ger89

10 Reputation

2 Badges

10 years, 69 days

MaplePrimes Activity


These are questions asked by ger89

Hi everybody!

It's nice to join in this forum.

I'm trying to get the analytic solution of the Bernouilli-Euler beam equation, with the next boundary conditions:


w(x,t) = displacements.

w(0,t) = 0   -> It's a cantilever beam. At the x=0 it's clamped.

diff(w(x,t),x) = 0.   -> the gyro in the clamp is zero.

E*I*diff(w(L,t),x,x) = 0  -> the moment at the end of the beam (x=L) is zero.

E*I*diff(w(L,t),x,x,x) = 0  -> the shear at the end of the beam (x=L) is zero too.


I'm not able to introduce the second and the third derivatives as boundary conditions in the pdsolve equation. I post the hole code:

restart;
ode := I*E*(diff(w(x, t), x, x, x, x))+m*(diff(w(x, t), t, t)) = 0;

s := pdsolve(ode, w(x, t));

ode1 := op([2, 1, 1], s);

ode2 := op([2, 1, 2], s);

f1 := op(4, rhs(ode1));

f2 := op(2, rhs(ode2));

sol1 := dsolve(ode1, f1);

sol2 := dsolve(ode2, f2);

sol := rhs(sol1)*rhs(sol2);

conds := [w(0, t) = 0, (D[1](w))(0, t) = 0, eval(I*E*(D[1, 1](w))(x, t), x = L) = 0, eval(I*E*(D[1, 1, 1](w))(x, t), x = L) = 0];

pde := [ode, conds];

pdsolve(pde, w(u, t));


And I get this error:

"Error, (in PDEtools/pdsolve) invalid input: `pdsolve/sys` expects its 1st argument, SYS, to be of type {list({`<>`, `=`, algebraic}), set({`<>`, `=`, algebraic})}, but received [I*E*(diff(diff(diff(diff(w(x, t), x), x), x), x))+m*(diff(diff(w(x, t), t), t)) = 0, [w(0, t) = 0, (D[1](w))(0, t) = 0, I*E*(D[1, 1](w))(L, t) = 0, I*E*(D[1, 1, 1](w))(L, t) = 0]]"


It's seems I'm introducing the Boundary conditions of the second and third derivatives in a wrong way, but I can't discover how to do it.

Thanks very much in advance to everybody!!

Ger89



P.D. - I have use this "tutorial" to write the code ( http://homepages.math.uic.edu/~jan/mcs494f02/Lec34/pde.html ). Thanks very much again. 

 

Page 1 of 1