mahmood1800

260 Reputation

8 Badges

11 years, 15 days

Social Networks and Content at Maplesoft.com

PH.D in Applied Mathematics

MaplePrimes Activity


These are questions asked by mahmood1800

Hi all

Assume that we have the following colomn vector:

and we want to construct the following matrix:

How can we do this with maple????

Note that r is a variable and the dimension of matrix depend on r.

regards

Mahmood   Dadkhah

Ph.D Candidate

Applied Mathematics Department

Hi all 

I have the following segment of maple program which belongs to time delay systems dynamic. here C=X-X0-G.Z-X.Dtau.P+X.Dtau.Z-U.P, is a matrix(vector) which comes from reordering the system terms and my goal is to minimizing J:=X.E.Transpose(X)+U.E.Transpose(U), subject to constraint C=0, but i don't know how to do so.

I will be so grateful if anyone can guide me

best wishes

Mahmood   Dadkhah

Ph.D Candidate

Applied Mathematics Department


restart:
with(Optimization):
with(LinearAlgebra):
macro(LA= LinearAlgebra):
L:=1:  r:=2:  tau:= 1:
interface(rtablesize= 2*r+1):

Z:= Matrix(
     2*r+1, 2*r+1,
     [tau,
      seq(evalf((L/(2*(iz-1)*Pi))*sin(2*(iz-1)*Pi*tau/L)), iz= 2..r+1),
      seq(evalf((L/(2*(iz-1-r)*Pi))*(1-cos(2*(iz-1-r)*Pi*tau/L))), iz= r+2..2*r+1)
      ],
     scan= columns,
     datatype= float[8]
);
                        
Dtau00:= < 1 >:
Dtau01:= Vector[row](r):
Dtau02:= Vector[row](r):
Dtau10:= Vector(r):
Dtau20:= Vector(r):

Dtau1:= LA:-DiagonalMatrix([seq(evalf(cos(2*i*Pi*tau/L)), i= 1..r)]):
Dtau2:= LA:-DiagonalMatrix([seq(evalf(sin(2*i*Pi*tau/L)), i= 1..r)]):
Dtau3:= -Dtau2:
Dtau4:= copy(Dtau1):

Dtau:= < < Dtau00 | Dtau01 | Dtau02 >,
         < Dtau10 | Dtau1  | Dtau2  >,
         < Dtau20 | Dtau3  | Dtau4  > >;
 
P00:= < L/2 >:
P01:= Vector[row](r):
P02:= Vector[row](r, j-> evalf(-L/j/Pi), datatype= float[8]):
P10:= Vector(r):
P20:= Vector(r, i-> evalf(L/2/i/Pi)):
P1:= Matrix(r,r):
P2:= LA:-DiagonalMatrix(P20):
P3:= LA:-DiagonalMatrix(-P20):
P4:= Matrix(r,r):

P:= < < P00 | P01 | P02 >,
      < P10 | P1  | P2  >,
      < P20 | P3  | P4  > >;

interface(rtablesize=2*r+1):    # optionally
J:=Vector([L, L/2 $ 2*r]):      # Matrix([[...]]) would also work here

E:=DiagonalMatrix(J);

X:=  Vector[row](2*r+1,symbol=a);
U:=Vector[row](2*r+1,symbol=b);

X0:= Vector[row](2*r+1,[1]);
G:=Vector[row](2*r+1,[1]);
C:=simplify(X-X0-G.Z-X.Dtau.P+X.Dtau.Z-U.P);

Z := Matrix(5, 5, {(1, 1) = 1., (1, 2) = 0., (1, 3) = 0., (1, 4) = 0., (1, 5) = 0., (2, 1) = 0., (2, 2) = 0., (2, 3) = 0., (2, 4) = 0., (2, 5) = 0., (3, 1) = 0., (3, 2) = 0., (3, 3) = 0., (3, 4) = 0., (3, 5) = 0., (4, 1) = 0., (4, 2) = 0., (4, 3) = 0., (4, 4) = 0., (4, 5) = 0., (5, 1) = 0., (5, 2) = 0., (5, 3) = 0., (5, 4) = 0., (5, 5) = 0.})

Dtau := Matrix(5, 5, {(1, 1) = 1, (1, 2) = 0, (1, 3) = 0, (1, 4) = 0, (1, 5) = 0, (2, 1) = 0, (2, 2) = 1., (2, 3) = 0, (2, 4) = 0., (2, 5) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 1., (3, 4) = 0, (3, 5) = 0., (4, 1) = 0, (4, 2) = -0., (4, 3) = -0., (4, 4) = 1., (4, 5) = 0, (5, 1) = 0, (5, 2) = -0., (5, 3) = -0., (5, 4) = 0, (5, 5) = 1.})

P := Matrix(5, 5, {(1, 1) = 1/2, (1, 2) = 0, (1, 3) = 0, (1, 4) = -.318309886100000, (1, 5) = -.159154943000000, (2, 1) = 0, (2, 2) = 0, (2, 3) = 0, (2, 4) = .1591549430, (2, 5) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 0, (3, 4) = 0, (3, 5) = 0.7957747152e-1, (4, 1) = .1591549430, (4, 2) = -.159154943000000, (4, 3) = 0, (4, 4) = 0, (4, 5) = 0, (5, 1) = 0.7957747152e-1, (5, 2) = 0, (5, 3) = -0.795774715200000e-1, (5, 4) = 0, (5, 5) = 0})

E := Matrix(5, 5, {(1, 1) = 1, (1, 2) = 0, (1, 3) = 0, (1, 4) = 0, (1, 5) = 0, (2, 1) = 0, (2, 2) = 1/2, (2, 3) = 0, (2, 4) = 0, (2, 5) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 1/2, (3, 4) = 0, (3, 5) = 0, (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = 1/2, (4, 5) = 0, (5, 1) = 0, (5, 2) = 0, (5, 3) = 0, (5, 4) = 0, (5, 5) = 1/2})

X := Vector[row](5, {(1) = a[1], (2) = a[2], (3) = a[3], (4) = a[4], (5) = a[5]})

U := Vector[row](5, {(1) = b[1], (2) = b[2], (3) = b[3], (4) = b[4], (5) = b[5]})

X0 := Vector[row](5, {(1) = 1, (2) = 0, (3) = 0, (4) = 0, (5) = 0})

G := Vector[row](5, {(1) = 1, (2) = 0, (3) = 0, (4) = 0, (5) = 0})

C := Vector[row](5, {(1) = 1.500000000*a[1]-2.-.1591549430*a[4]-0.7957747152e-1*a[5]-.5000000000*b[1]-.1591549430*b[4]-0.7957747152e-1*b[5], (2) = a[2]+.1591549430*a[4]+.1591549430*b[4], (3) = a[3]+0.7957747152e-1*a[5]+0.7957747152e-1*b[5], (4) = a[4]+.3183098861*a[1]-.1591549430*a[2]+.3183098861*b[1]-.1591549430*b[2], (5) = a[5]+.1591549430*a[1]-0.7957747152e-1*a[3]+.1591549430*b[1]-0.7957747152e-1*b[3]})

(1)

J:=X.E.Transpose(X)+U.E.Transpose(U);

J := a[1]^2+(1/2)*(a[2]^2)+(1/2)*(a[3]^2)+(1/2)*(a[4]^2)+(1/2)*(a[5]^2)+b[1]^2+(1/2)*(b[2]^2)+(1/2)*(b[3]^2)+(1/2)*(b[4]^2)+(1/2)*(b[5]^2)

(2)

Minimize(J,{C=0});






Error, (in Optimization:-NLPSolve) invalid arguments

 

#XP:=-.015+X[1]+add(X[l+1]*f1(l)+X[r+l+1]*f2(l), l= 1..r):
#plot([XP,T1], t= 0..1);#,legend= "Solution Of x(t) with r=50"):

 

 

 

 

 

 

Download work1.mwswork1.mws

Hi all

In matlab software we have a command namely fmincon which minimizes any linear/nonlinear algebric equations subject to linear/nonlinear constraints.

Now my question is that: what is the same command in maple?or how can we minimize linear/nonlinear function subject to linear/nonlinear constraints in maple?

thanks a lot

Mahmood   Dadkhah

Ph.D Candidate

Applied Mathematics Department

I converted this comment into a question since it was unrelated to the question in which it was put.
That way also other MaplePrimes users can have a shot at this new question.
Preben Alsholm
 

Dear Preben Alsholm 

Hi;

Hope you to be healthy and have nice times,

I have another problem and if it doesn't consuming your valuable times, please guide me.

I have some Basis function,say W1(t),W2(t),W3(t),W4(t) which are orthonormal and i want to write a program that can approximate the integral of W(t)=[W1(t),W2(t),W3(t),W4(t)] again by Wi's, in other word
int(W(t')dt',t'=0..t)≈PW(t), where P is knows as integral operational matrix. the following is my attempt and unfortunately has no real solution!!!!

 

restart:
>              # Definition of 3th B-Spline
>
> piecewise(x>=0 and x<=1,1,0):
> h[1]:=unapply(%,x):
>
>             # Definition of 3th B-Spline
>
> h[2]:=simplify(int(h[1](x-t),t=0..1)):
> hh:=unapply(%,x):
>
>              #Definition of 3th B-Spline

int(hh(x-t),t=0..1): 
> simplify(%):
> N:=unapply(%,x):
>
> J:=1:     # Number of base function is 2^J+2
> phi:=linalg[matrix](2^J+2,1):
> for i from -2 to 2^J-1
> do
> N(2^J*x-i)*h[1](x): #for deleting out side of[0,1]
> simplify(%):
> phi[i+3,1]:=unapply(%,x):
> od:
>
> w[1]:=phi[1,1](x):
> w[1]/sqrt(int(w[1]^2,x=0..1)):
> W[1]:=unapply(%,x):     
>
> for i from 2 to 2^J+2
> do
> kk:=0:
> for j1 from 1 to i-1
> do
> aa[j1]:=int(phi[i,1](x)*w[j1],x=0..1):
> bb[j1]:=int(w[j1]^2,x=0..1):
> kk:=kk+aa[j1]/bb[j1]*w[j1]:
> od:
> w[i]:=simplify(phi[i,1](x)-kk):
> w[i]/sqrt(int(w[i]^2,x=0..1)):
> W[i]:=unapply(%,x):                 #Orthonormality process
>
>
> for j from 1 to 2^J+2 do
> for io from 1 to 2^J+2 do
> f[j]:=int(W[j](s),s=0..x);
> c[io][j]:=int(f[j](x)*W[io](x),x=0..1);
> od;
> od;

 

 

Best Wishes

Hi all

I have following program to solve time delay system...

the solution is good by choosing r:=11... but for r greater than 11(e.g r=20) the system take about4-5 minute to do and then it says:"" K2:=simplify(inverse(K1)):Error, (in minor) object too large""
and for plotting says:""     Warning, unable to evaluate 1 of the 2 functions to numeric values in the region; see the plotting command's help page to ensure the calling sequence is correct""

i don't know what is the problem?

any one can help me???

best wishes

 

> restart:
> with(plots):
> with(linalg):
> with(LinearAlgebra):
> L:=1:
> r:=20:
> tau:=0.3:
> #definition of exact solution
>
> T1 := piecewise(t<0,0,t>=0 and t<0.3,1+t^2,t>=0.3 and t<0.6,(691/1000)+(109/100)*t+(7/10)*t^2+(1/3)*t^3,0.6<=t and t<0.9,(4409/5000)+(209/500)*t+(69/50)*t^2+(2/15)*t^3+(1/12)*t^4,0.9<=t and t<1,(1500917/2000000)+(35107/40000)*t+(1617/2000)*t^2+(87/200)*t^3+(1/120)*t^4+(1/60)*t^5):
> plot(T1,t=0..1,numpoints=10000,discont = true):
> g:=t^2:
> a[0]:=evalf((1/L)*Int(g,t=0..L)):
> for i1 from 1 to r do
> a[i1]:=evalf((2/L)*Int(g*cos(2*i1*Pi*t/L),t=0..L)):
> od:
> for j1 from 1 to r do
> b[j1]:=evalf((2/L)*Int(g*sin(2*j1*Pi*t/L),t=0..L)):
> od:
> X00:=matrix([[a[0]]]);
> X10:=matrix(1,r,0):
> for j from 1 to r do
> X10[1,j]:=a[j]:
> od:
>
> X20:=matrix(1,r,0):
> for j from 1 to r do
> X20[1,j]:=b[j]:
> od:

X00 := [0.3333333333]

> X00:=blockmatrix(1,3,[X00,X10,X20]):
>
>
>
> Z:=linalg[matrix](2*r+1,2*r+1):
> Z[1,1]:=tau:
> for iz from 2 to r+1 do
> Z[iz,1]:=(L/(2*(iz-1)*Pi))*sin(2*(iz-1)*Pi*tau/L):
> od:
> for iz from r+2 to 2*r+1 do
> Z[iz,1]:=(L/(2*(iz-1-r)*Pi))*(1-cos(2*(iz-1-r)*Pi*tau/L)):
> od:
> for jz from 2 to 2*r+1 do
> for iz from 1 to 2*r+1 do
> Z[iz,jz]:=0;
> od:
> od: 
> Dtau00:=matrix([[1]]):
> Dtau01:=matrix(1,r,0):
> Dtau02:=matrix(1,r,0):
> Dtau10:=matrix(r,1,0):
> Dtau20:=matrix(r,1,0):
>
> Dtau1:=linalg[matrix](r,r):
> for i from 1 to r do
> for j from 1 to r do
> Dtau1[i,i]:=cos(2*(i)*Pi*tau/L):
> if i<>j then Dtau1[i,j]:=0 fi:
> od:
> od:
>
> Dtau2:=linalg[matrix](r,r):
> for i from 1 to r do
> for j from 1 to r do
> Dtau2[i,i]:=sin(2*(i)*Pi*tau/L):
> if i<>j then Dtau2[i,j]:=0 fi:
> od:
> od:
>
> Dtau3:=linalg[matrix](r,r):
> for i from 1 to r do
> for j from 1 to r do
> Dtau3[i,i]:=-sin(2*(i)*Pi*tau/L):
> if i<>j then Dtau3[i,j]:=0 fi:
> od:
> od:
>
> Dtau4:=linalg[matrix](r,r):
> for i from 1 to r do
> for j from 1 to r do
> Dtau4[i,i]:=cos(2*(i)*Pi*tau/L):
> if i<>j then Dtau4[i,j]:=0 fi:
> od:
> od:
>
> Dtau:=blockmatrix(3,3,[Dtau00,Dtau01,Dtau02,Dtau10,Dtau1,Dtau2,Dtau20,Dtau3,Dtau4]):
>
> P00:=matrix([[L/2]]):
> P01:=matrix(1,r,0):
>
> P02:=matrix(1,r,0):
> for j from 1 to r do
> P02[1,j]:=-L/(j*Pi):
> od:
>
> P10:=matrix(r,1,0):
>
> P20:=matrix(r,1,0):
> for i from 1 to r do
> P20[i,1]:=L/(2*i*Pi):
> od:
>
>
> P1:=linalg[matrix](r,r):
> for i from 1 to r do
> for j from 1 to r do
> P1[i,j]:=0
> od;
> od;
> P2:=linalg[matrix](r,r):
> for i from 1 to r do
> for j from 1 to r do
> P2[i,i]:=L/(2*i*Pi):
> if i<>j then P2[i,j]:=0 fi:
> od:
> od:
>
> P3:=linalg[matrix](r,r):
> for i from 1 to r do
> for j from 1 to r do
> P3[i,i]:=-L/(2*i*Pi):
> if i<>j then P3[i,j]:=0 fi:
> od:
> od:
>
> P4:=linalg[matrix](r,r):
> for i from 1 to r do
> for j from 1 to r do
> P4[i,j]:=0:
> od:
> od:
>
> P:=blockmatrix(3,3,[P00,P01,P02,P10,P1,P2,P20,P3,P4]):
> I1:=Matrix(2*r+1,shape=identity):
> K1:=simplify(evalm(I1-Dtau&*P+Dtau&*Z)):
> K2:=simplify(inverse(K1)):
Error, (in minor) object too large

>
> X0:=matrix(1,2*r+1,0):
> X0[1,1]:=1:
> for j from 2 to 2*r+1 do
> X0[1,j]:=0:
> od:
>
> X:=simplify(evalm(evalm((X0+X00))&*K2)):
>
> for h from 1 to r do
> f1(h):=cos(2*h*Pi*t/L):
> od:

> for k from 1 to r do
> f2(k):=sin(2*k*Pi*t/L):
> od:
> XP:=X[1,1]+evalf(sum(X[1,l+1]*f1(l)+X[1,r+l+1]*f2(l),l=1..r )):
> plot({XP,T1},t=0..1);
Warning, unable to evaluate 1 of the 2 functions to numeric values in the region; see the plotting command's help page to ensure the calling sequence is correct

 

First 6 7 8 Page 8 of 8