lcz

215 Reputation

6 Badges

1 years, 139 days

MaplePrimes Activity


These are questions asked by lcz

This Anti-derivative of  arccos(x)*arcsin(x), Maple  2020 cannot do that? It seems not difficult.

int(arccos(x)*arcsin(x),x)

In Mathematica, we can easily to get output :

2 x - Sqrt[1 - x^2] ArcSin[x] +  ArcCos[x] (Sqrt[1 - x^2] + x ArcSin[x])

Today I Installed  Physics Updates" version "642 in Maple2020, why does it tell me  it has installed but is not active? How to active it?

Physics:-Version(latest)

`The "Physics Updates" version "642" is installed but is not active. The active version of Physics is within the library D:\\Program Files\\Maple 2020\\lib\\maple.mla, created 2020, March 5, 9:36 hours`

 

In maple, how to change strings style? Thanks!  

In Mathematica , we can choose Style to change strings style.

Style["A", Blue, Italic, 24]

 

source of the  problem : I make an User Interface.

the color of   "mass "  may consider be changed to  red . 

 

 Hello! I'm trying to solve the following: 

pde1 := (y+z)*(diff(u(x, y, z), x))+(z+x)*(diff(u(x, y, z), y))+(x+y)*(diff(u(x, y, z), z)) = 0;
{pdsolve(pde1,u(x,y,z))}

Unfortunately, after calling pdsolve , I get an empty result set . Can you help me figure out what's going on?  Does it  really have no solution? 

 

 

 

 

 

 I have a problem about extremal function.

The function is shown below with restricted condition of x and a:  x>=2 and -1 < a <0.

(x-3/2)^a-(x-1)^a+(1-2^(a-1))*((x-3/2)^a-(x-1/2)^a)-x*((x-3/2)^a+x^a-(x-1/2)^a-(x-1)^a)

I guess that  it's minimum value is greater than 0.  In other words,  I want prove that  (x-3/2)^a-(x-1)^a+(1-2^(a-1))*((x-3/2)^a-(x-1/2)^a)-x*((x-3/2)^a+x^a-(x-1/2)^a-(x-1)^a)>0

when I use Minimize function,

Optimization:-Minimize((x-3/2)^a-(x-1)^a+(1-2^(a-1))*((x-3/2)^a-(x-1/2)^a)-x*((x-3/2)^a+x^a-(x-1/2)^a-(x-1)^a),{x>=2, -1<a, a<0})

I 'm not seeing but Error, (in Optimization:-NLPSolve) strict inequalities are not valid constraints. I cannot but add the condition of equality of a : -1<=a, a<=0.

Optimization:-Minimize((x-3/2)^a-(x-1)^a+(1-2^(a-1))*((x-3/2)^a-(x-1/2)^a)-x*((x-3/2)^a+x^a-(x-1/2)^a-(x-1)^a),{x>=2, -1<=a, a<=0})

A result is returned with a warning:
Warning, no iterations performed as initial point satisfies first-order conditions
[0.000000, [a = -2.225074*10^(-308), x = 2.000000]]

 

Local or Global ?

When I read recent question post 

https://www.mapleprimes.com/questions/229132-Maximize-Function-Does-Not-Work?ref=Feed:MaplePrimes:New%20Questions

 I'm worrying  that Maple only returns local  extremun. So I use the freely  maple package DirectSearch. We can get it from  https://www.maplesoft.com/applications/view.aspx?SID=101333.

DirectSearch:-GlobalOptima(-((x-3/2)^a-(x-1)^a+(1-2^(a-1))*((x-3/2)^a-(x-1/2)^a)-x*((x-3/2)^a+x^a-(x-1/2)^a-(x-1)^a)),{x>=2, -1<a, a<0},maximize);

 Note: I add a  minus sign to find maximize value .

It returns: [0.002264, [a = -0.000203, x = 1.019590*10^13], 605]

But I substitute the value of a and x  into the function,it returns strange result:   4078.360000 not  -0.002264.

I’m confused.. 

I try to use  Mathematica, 

NMinimize[{(x - 3/2)^a - (x - 1)^
    a + (1 - 2^(a - 1))*((x - 3/2)^a - (x - 1/2)^a) - 
   x*((x - 3/2)^a + x^a - (x - 1/2)^a - (x - 1)^a), 
  x >= 2 && a > -1 && a <= 0}, {x, a}]

It retruns {0., {x -> 13.256, a -> 0.}}  May be well.

 

mimimize.mw

 

1 2 3 4 5 6 7 Page 3 of 8