janhardo

690 Reputation

12 Badges

11 years, 36 days

MaplePrimes Activity


These are replies submitted by janhardo




============================================================================================
 

a example , but M is not exact calculated , so the solution is not fitting


 

restart; with(DEtools); original_ODE := diff(U(xi), xi, xi)+U(xi)^2-2*U(xi) = 0; M := 2; ansatz := y^2*a[2]+y*a[1]+a[0]; L := 2; varkappa := 1; eta := 1; rho_prime := (xi/y+varkappa+eta*y)/ln(L); y_prime := y*rho_prime*ln(L); y_double_prime := diff(y_prime, xi); U_prime := 2*y*y_prime*a[2]+y_prime*a[1]; U_double_prime := a[1]*y_double_prime+2*a[2]*(y*y_double_prime+y_prime^2); substituted_ODE := eval(original_ODE, [U(xi) = ansatz, diff(U(xi), xi) = U_prime, diff(U(xi), xi, xi) = U_double_prime]); substituted_ODE := expand(simplify(substituted_ODE)); coefficient_eqs := [coeff(coeff(lhs(substituted_ODE), y, 0), xi, 0) = 0, coeff(coeff(lhs(substituted_ODE), y, 1), xi, 0) = 0, coeff(coeff(lhs(substituted_ODE), y, 2), xi, 0) = 0]; solution := solve(coefficient_eqs, {a[0], a[1], a[2]}); print(solution)

diff(diff(U(xi), xi), xi)+U(xi)^2-2*U(xi) = 0

 

2

 

y^2*a[2]+y*a[1]+a[0]

 

2

 

1

 

1

 

(xi/y+1+y)/ln(2)

 

y*(xi/y+1+y)

 

1

 

2*y^2*(xi/y+1+y)*a[2]+y*(xi/y+1+y)*a[1]

 

a[1]+2*a[2]*(y+y^2*(xi/y+1+y)^2)

 

a[1]+2*a[2]*(y+y^2*(xi/y+1+y)^2)+(y^2*a[2]+y*a[1]+a[0])^2-2*a[2]*y^2-2*a[1]*y-2*a[0] = 0

 

y^4*a[2]^2+2*y^4*a[2]+2*y^3*a[1]*a[2]+4*xi*y^2*a[2]+4*y^3*a[2]+2*y^2*a[0]*a[2]+y^2*a[1]^2+2*xi^2*a[2]+4*xi*y*a[2]+2*y*a[0]*a[1]-2*y*a[1]+2*y*a[2]+a[0]^2-2*a[0]+a[1] = 0

 

[a[0]^2-2*a[0]+a[1] = 0, 2*a[0]*a[1]-2*a[1]+2*a[2] = 0, 2*a[0]*a[2]+a[1]^2 = 0]

 

{a[0] = 0, a[1] = 0, a[2] = 0}, {a[0] = 2, a[1] = 0, a[2] = 0}, {a[0] = 4/3, a[1] = 8/9, a[2] = -8/27}

 

{a[0] = 0, a[1] = 0, a[2] = 0}, {a[0] = 2, a[1] = 0, a[2] = 0}, {a[0] = 4/3, a[1] = 8/9, a[2] = -8/27}

(1)

 

 

solution_U := 4/3+(8/9)*L^rho(xi)-(8/27)*(L^rho(xi))^2; rho_prime := (xi/L^rho(xi)+varkappa+eta*L^rho(xi))/ln(L); U_prime := diff(solution_U, xi); U_double_prime := diff(U_prime, xi); ODE_check := solution_U^2+U_double_prime-2*solution_U; simplify(ODE_check)

4/3+(8/9)*2^rho(xi)-(8/27)*(2^rho(xi))^2

 

(xi/2^rho(xi)+1+2^rho(xi))/ln(2)

 

(8/9)*2^rho(xi)*(diff(rho(xi), xi))*ln(2)-(16/27)*(2^rho(xi))^2*(diff(rho(xi), xi))*ln(2)

 

(8/9)*2^rho(xi)*(diff(rho(xi), xi))^2*ln(2)^2+(8/9)*2^rho(xi)*(diff(diff(rho(xi), xi), xi))*ln(2)-(32/27)*(2^rho(xi))^2*(diff(rho(xi), xi))^2*ln(2)^2-(16/27)*(2^rho(xi))^2*(diff(diff(rho(xi), xi), xi))*ln(2)

 

(4/3+(8/9)*2^rho(xi)-(8/27)*(2^rho(xi))^2)^2+(8/9)*2^rho(xi)*(diff(rho(xi), xi))^2*ln(2)^2+(8/9)*2^rho(xi)*(diff(diff(rho(xi), xi), xi))*ln(2)-(32/27)*(2^rho(xi))^2*(diff(rho(xi), xi))^2*ln(2)^2-(16/27)*(2^rho(xi))^2*(diff(diff(rho(xi), xi), xi))*ln(2)-8/3-(16/9)*2^rho(xi)+(16/27)*(2^rho(xi))^2

 

(16/9)*(1+(2/3)*2^rho(xi)-(2/9)*4^rho(xi))^2-8/3+(8/9)*ln(2)*(2^rho(xi)-(2/3)*4^rho(xi))*(diff(diff(rho(xi), xi), xi))+(8/9)*((diff(rho(xi), xi))^2*ln(2)^2-2)*2^rho(xi)-(32/27)*4^rho(xi)*(diff(rho(xi), xi))^2*ln(2)^2+(16/27)*4^rho(xi)

(2)

 


 

Download berekening_coeiff_M_is_onjuist_en_niet_berekend_3-5-2025.mw

@mmcdara 

Thanks for the nice proof , it is an ingenious proof though ..could follow it with some help

============================================================













 


 

 

 

restart; with(DEtools); ode := diff(rho(xi), xi) = (xi*L^(-rho(xi))+varkappa+eta*L^rho(xi))/ln(L)

diff(rho(xi), xi) = (xi*L^(-rho(xi))+varkappa+eta*L^rho(xi))/ln(L)

(1)

 

Gamma := -4*eta*zeta+varkappa^2; sol1 := L^rho(xi) = -varkappa/(2*eta)+sqrt(-Gamma)*tan((1/2)*sqrt(-Gamma)*xi)/(2*eta); sol2 := L^rho(xi) = -varkappa/(2*eta)-sqrt(-Gamma)*cot((1/2)*sqrt(-Gamma)*xi)/(2*eta); rho_sol1 := solve(sol1, rho(xi)); rho_sol2 := solve(sol2, rho(xi))

-4*eta*zeta+varkappa^2

 

L^rho(xi) = -(1/2)*varkappa/eta+(1/2)*(4*eta*zeta-varkappa^2)^(1/2)*tan((1/2)*(4*eta*zeta-varkappa^2)^(1/2)*xi)/eta

 

L^rho(xi) = -(1/2)*varkappa/eta-(1/2)*(4*eta*zeta-varkappa^2)^(1/2)*cot((1/2)*(4*eta*zeta-varkappa^2)^(1/2)*xi)/eta

 

ln((1/2)*((4*eta*zeta-varkappa^2)^(1/2)*tan((1/2)*(4*eta*zeta-varkappa^2)^(1/2)*xi)-varkappa)/eta)/ln(L)

 

ln(-(1/2)*((4*eta*zeta-varkappa^2)^(1/2)+varkappa*tan((1/2)*(4*eta*zeta-varkappa^2)^(1/2)*xi))/(eta*tan((1/2)*(4*eta*zeta-varkappa^2)^(1/2)*xi)))/ln(L)

(2)

sol3 := L^rho(xi) = -varkappa/(2*eta)+sqrt(Gamma)*tanh((1/2)*sqrt(Gamma)*xi)/(2*eta); sol4 := L^rho(xi) = -varkappa/(2*eta)-sqrt(Gamma)*coth((1/2)*sqrt(Gamma)*xi)/(2*eta); rho_sol3 := solve(sol3, rho(xi)); rho_sol4 := solve(sol4, rho(xi))

L^rho(xi) = -(1/2)*varkappa/eta+(1/2)*(-4*eta*zeta+varkappa^2)^(1/2)*tanh((1/2)*(-4*eta*zeta+varkappa^2)^(1/2)*xi)/eta

 

L^rho(xi) = -(1/2)*varkappa/eta-(1/2)*(-4*eta*zeta+varkappa^2)^(1/2)*coth((1/2)*(-4*eta*zeta+varkappa^2)^(1/2)*xi)/eta

 

ln((1/2)*((-4*eta*zeta+varkappa^2)^(1/2)*(exp((1/2)*(-4*eta*zeta+varkappa^2)^(1/2)*xi))^2-(exp((1/2)*(-4*eta*zeta+varkappa^2)^(1/2)*xi))^2*varkappa-(-4*eta*zeta+varkappa^2)^(1/2)-varkappa)/(eta*((exp((1/2)*(-4*eta*zeta+varkappa^2)^(1/2)*xi))^2+1)))/ln(L)

 

ln(-(1/2)*((-4*eta*zeta+varkappa^2)^(1/2)*(exp((1/2)*(-4*eta*zeta+varkappa^2)^(1/2)*xi))^2+(exp((1/2)*(-4*eta*zeta+varkappa^2)^(1/2)*xi))^2*varkappa+(-4*eta*zeta+varkappa^2)^(1/2)-varkappa)/(((exp((1/2)*(-4*eta*zeta+varkappa^2)^(1/2)*xi))^2-1)*eta))/ln(L)

(3)

 

 

 

ode1 := eval(ode, rho(xi) = rho_sol1); `assuming`([simplify(ode1)], [L > 0, L <> 1, eta <> 0, -4*eta*zeta+varkappa^2 < 0]); ode2 := eval(ode, rho(xi) = rho_sol2); `assuming`([simplify(ode2)], [L > 0, L <> 1, eta <> 0, -4*eta*zeta+varkappa^2 < 0])

(1/2)*(4*eta*zeta-varkappa^2)*(1+tan((1/2)*(4*eta*zeta-varkappa^2)^(1/2)*xi)^2)/(((4*eta*zeta-varkappa^2)^(1/2)*tan((1/2)*(4*eta*zeta-varkappa^2)^(1/2)*xi)-varkappa)*ln(L)) = (xi*L^(-ln((1/2)*((4*eta*zeta-varkappa^2)^(1/2)*tan((1/2)*(4*eta*zeta-varkappa^2)^(1/2)*xi)-varkappa)/eta)/ln(L))+varkappa+eta*L^(ln((1/2)*((4*eta*zeta-varkappa^2)^(1/2)*tan((1/2)*(4*eta*zeta-varkappa^2)^(1/2)*xi)-varkappa)/eta)/ln(L)))/ln(L)

 

-2*(1+tan((1/2)*(4*eta*zeta-varkappa^2)^(1/2)*xi)^2)*(eta*zeta-(1/4)*varkappa^2)/((-(4*eta*zeta-varkappa^2)^(1/2)*tan((1/2)*(4*eta*zeta-varkappa^2)^(1/2)*xi)+varkappa)*ln(L)) = (1/2)*((-4*eta*zeta+varkappa^2)*tan((1/2)*(4*eta*zeta-varkappa^2)^(1/2)*xi)^2-4*xi*eta+varkappa^2)/((-(4*eta*zeta-varkappa^2)^(1/2)*tan((1/2)*(4*eta*zeta-varkappa^2)^(1/2)*xi)+varkappa)*ln(L))

 

-2*(-(1/4)*varkappa*(4*eta*zeta-varkappa^2)^(1/2)*(1+tan((1/2)*(4*eta*zeta-varkappa^2)^(1/2)*xi)^2)/(eta*tan((1/2)*(4*eta*zeta-varkappa^2)^(1/2)*xi))+(1/4)*((4*eta*zeta-varkappa^2)^(1/2)+varkappa*tan((1/2)*(4*eta*zeta-varkappa^2)^(1/2)*xi))*(4*eta*zeta-varkappa^2)^(1/2)*(1+tan((1/2)*(4*eta*zeta-varkappa^2)^(1/2)*xi)^2)/(eta*tan((1/2)*(4*eta*zeta-varkappa^2)^(1/2)*xi)^2))*eta*tan((1/2)*(4*eta*zeta-varkappa^2)^(1/2)*xi)/(((4*eta*zeta-varkappa^2)^(1/2)+varkappa*tan((1/2)*(4*eta*zeta-varkappa^2)^(1/2)*xi))*ln(L)) = (xi*L^(-ln(-(1/2)*((4*eta*zeta-varkappa^2)^(1/2)+varkappa*tan((1/2)*(4*eta*zeta-varkappa^2)^(1/2)*xi))/(eta*tan((1/2)*(4*eta*zeta-varkappa^2)^(1/2)*xi)))/ln(L))+varkappa+eta*L^(ln(-(1/2)*((4*eta*zeta-varkappa^2)^(1/2)+varkappa*tan((1/2)*(4*eta*zeta-varkappa^2)^(1/2)*xi))/(eta*tan((1/2)*(4*eta*zeta-varkappa^2)^(1/2)*xi)))/ln(L)))/ln(L)

 

-2*csc((1/2)*(4*eta*zeta-varkappa^2)^(1/2)*xi)*(eta*zeta-(1/4)*varkappa^2)/(ln(L)*(varkappa*sin((1/2)*(4*eta*zeta-varkappa^2)^(1/2)*xi)+(4*eta*zeta-varkappa^2)^(1/2)*cos((1/2)*(4*eta*zeta-varkappa^2)^(1/2)*xi))) = (1/2)*(cot((1/2)*(4*eta*zeta-varkappa^2)^(1/2)*xi)^2*(-4*eta*zeta+varkappa^2)-4*xi*eta+varkappa^2)/(ln(L)*(varkappa+(4*eta*zeta-varkappa^2)^(1/2)*cot((1/2)*(4*eta*zeta-varkappa^2)^(1/2)*xi)))

(4)


 

Download clarifying_solving_new_ode_33-5-2025mprimes.mw


 

ode := diff(h(phi), phi) = (omega*f^(-h(phi))+mu+nu*f^h(phi))/ln(f); subs_rule := h(phi) = ln(y(phi))/ln(f); new_ode := eval(ode, subs_rule); riccati_ode := diff(y(phi), phi) = nu*y(phi)^2+mu*y(phi)+omega; y_solution := dsolve(riccati_ode, y(phi)); h_solution := ln(y(phi))/ln(f); specific_ode := eval(riccati_ode, {mu = -1, nu = 1, omega = 0}); y_solution_example := dsolve(specific_ode, y(phi)); h_solution_example := ln(rhs(y_solution_example))/ln(exp(1)); simplify(h_solution_example); -b

diff(h(phi), phi) = (omega*f^(-h(phi))+mu+nu*f^h(phi))/ln(f)

 

h(phi) = ln(y(phi))/ln(f)

 

(diff(y(phi), phi))/(y(phi)*ln(f)) = (omega*f^(-ln(y(phi))/ln(f))+mu+nu*f^(ln(y(phi))/ln(f)))/ln(f)

 

diff(y(phi), phi) = nu*y(phi)^2+mu*y(phi)+omega

 

y(phi) = -(1/2)*(mu-tan((1/2)*(-mu^2+4*nu*omega)^(1/2)*(c__1+phi))*(-mu^2+4*nu*omega)^(1/2))/nu

 

ln(y(phi))/ln(f)

 

diff(y(phi), phi) = y(phi)^2-y(phi)

 

y(phi) = 1/(1+exp(phi)*c__1)

 

ln(1/(1+exp(phi)*c__1))

 

ln(1/(1+exp(phi)*c__1))

(1)

 


 

Download ode_naar_riccati_type_ode3-5-2025_mprimes.mw

@vv 
I only raised A and B each to the second power, has nothing to do with : A^2 = B^2  does NOT imply A = B.

@mmcdara 
Is A=B ? 

diff(G(xi), xi) = A+B*G(xi)+C*G(xi)^2; Delta := 4*A*C-B^2; assume(C <> 0); assume(Delta > 0); G1 := (sqrt(Delta)*tan((1/2)*sqrt(Delta)*(d[0]+xi))-B)/(2*C); check1 := simplify(diff(G1, xi)-C*G1^2-B*G1-A); G2 := -(sqrt(Delta)*cot((1/2)*sqrt(Delta)*(d[0]+xi))+B)/(2*C); check2 := simplify(diff(G2, xi)-C*G2^2-B*G2-A); forget(Delta); assume(Delta < 0); G3 := -(sqrt(-Delta)*tanh((1/2)*sqrt(-Delta)*(d[0]+xi))+B)/(2*C); check3 := simplify(diff(G3, xi)-C*G3^2-B*G3-A)

diff(G(xi), xi) = A+B*G(xi)+C*G(xi)^2

 

4*A*C-B^2

 

(1/2)*((4*A*C-B^2)^(1/2)*tan((1/2)*(4*A*C-B^2)^(1/2)*(d[0]+xi))-B)/C

 

0

 

-(1/2)*((4*A*C-B^2)^(1/2)*cot((1/2)*(4*A*C-B^2)^(1/2)*(d[0]+xi))+B)/C

 

0

 

-(1/2)*((-4*A*C+B^2)^(1/2)*tanh((1/2)*(-4*A*C+B^2)^(1/2)*(d[0]+xi))+B)/C

 

0

(1)

restart; with(PDEtools); E := diff(G(xi), xi) = A+B*G(xi)+C*G(xi)^2; Delta := 4*A*C-B^2; assume(C <> 0); assume(Delta > 0); G1 := (sqrt(Delta)*tan((1/2)*sqrt(Delta)*(d[0]+xi))-B)/(2*C); odetest(G(xi) = G1, E); G2 := -(sqrt(Delta)*cot((1/2)*sqrt(Delta)*(d[0]+xi))+B)/(2*C); odetest(G(xi) = G2, E); forget(Delta); assume(Delta < 0); G3 := -(sqrt(-Delta)*tanh((1/2)*sqrt(-Delta)*(d[0]+xi))+B)/(2*C); odetest(G(xi) = G3, E)

(1/2)*((4*A*C-B^2)^(1/2)*tan((1/2)*(4*A*C-B^2)^(1/2)*(d[0]+xi))-B)/C

 

0

 

-(1/2)*((4*A*C-B^2)^(1/2)*cot((1/2)*(4*A*C-B^2)^(1/2)*(d[0]+xi))+B)/C

 

0

 

-(1/2)*((-4*A*C+B^2)^(1/2)*tanh((1/2)*(-4*A*C+B^2)^(1/2)*(d[0]+xi))+B)/C

 

0

(2)
 

Download ricatti_ode_3_oplossingen_mprimes_30-4-2025.mw

solve(x^2 = a, x); sqrt(a), -sqrt(a)


restart:
with(DEtools):

printf("📘 Step 1: Define the nonlinear ODE in Q(zeta):\n");
ode := (diff(Q(zeta), zeta))^2 - r^2*Q(zeta)^2*(a - b*Q(zeta) - l*Q(zeta)^2) = 0;

printf("\n📘 Step 2: Substitute Q = 1/u(zeta) to simplify the ODE:\n");
ode_u := simplify(eval(ode, Q(zeta) = 1/u(zeta)) * u(zeta)^4);

printf("\n📘 Step 3: Result after substitution and simplification:\n");
print(ode_u);

printf("\n📘 Step 4: Take the square root on both sides. Here, the ± symbol appears because (du/dzeta)^2 = ...:\n");
printf("When solving a square equation, you must take ± sqrt(...)\n");
printf("→ du/dzeta = ± r * sqrt(a*u^2 - b*u - l)\n");

printf("\n📘 Step 5: Separate variables and integrate, leading to a tanh-type solution:\n");
printf("∫ du / sqrt(a*u^2 - b*u - l) = ± r ∫ dzeta\n");

printf("\n📘 Step 6: After integration, you obtain a tanh-expression for u(zeta):\n");

# Specific solutions for + and -
u_specific_plus := b/(2*a) + sqrt(4*a*l + b^2)/(2*a)*tanh(r*sqrt(a)*zeta/2);
u_specific_minus := b/(2*a) - sqrt(4*a*l + b^2)/(2*a)*tanh(r*sqrt(a)*zeta/2);

printf("u_specific_plus (with + square root):\n");
print(u_specific_plus);
printf("u_specific_minus (with - square root):\n");
print(u_specific_minus);

printf("\n📘 Step 7: Solve for Q(zeta) = 1/u(zeta) for both cases:\n");

Q_sol_plus := simplify(1/u_specific_plus);
Q_sol_minus := simplify(1/u_specific_minus);

printf("Q_sol_plus (plus solution):\n");
print(Q_sol_plus);
printf("Q_sol_minus (minus solution):\n");
print(Q_sol_minus);

printf("\n📘 Step 8: Transform to exponential form using the tanh identity:\n");
printf("tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))\n");

Q_exp_plus := 4*a/((4*a*l + b^2)*exp(r*sqrt(a)*zeta) - exp(-r*sqrt(a)*zeta) + 2*b);
Q_exp_minus := 4*a/((4*a*l + b^2)*exp(r*sqrt(a)*zeta) + exp(-r*sqrt(a)*zeta) + 2*b);

printf("Q_exp_plus (minus between exponentials):\n");
print(Q_exp_plus);
printf("Q_exp_minus (plus between exponentials):\n");
print(Q_exp_minus);

printf("\n📘 Step 9: Summary: the ± sign appears when taking the square root of (du/dzeta)^2.\n");
printf("Taking a square root always yields two solutions: +sqrt(...) and -sqrt(...).\n");
printf("Thus, there are two solution families for Q(zeta).\n");

printf("\n✅ Full derivation completed.\n");

Needs further be enhanced..

ContourVolledigFlexibelDynamisch := proc(R::numeric, r::numeric, centrum::list, polen::list)
    local theta, t, plotslist, pol, x, y, lbl, cx, cy, x_min, x_max, y_min, y_max, marge;
    uses plots, plottools;

    plotslist := []:

    # Centrum grote cirkel
    cx := centrum[1]:
    cy := centrum[2]:

    # Grote volledige cirkel
    theta := [seq(t, t=0..2*evalf(Pi), evalf(Pi/200))]:
    plotslist := [op(plotslist), curve([seq([R*cos(t)+cx, R*sin(t)+cy], t in theta)], color=blue, thickness=2)];

    # Rechte lijnen op assen
    plotslist := [op(plotslist),
                  line([-R-0.5+cx,0+cy],[R+0.5+cx,0+cy],color=black,thickness=1),
                  line([0+cx,-R-0.5+cy],[0+cx,R+0.5+cy],color=black,thickness=1)];

    # Kleine cirkels en labels toevoegen
    for pol in polen do
        x := pol[1]:
        y := pol[2]:
        lbl := pol[3]:

        plotslist := [op(plotslist),
                      circle([x,y], r, thickness=2, color=green),
                      textplot([x+0.2,y+0.2,lbl], font=[TIMES,12])];
    end do:

    # Labels voor Re en Im (assen)
    plotslist := [op(plotslist),
                  textplot([R+cx+0.5, 0+cy, "Re"], font=[TIMES,14]),
                  textplot([0+cx, R+cy+0.5, "Im"], font=[TIMES,14])];

    # Dynamisch venster instellen
    marge := max(1, R/5):
    x_min := cx - R - marge:
    x_max := cx + R + marge:
    y_min := cy - R - marge:
    y_max := cy + R + marge:

    # Alles tonen met automatisch schaal
    display(plotslist, scaling=constrained, axes=boxed, labels=["",""], view=[x_min..x_max, y_min..y_max], gridlines=true);
end proc:

ContourVolledigFlexibelDynamisch(2, 0.5, [0,0], [[0,1,"z=i"], [0,-1,"z=-i"]]);

 

ContourVolledigFlexibelDynamisch(2, 0.5, [1,1], [[2,2,"z=2+2i"], [0,1,"z=i"]]);

 
 

 

Download contourdiagram_cirkel_-2cirkels_mprimes_28-4-2025.mw

@dharr 
Of course to fill in as function type the procedure input

I also thought of it , only it didn't occur to me to do the function call with lowercase ...

Well done!, and it the procedure outcome exactly matches what I cumbersomely did in another procedure : ToLowerFunc := proc(expr), but maybe this one is still of use ?

 

@salim-barzani 

 

Use ND procedure than output as expression ,then procedure ToLowerFunc , then

restart;

ToLowerFunc := proc(expr)
    local replacements, vars, v, f_lower;
    
    replacements := {};
    vars := indets(expr, 'function');
    
    for v in vars do
        if type(op(0,v), name) then
            f_lower := parse(StringTools:-LowerCase(convert(op(0,v), string)));
            replacements := replacements union { op(0,v) = f_lower };
        end if;
    end do;
    
    return subs(replacements, expr);
end proc:


 

expr2:= diff(diff(F(x, y, z, t), x), y)*G(x, y, z, t) - diff(F(x, y, z, t), x)*diff(G(x, y, z, t), y) - diff(F(x, y, z, t), y)*diff(G(x, y, z, t), x) + F(x, y, z, t)*diff(diff(G(x, y, z, t), x), y);

(diff(diff(F(x, y, z, t), x), y))*G(x, y, z, t)-(diff(F(x, y, z, t), x))*(diff(G(x, y, z, t), y))-(diff(F(x, y, z, t), y))*(diff(G(x, y, z, t), x))+F(x, y, z, t)*(diff(diff(G(x, y, z, t), x), y))

(1)

ToLowerFunc(expr2);

(diff(diff(f(x, y, z, t), x), y))*g(x, y, z, t)-(diff(f(x, y, z, t), x))*(diff(g(x, y, z, t), y))-(diff(f(x, y, z, t), y))*(diff(g(x, y, z, t), x))+f(x, y, z, t)*(diff(diff(g(x, y, z, t), x), y))

(2)

restart;
with(PDEtools):
with(LinearAlgebra):
with(SolveTools):
undeclare(prime):
alias(F=F(x,y,z,t), G=G(x,y,z,t)):

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(3)

diff(f(x, y, z, t), x, y)*g(x, y, z, t) - diff(f(x, y, z, t), x)*diff(g(x, y, z, t), y) - diff(f(x, y, z, t), y)*diff(g(x, y, z, t), x) + f(x, y, z, t)*diff(g(x, y, z, t), x, y);

(diff(diff(f(x, y, z, t), x), y))*g(x, y, z, t)-(diff(f(x, y, z, t), x))*(diff(g(x, y, z, t), y))-(diff(f(x, y, z, t), y))*(diff(g(x, y, z, t), x))+f(x, y, z, t)*(diff(diff(g(x, y, z, t), x), y))

(4)

 

 


 

Download kleine_letters_procedurND_uitvoer_omzettingmprines27-4-2025.mw

5 6 7 8 9 10 11 Last Page 7 of 73