*lambda+1.899324*10^(-16)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^8+4.555659255*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^3-9.0*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)+0.1650524630e-4*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-2.26342*10^(-15)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^7-9.3627*10^(-6)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)-6.10984*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)+7.64564268*10^(-7)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^4+0.1650484496e-4*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.16e-4*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-2.86369*10^(-16)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^8+2.69309794*10^(-11)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^6+4.81577*10^(-11)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^5-2.26*10^(-15)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^7+1.807661*10^(-11)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^6-2.86369*10^(-16)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^8-2.687022860*10^(-11)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^6+4.49704*10^(-11)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^6+0.663330427e-4*lambda^5+7.632879155*10^(-7)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^4+0.106975e-4*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+7.28416*10^(-11)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^5+6.11214955*10^(-6)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)-0.2863334102e-4*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)-1.519459*10^(-15)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*lambda*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^7+2.171377*10^(-10)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^5+0.2841557560e-4*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)-4.555918*10^(-6)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^3-4.559112439*10^(-6)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^3+2.29495*10^(-15)*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^7+2.29495*10^(-15)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^7-2.26342*10^(-15)*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^7+0.155261e-4*k*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2)/((0.6307162107e-4*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.2522864843e-3*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)+0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-7.999243141*exp(0.1576790527e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-0.4450487932e-3*lambda^5+0.1300695240e-2*lambda^4-0.1345488383e-2*lambda^3+0.5598667540e-3*lambda^2-0.8455621308e-4*lambda+0.1614703348e-3)-0.1780195173e-2*lambda^5+0.5202780960e-2*lambda^4-0.5381953532e-2*lambda^3+0.2239467016e-2*lambda^2-0.3382248522e-3*lambda+8.000645881)*((7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-28.22497888*lambda^5+82.49004656*lambda^4-85.33082616*lambda^3+35.50672993*lambda^2-5.362552072*lambda+10.24044298)*(0.6307162107e-4*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2-1.999873857*exp(0.6307162107e-4*(7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+0.1261432421e-3)+2.000126143)*((7.056244720*lambda^5-20.62251164*lambda^4+21.33270654*lambda^3-8.876682482*lambda^2+1.340638018*lambda+.4398892548)^2+2))

newP:=eval(P,[k=0.1]):

plot([newP, 0], lambda = -.34 .. -.32, color = [red, blue], discont = true, view = -0.3e12 .. 0.1e12, size = [700, 200], axes = box)

fsolve(newP, lambda = -1 .. 1, maxsols = 3)

-.3295432487292467, -.3336668750890077

plot([newP, 0], lambda = -1 .. -.3, discont = true, color = [red, blue], view = -0.3e12 .. 0.3e12, size = [700, 200], axes = box)

plot([newP, 0], lambda = -1 .. 0, discont = true, color = [red, blue], view = -0.3e16 .. 0.3e16, size = [700, 200], axes = box)

plot([newP, 0], lambda = -1 .. 2, discont = true, color = [red, blue], view = -0.3*10^16 .. 0.3*10^16, size = [700, 200], axes = box);

plot([newP, 0], lambda = 1 .. 2, discont = true, color = [red, blue], view = -0.3*10^15 .. 0.3*10^15, size = [700, 200], axes = box);

fsolve(newP, lambda = 1 .. 2, maxsols = 3);

1.162887568761162

Download Help_ac.mw

From your description, you could use regular Matrix indexing and in-place assignment, on a copy of the original.

Eg, for to copy column i into column k,
    M[..,k]:=M[..,i]:

And, in detail,

M := Matrix(5,5,(i,j)->i+j);

Matrix(5, 5, {(1, 1) = 2, (1, 2) = 3, (1, 3) = 4, (1, 4) = 5, (1, 5) = 6, (2, 1) = 3, (2, 2) = 4, (2, 3) = 5, (2, 4) = 6, (2, 5) = 7, (3, 1) = 4, (3, 2) = 5, (3, 3) = 6, (3, 4) = 7, (3, 5) = 8, (4, 1) = 5, (4, 2) = 6, (4, 3) = 7, (4, 4) = 8, (4, 5) = 9, (5, 1) = 6, (5, 2) = 7, (5, 3) = 8, (5, 4) = 9, (5, 5) = 10})

N:=copy(M):
# now copy column 5 into column 2
N[..,2]:=N[..,5]:

N;

Matrix(5, 5, {(1, 1) = 2, (1, 2) = 6, (1, 3) = 4, (1, 4) = 5, (1, 5) = 6, (2, 1) = 3, (2, 2) = 7, (2, 3) = 5, (2, 4) = 6, (2, 5) = 7, (3, 1) = 4, (3, 2) = 8, (3, 3) = 6, (3, 4) = 7, (3, 5) = 8, (4, 1) = 5, (4, 2) = 9, (4, 3) = 7, (4, 4) = 8, (4, 5) = 9, (5, 1) = 6, (5, 2) = 10, (5, 3) = 8, (5, 4) = 9, (5, 5) = 10})

P:=copy(M):
# now copy row 1 into row 3
P[3,..]:=P[1,..]:

P;

Matrix(5, 5, {(1, 1) = 2, (1, 2) = 3, (1, 3) = 4, (1, 4) = 5, (1, 5) = 6, (2, 1) = 3, (2, 2) = 4, (2, 3) = 5, (2, 4) = 6, (2, 5) = 7, (3, 1) = 2, (3, 2) = 3, (3, 3) = 4, (3, 4) = 5, (3, 5) = 6, (4, 1) = 5, (4, 2) = 6, (4, 3) = 7, (4, 4) = 8, (4, 5) = 9, (5, 1) = 6, (5, 2) = 7, (5, 3) = 8, (5, 4) = 9, (5, 5) = 10})

 

Download rowcol_copyinto.mw

If your Matrices have a hardware datatype such as float[8] and are very large, and you want high efficiency, you could also use the ArrayTools:-BlockCopy command.

restart;

TR_turns_ratio := N = n2 / n1;

N = n2/n1

Sec_Z2prim := Z1 = Z2*n1^2/n2^2;

Z1 = Z2*n1^2/n2^2

Desired := Z1 = Z2*(1/N)^2;

Z1 = Z2/N^2

simplify(Sec_Z2prim, {(rhs=lhs)(TR_turns_ratio)});

Z1 = Z2/N^2

 

Download Q20201014_ac.mw

1 2 3 4 5 6 7 Last Page 1 of 230