fufu

136 Reputation

2 Badges

12 years, 200 days

MaplePrimes Activity


These are answers submitted by fufu

oooh yes i see, thanks a lot Alec you an ancyclopedies of maple,

it is possible to know how they are construt the mathematics tools ( taylor, convert ,numapprox,......)

thanks

but i want to collect all the coefficients of an expansion of the form ( for example)

T=x^3+4x^2+x+6+(2/x)+(1/x^2)

so how i can do this

but i want to collect all the coefficients of an expansion of the form ( for example)

T=x^3+4x^2+x+6+(2/x)+(1/x^2)

so how i can do this

but i want to collect all the coefficients of an expansion of the form ( for example)

T=x^3+4x^2+x+6+(2/x)+(1/x^2)

so how i can do this

BUT IT IS AT THE BEGINIG A TATIONAL FUNCTION WITH DENOMENATOR 1. SO WE CAN T OBTAIN THE [4;3] PA for this i suppose it eturn an error

i know that we can have the expansion of f at infinity if it has an expansion at o when we change the variable x by 1/x ,and it is the case the function in the program has o as limit at infinity

why is not too hard to see why?

oh thanks a lot how do you find this

but our prof asked us to program the metrhod of pade approximant as it is defined but ,y program is just for one exa,ple and i want to do it for any function and anny degree

i a, not verry well in english excuse me

thanks

BUT I DONT WANT TO USE NUMAPPROX I WANT TO CONSTRUCT MY PROPRE PROCEDUR

 

IS THERE ANY ONE ABLE TO CONSTRUCT WITH ME THIS PROCEDURE

THIS IS AN ASYMPTOTIQUE DEVELLOPEMENT WE MUST HAVE A+B1/x+C1/X2+D1/X3+.........

 

BECAUSE THE FIRST TERME IS ln(x)/x and in the devellope,ent we must have 0+°°X+§§X2+...... DO YOU UNDERSTAND WHAT I MEAN  

i need an answer

is there any answers to  my question

 

> hello

this is a program to calculate an [4.2]pade approximant to the function exp(x), i need to do a procedure for this. for example pade:=proc(f,..), ( if i want to calculate an other pade approximant i put in pade my function and the point and the ordre of denominateur and numerator.how i can do this?

can you help me please!!


> f := exp(x);
>   L := add(p[k]*(x)^k, k=0..4);
>   M := 1 + add(q[k]*(x)^k, k=1..2);
>   T := convert(taylor(M*f - L,x, 8),polynom);
>  H:=evalf(%) ;
                          f := exp(x)
                                   2         3         4
        L := p[0] + p[1] x + p[2] x  + p[3] x  + p[4] x
                                           2
                   M := 1 + q[1] x + q[2] x
                                      /1                     \  2
T := 1 - p[0] + (1 + q[1] - p[1]) x + |- + q[1] + q[2] - p[2]| x
                                      \2                     /   

     /               1   1     \  3   /1    1        1            \  4
   + |-p[3] + q[2] + - + - q[1]| x  + |-- + - q[1] + - q[2] - p[4]| x
     \               6   2     /      \24   6        2            /   

     /1         1    1      \  5   /1          1     1      \  6
   + |- q[2] + --- + -- q[1]| x  + |-- q[2] + --- + --- q[1]| x
     \6        120   24     /      \24        720   120     /   

     / 1      1          1      \  7
   + |---- + --- q[1] + --- q[2]| x
     \5040   720        120     /   
H := 1. - 1. p[0] + (1. + q[1] - 1. p[1]) x

                                             2
   + (0.5000000000 + q[1] + q[2] - 1. p[2]) x

                                                           3
   + (-1. p[3] + q[2] + 0.1666666667 + 0.5000000000 q[1]) x

                                                                        4
   + (0.04166666667 + 0.1666666667 q[1] + 0.5000000000 q[2] - 1. p[4]) x

                                                                5
   + (0.1666666667 q[2] + 0.008333333333 + 0.04166666667 q[1]) x

                                                                  6
   + (0.04166666667 q[2] + 0.001388888889 + 0.008333333333 q[1]) x

                                                                    7
   + (0.0001984126984 + 0.001388888889 q[1] + 0.008333333333 q[2]) x
> eqs:= {seq(coeftayl(H,x=0,j),j=0..6)};
>   S:=fsolve(eqs);
> pade:=eval(L/M,S);
                          1                   /                   
pade := ------------------------------------- \1. + 0.6666666670 x
                                            2                     
        1 - 0.3333333330 x + 0.03333333326 x                      

                   2                  3                   4\
   + 0.2000000003 x  + 0.03333333350 x  + 0.002777777790 x /

Page 1 of 1