mehdi jafari

764 Reputation

13 Badges

11 years, 230 days

MaplePrimes Activity


These are replies submitted by mehdi jafari

@mehdi jafari 

u can laso solve without considering (parametric=full, parameters={seq(b[i],i=1..50)}) .  i also changed 

for x to 50 do fu[x] := fun(x*delt) = m(x*delt) end do:

 from 49 to 50 so that your equations equal to parameters.

please uplaod your worksheet or write down your equations here. good luck

@Alejandro Jakubi i have recieced emails too. tnx to mapleprimes good staff.

@Markiyan Hirnyk  at first answer your question ?! :)

for adavnced users i mean, what is the best book for advanced maple users,

@ilke 

NULL

restart:

sys:={54.15836673*(diff(Y(t), t$2)) = -365.4395362*(diff(X(t), t))+208.2315661*Y(t),641.1196154*(diff(X(t), t$2)) = 365.4395362*(diff(Y(t), t))-2.575699975*X(t)-7.882173342};

{641.1196154*(diff(diff(X(t), t), t)) = 365.4395362*(diff(Y(t), t))-2.575699975*X(t)-7.882173342, 54.15836673*(diff(diff(Y(t), t), t)) = -365.4395362*(diff(X(t), t))+208.2315661*Y(t)}

(1)

BCs:={X(0) = 0, X(15) = 0, Y(0) = 0, Y(15) = 0};

{X(0) = 0, X(15) = 0, Y(0) = 0, Y(15) = 0}

(2)

ans:=dsolve(sys union BCs,method = bvp,numeric);

proc (x_bvp) local res, data, solnproc, _ndsol, outpoint, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then outpoint := evalf[_EnvDSNumericSaveDigits](x_bvp) else outpoint := evalf(x_bvp) end if; data := Array(1..4, {(1) = proc (outpoint) local X, Y, YP, yout, errproc, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; X := Vector(39, {(1) = .0, (2) = .38351121101718294, (3) = .7670525174337857, (4) = 1.1505124184681526, (5) = 1.5339974108667955, (6) = 1.9176656846625835, (7) = 2.301666900840626, (8) = 2.686166017900895, (9) = 3.0714248709070704, (10) = 3.4578482205784917, (11) = 3.8459964328894594, (12) = 4.236562473720028, (13) = 4.63029143999511, (14) = 5.027875289828752, (15) = 5.429838794289437, (16) = 5.836424009646885, (17) = 6.2474993950021105, (18) = 6.662514723812331, (19) = 7.0804709956849745, (20) = 7.500000000010247, (21) = 7.919529004335479, (22) = 8.337485276208003, (23) = 8.752500605018055, (24) = 9.163575990373069, (25) = 9.570161205730289, (26) = 9.972124710190753, (27) = 10.369708560024193, (28) = 10.763437526299098, (29) = 11.154003567129536, (30) = 11.542151779440406, (31) = 11.928575129111765, (32) = 12.313833982117927, (33) = 12.698333099178127, (34) = 13.082334315356094, (35) = 13.46600258915182, (36) = 13.849487581545711, (37) = 14.232947482570854, (38) = 14.616488788987173, (39) = 15.0}, datatype = float[8], order = C_order); Y := Matrix(39, 4, {(1, 1) = .0, (1, 2) = -0.6793369507317244e-1, (1, 3) = .0, (1, 4) = -1.9459338300331779, (2, 1) = -.10602083366137158, (2, 2) = -.47830225714828567, (2, 3) = -.7117780496690446, (2, 4) = -1.7639009337730573, (3, 1) = -.36160003234017934, (3, 2) = -.8472923030359297, (3, 3) = -1.3514541665563253, (3, 4) = -1.5697893895641046, (4, 1) = -.7502210987400865, (4, 2) = -1.1720549705223295, (4, 3) = -1.914414678410873, (4, 4) = -1.3647080837605474, (5, 1) = -1.2545530420596849, (5, 2) = -1.4502553791819308, (5, 3) = -2.39689767195954, (5, 4) = -1.15018486564728, (6, 1) = -1.8566173481546144, (6, 2) = -1.6799591168281722, (6, 3) = -2.79579656195079, (6, 4) = -.9281704537475385, (7, 1) = -2.5378521768016573, (7, 2) = -1.8596637699845209, (7, 3) = -3.1087154929089165, (7, 4) = -.7010051571974785, (8, 1) = -3.279288032751613, (8, 2) = -1.9883866750492754, (8, 3) = -3.334122195861295, (8, 4) = -.4713409316902086, (9, 1) = -4.061886116890226, (9, 2) = -2.065729725471639, (9, 3) = -3.4714619352702867, (9, 4) = -.24202885448366737, (10, 1) = -4.866826172046525, (10, 2) = -2.091868276601214, (10, 3) = -3.5211409222552237, (10, 4) = -0.1603573298160153e-1, (11, 1) = -5.675665479260962, (11, 2) = -2.0675031801983383, (11, 3) = -3.484446320882544, (11, 4) = .20360220465223156, (12, 1) = -6.470336286978461, (12, 2) = -1.9938169734959315, (12, 3) = -3.3634729722172945, (12, 4) = .4137863074411373, (13, 1) = -7.232967882314578, (13, 2) = -1.872482432656078, (13, 3) = -3.161138803756909, (13, 4) = .6113217112064968, (14, 1) = -7.945694250521905, (14, 2) = -1.7057564611764606, (14, 3) = -2.8813454574345343, (14, 4) = .7928834016987208, (15, 1) = -8.590600279196805, (15, 2) = -1.4966558142118183, (15, 3) = -2.5292781992830395, (15, 4) = .9550156730871263, (16, 1) = -9.149934028828042, (16, 2) = -1.2491872517510594, (16, 3) = -2.111798389510939, (16, 4) = 1.0941915922740408, (17, 1) = -9.606698109768974, (17, 2) = -.9685705146665443, (17, 3) = -1.6378237999177483, (17, 4) = 1.2069567468244398, (18, 1) = -9.945624169660137, (18, 2) = -.6613721970818361, (18, 3) = -1.1185574549472468, (18, 4) = 1.2901567914192125, (19, 1) = -10.154386401967724, (19, 2) = -.3355082255048767, (19, 3) = -.5674927431143325, (19, 4) = 1.3412154143317405, (20, 1) = -10.224912267171778, (20, 2) = 0.822899012356365e-11, (20, 3) = 0.13919232841285866e-10, (20, 4) = 1.358433178318087, (21, 1) = -10.154386401960862, (21, 2) = .3355082255210961, (21, 3) = .5674927431417645, (21, 4) = 1.3412154143300643, (22, 1) = -9.945624169646688, (22, 2) = .6613721970973515, (22, 3) = 1.1185574549734794, (22, 4) = 1.2901567914159184, (23, 1) = -9.606698109749443, (23, 2) = .968570514680947, (23, 3) = 1.6378237999420855, (23, 4) = 1.2069567468196336, (24, 1) = -9.149934028803116, (24, 2) = 1.2491872517639921, (24, 3) = 2.111798389532771, (24, 4) = 1.0941915922678662, (25, 1) = -8.590600279167282, (25, 2) = 1.4966558142229935, (25, 3) = 2.529278199301876, (25, 4) = .9550156730797464, (26, 1) = -7.945694250488633, (26, 2) = 1.705756461185658, (26, 3) = 2.8813454574499993, (26, 4) = .792883401690306, (27, 1) = -7.232967882278435, (27, 2) = 1.8724824326631273, (27, 3) = 3.1611388037687087, (27, 4) = .6113217111972187, (28, 1) = -6.47033628694033, (28, 2) = 1.9938169735007036, (28, 3) = 3.363472972225207, (28, 4) = .41378630743116585, (29, 1) = -5.675665479221692, (29, 2) = 2.0675031802007426, (29, 3) = 3.48444632088641, (29, 4) = .20360220464171913, (30, 1) = -4.866826172006997, (30, 2) = 2.0918682766011796, (30, 3) = 3.52114092225492, (30, 4) = -0.16035732992500905e-1, (31, 1) = -4.061886116851318, (31, 2) = 2.0657297254691165, (31, 3) = 3.471461935265727, (31, 4) = -.24202885449480616, (32, 1) = -3.2792880327141893, (32, 2) = 1.988386675044235, (32, 3) = 3.334122195852423, (32, 4) = -.4713409317014557, (33, 1) = -2.537852176766784, (33, 2) = 1.8596637699769885, (33, 3) = 3.108715492895771, (33, 4) = -.7010051572086486, (34, 1) = -1.8566173481232375, (34, 2) = 1.6799591168182009, (34, 3) = 2.795796561933454, (34, 4) = -.928170453758488, (35, 1) = -1.254553042032688, (35, 2) = 1.4502553791695916, (35, 3) = 2.3968976719381296, (35, 4) = -1.1501848656578912, (36, 1) = -.7502210987238381, (36, 2) = 1.1720549705114174, (36, 3) = 1.9144146783919551, (36, 4) = -1.3647080837681445, (37, 1) = -.36160003233624866, (37, 2) = .8472923030317289, (37, 3) = 1.3514541665490432, (37, 4) = -1.5697893895665231, (38, 1) = -.1060208336592883, (38, 2) = .47830225714385494, (38, 3) = .711778049661362, (38, 4) = -1.7639009337751965, (39, 1) = .0, (39, 2) = 0.6793369507317255e-1, (39, 3) = .0, (39, 4) = -1.9459338300331794}, datatype = float[8], order = C_order); YP := Matrix(39, 4, {(1, 1) = -0.6793369507317244e-1, (1, 2) = -1.1214807851677133, (1, 3) = -1.9459338300331779, (1, 4) = .4583900792957371, (2, 1) = -.47830225714828567, (2, 2) = -1.0172957104381275, (2, 3) = -1.7639009337730573, (2, 4) = .4907071357964794, (3, 1) = -.8472923030359297, (3, 2) = -.9056249296622738, (3, 3) = -1.5697893895641046, (3, 4) = .5210402443184181, (4, 1) = -1.1720549705223295, (4, 2) = -.7871668654837667, (4, 3) = -1.3647080837605474, (4, 4) = .5479053370681317, (5, 1) = -1.4502553791819308, (5, 2) = -.662862022532546, (5, 3) = -1.15018486564728, (5, 4) = .5700115972869568, (6, 1) = -1.6799591168281722, (6, 2) = -.5338945432253852, (6, 3) = -.9281704537475385, (6, 4) = .586250764446552, (7, 1) = -1.8596637699845209, (7, 2) = -.4016729809663424, (7, 3) = -.7010051571974785, (7, 4) = .5956968773479954, (8, 1) = -1.9883866750492754, (8, 2) = -.2677851661110939, (8, 3) = -.4713409316902086, (8, 4) = .5976106713973248, (9, 1) = -2.065729725471639, (9, 2) = -.1339327071567271, (9, 3) = -.24202885448366737, (9, 4) = .5914387616732935, (10, 1) = -2.091868276601214, (10, 2) = -0.18823010351991486e-2, (10, 3) = -0.1603573298160153e-1, (10, 4) = .5768025510882371, (11, 1) = -2.0675031801983383, (11, 2) = .12656130210245609, (11, 3) = .20360220465223156, (11, 4) = .5534821429233556, (12, 1) = -1.9938169734959315, (12, 2) = .24955927740252992, (12, 3) = .4137863074411373, (12, 4) = .5214024577770111, (13, 1) = -1.872482432656078, (13, 2) = .3652187498862573, (13, 3) = .6113217112064968, (13, 4) = .48063170177329617, (14, 1) = -1.7057564611764606, (14, 2) = .47157267763404304, (14, 3) = .7928834016987208, (14, 4) = .43139729604922294, (15, 1) = -1.4966558142118183, (15, 2) = .5665793269987861, (15, 3) = .9550156730871263, (15, 4) = .37411848400665626, (16, 1) = -1.2491872517510594, (16, 2) = .6481570201882005, (16, 3) = 1.0941915922740408, (16, 4) = .3094503210388524, (17, 1) = -.9685705146665443, (17, 2) = .71426844774737, (17, 3) = 1.2069567468244398, (17, 4) = .23832596112727966, (18, 1) = -.6613721970818361, (18, 2) = .7630542855243145, (18, 3) = 1.2901567914192125, (18, 4) = .16198011259091505, (19, 1) = -.3355082255048767, (19, 2) = .792996511423492, (19, 3) = 1.3412154143317405, (19, 4) = 0.8194611356782522e-1, (20, 1) = 0.822899012356365e-11, (20, 2) = .8030940111712972, (20, 3) = 1.358433178318087, (20, 4) = -0.2008455706211582e-11, (21, 1) = .3355082255210961, (21, 2) = .7929965114225089, (21, 3) = 1.3412154143300643, (21, 4) = -0.8194611357179582e-1, (22, 1) = .6613721970973515, (22, 2) = .763054285522383, (22, 3) = 1.2901567914159184, (22, 4) = -.16198011259474576, (23, 1) = .968570514680947, (23, 2) = .7142684477445519, (23, 3) = 1.2069567468196336, (23, 4) = -.2383259611308901, (24, 1) = 1.2491872517639921, (24, 2) = .6481570201845809, (24, 3) = 1.0941915922678662, (24, 4) = -.30945032104217596, (25, 1) = 1.4966558142229935, (25, 2) = .566579326994461, (25, 3) = .9550156730797464, (25, 4) = -.37411848400963876, (26, 1) = 1.705756461185658, (26, 2) = .4715726776291129, (26, 3) = .792883401690306, (26, 4) = -.43139729605182175, (27, 1) = 1.8724824326631273, (27, 2) = .36521874988082353, (27, 3) = .6113217111972187, (27, 4) = -.48063170177549175, (28, 1) = 1.9938169735007036, (28, 2) = .24955927739669304, (28, 3) = .41378630743116585, (28, 4) = -.521402457778791, (29, 1) = 2.0675031802007426, (29, 2) = .1265613020963062, (29, 3) = .20360220464171913, (29, 4) = -.5534821429247145, (30, 1) = 2.0918682766011796, (30, 2) = -0.1882301041570623e-2, (30, 3) = -0.16035732992500905e-1, (30, 4) = -.5768025510891714, (31, 1) = 2.0657297254691165, (31, 2) = -.13393270716323252, (31, 3) = -.24202885449480616, (31, 4) = -.5914387616738033, (32, 1) = 1.988386675044235, (32, 2) = -.26778516611765507, (32, 3) = -.4713409317014557, (32, 4) = -.5976106713974243, (33, 1) = 1.8596637699769885, (33, 2) = -.40167298097284954, (33, 3) = -.7010051572086486, (33, 4) = -.5956968773477129, (34, 1) = 1.6799591168182009, (34, 2) = -.5338945432317524, (34, 3) = -.928170453758488, (34, 4) = -.5862507644459232, (35, 1) = 1.4502553791695916, (35, 2) = -.662862022538703, (35, 3) = -1.1501848656578912, (35, 4) = -.5700115972860171, (36, 1) = 1.1720549705114174, (36, 2) = -.7871668654881623, (36, 3) = -1.3647080837681445, (36, 4) = -.5479053370672382, (37, 1) = .8472923030317289, (37, 2) = -.9056249296636681, (37, 3) = -1.5697893895665231, (37, 4) = -.5210402443180708, (38, 1) = .47830225714385494, (38, 2) = -1.0172957104393552, (38, 3) = -1.7639009337751965, (38, 4) = -.4907071357961206, (39, 1) = 0.6793369507317255e-1, (39, 2) = -1.1214807851677142, (39, 3) = -1.9459338300331794, (39, 4) = -.45839007929573783}, datatype = float[8], order = C_order); errproc := proc (x_bvp) local outpoint, X, Y, yout, L, V, i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; Digits := 15; outpoint := evalf(x_bvp); X := Vector(39, {(1) = .0, (2) = .38351121101718294, (3) = .7670525174337857, (4) = 1.1505124184681526, (5) = 1.5339974108667955, (6) = 1.9176656846625835, (7) = 2.301666900840626, (8) = 2.686166017900895, (9) = 3.0714248709070704, (10) = 3.4578482205784917, (11) = 3.8459964328894594, (12) = 4.236562473720028, (13) = 4.63029143999511, (14) = 5.027875289828752, (15) = 5.429838794289437, (16) = 5.836424009646885, (17) = 6.2474993950021105, (18) = 6.662514723812331, (19) = 7.0804709956849745, (20) = 7.500000000010247, (21) = 7.919529004335479, (22) = 8.337485276208003, (23) = 8.752500605018055, (24) = 9.163575990373069, (25) = 9.570161205730289, (26) = 9.972124710190753, (27) = 10.369708560024193, (28) = 10.763437526299098, (29) = 11.154003567129536, (30) = 11.542151779440406, (31) = 11.928575129111765, (32) = 12.313833982117927, (33) = 12.698333099178127, (34) = 13.082334315356094, (35) = 13.46600258915182, (36) = 13.849487581545711, (37) = 14.232947482570854, (38) = 14.616488788987173, (39) = 15.0}, datatype = float[8], order = C_order); Y := Matrix(39, 4, {(1, 1) = .0, (1, 2) = 0.4169474949470319e-8, (1, 3) = .0, (1, 4) = 0.7835240842428686e-7, (2, 1) = -0.23769322024608386e-8, (2, 2) = 0.20574993513536933e-7, (2, 3) = 0.28915467105198323e-7, (2, 4) = 0.6739578827522519e-7, (3, 1) = 0.13432614554121212e-8, (3, 2) = 0.3455328846284316e-7, (3, 3) = 0.53555371547114894e-7, (3, 4) = 0.56808022185555136e-7, (4, 1) = 0.10215180140437365e-7, (4, 2) = 0.46210741231203555e-7, (4, 3) = 0.7412236554868284e-7, (4, 4) = 0.4655270349628992e-7, (5, 1) = 0.23345917507038193e-7, (5, 2) = 0.5565120904080144e-7, (5, 3) = 0.9081227975256859e-7, (5, 4) = 0.36610408987452024e-7, (6, 1) = 0.39899737408272976e-7, (6, 2) = 0.6297121533476722e-7, (6, 3) = 0.10380568393478045e-6, (6, 4) = 0.26980586305072067e-7, (7, 1) = 0.59092586147958576e-7, (7, 2) = 0.6826227696538385e-7, (7, 3) = 0.11327212034532727e-6, (7, 4) = 0.17679640490096123e-7, (8, 1) = 0.8018750204181922e-7, (8, 2) = 0.7161521879446997e-7, (8, 3) = 0.119377899946789e-6, (8, 4) = 0.8737080945867287e-8, (9, 1) = 0.10249438427814322e-6, (9, 2) = 0.7312342317943269e-7, (9, 3) = 0.12229202004119914e-6, (9, 4) = 0.19111174725149373e-9, (10, 1) = 0.12537059509966982e-6, (10, 2) = 0.7288351861281618e-7, (10, 3) = 0.12218760188581384e-6, (10, 4) = -0.7914095997972168e-8, (11, 1) = 0.14821970623535092e-6, (11, 2) = 0.7099509769899028e-7, (11, 3) = 0.11924158176630196e-6, (11, 4) = -0.15529823095629243e-7, (12, 1) = 0.17048746533454583e-6, (12, 2) = 0.6756068395918315e-7, (12, 3) = 0.11363480905133206e-6, (12, 4) = -0.2260318036205843e-7, (13, 1) = 0.1916550626721734e-6, (13, 2) = 0.6268707361085955e-7, (13, 3) = 0.10555443975346679e-6, (13, 4) = -0.29076602733567843e-7, (14, 1) = 0.21123297474510157e-6, (14, 2) = 0.5648861648180569e-7, (14, 3) = 0.9519964592930939e-7, (14, 4) = -0.3488759907336914e-7, (15, 1) = 0.22875849192160096e-6, (15, 2) = 0.4909200331686155e-7, (15, 3) = 0.8278991187863618e-7, (15, 4) = -0.3996949062688898e-7, (16, 1) = 0.243799139386567e-6, (16, 2) = 0.4064167014273389e-7, (16, 3) = 0.68574371853428e-7, (16, 4) = -0.44253446873786724e-7, (17, 1) = 0.2559630838180394e-6, (17, 2) = 0.3130438765940954e-7, (17, 3) = 0.5283974357116317e-7, (17, 4) = -0.4767211588664755e-7, (18, 1) = 0.2649153933065295e-6, (18, 2) = 0.2127148944881124e-7, (18, 3) = 0.359142760601206e-7, (18, 4) = -0.5016454130276307e-7, (19, 1) = 0.27039685011429327e-6, (19, 2) = 0.10758443348014332e-7, (19, 3) = 0.18167086595288972e-7, (19, 4) = -0.5168150189899868e-7, (20, 1) = 0.2722428369590898e-6, (20, 2) = -0.16362472803880316e-15, (20, 3) = 0.6585452897692007e-16, (20, 4) = -0.52190877518771335e-7, (21, 1) = 0.27039684789364484e-6, (21, 2) = -0.10758443759892585e-7, (21, 3) = -0.18167086098998353e-7, (21, 4) = -0.51681501153762164e-7, (22, 1) = 0.26491539334159847e-6, (22, 2) = -0.21271489368459295e-7, (22, 3) = -0.3591427510772471e-7, (22, 4) = -0.50164540061434875e-7, (23, 1) = 0.2559630826316772e-6, (23, 2) = -0.3130438687584957e-7, (23, 3) = -0.528397420405275e-7, (23, 4) = -0.47672114560932285e-7, (24, 1) = 0.24379913797799355e-6, (24, 2) = -0.4064167016755145e-7, (24, 3) = -0.6857437093143762e-7, (24, 4) = -0.44253445979182944e-7, (25, 1) = 0.22875848980850263e-6, (25, 2) = -0.4909200134059814e-7, (25, 3) = -0.8278990964437361e-7, (25, 4) = -0.39969488578280374e-7, (26, 1) = 0.211232972263855e-6, (26, 2) = -0.56488614358634603e-7, (26, 3) = -0.9519964517538756e-7, (26, 4) = -0.34887596117693075e-7, (27, 1) = 0.19165506550982305e-6, (27, 2) = -0.6268707119103872e-7, (27, 3) = -0.1055544358184001e-6, (27, 4) = -0.2907660029411003e-7, (28, 1) = 0.1704874678186134e-6, (28, 2) = -0.6756068148678297e-7, (28, 3) = -0.11363480469247379e-6, (28, 4) = -0.2260318184630453e-7, (29, 1) = 0.14821970985770134e-6, (29, 2) = -0.7099509679967245e-7, (29, 3) = -0.11924157775958776e-6, (29, 4) = -0.15529825250558246e-7, (30, 1) = 0.1253706027608365e-6, (30, 2) = -0.728835199418429e-7, (30, 3) = -0.1221875992965587e-6, (30, 4) = -0.7914098566907212e-8, (31, 1) = 0.10249438939377254e-6, (31, 2) = -0.731234230669166e-7, (31, 3) = -0.12229201766964834e-6, (31, 4) = 0.19110773857564476e-9, (32, 1) = 0.8018750758996192e-7, (32, 2) = -0.7161521851463498e-7, (32, 3) = -0.11937789774462777e-6, (32, 4) = 0.8737076425495856e-8, (33, 1) = 0.5909258802411502e-7, (33, 2) = -0.6826227739932252e-7, (33, 3) = -0.11327212139868922e-6, (33, 4) = 0.17679637485508423e-7, (34, 1) = 0.3989974032995724e-7, (34, 2) = -0.6297121687044666e-7, (34, 3) = -0.10380568609432601e-6, (34, 4) = 0.26980584439462847e-7, (35, 1) = 0.23345918977407193e-7, (35, 2) = -0.55651210067980086e-7, (35, 3) = -0.9081228185305163e-7, (35, 4) = 0.36610409724641004e-7, (36, 1) = 0.1021518123179639e-7, (36, 2) = -0.4621074260181786e-7, (36, 3) = -0.7412236942890131e-7, (36, 4) = 0.4655270703828583e-7, (37, 1) = 0.1343261922182429e-8, (37, 2) = -0.3455328945578425e-7, (37, 3) = -0.5355537272993128e-7, (37, 4) = 0.5680802529503699e-7, (38, 1) = -0.23769320272060756e-8, (38, 2) = -0.20574994249066573e-7, (38, 3) = -0.28915468392130814e-7, (38, 4) = 0.6739579196183749e-7, (39, 1) = .0, (39, 2) = -0.41694749416285906e-8, (39, 3) = .0, (39, 4) = 0.7835241170249775e-7}, datatype = float[8], order = C_order); if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "right" then return X[39] elif outpoint = "order" then return 6 elif outpoint = "error" then return HFloat(2.722428369590898e-7) elif outpoint = "errorproc" then error "this is already the error procedure" elif outpoint = "rawdata" then return [4, 39, [X(t), diff(X(t), t), Y(t), diff(Y(t), t)], X, Y] else return ('procname')(x_bvp) end if end if; if outpoint < X[1] or X[39] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[39] end if; V := array([1 = 4, 2 = 0]); if Digits <= trunc(evalhf(Digits)) then L := Vector(4, 'datatype' = 'float'[8]); yout := Vector(4, 'datatype' = 'float'[8]); evalhf(`dsolve/numeric/lagrange`(39, 4, X, Y, outpoint, var(yout), var(L), var(V))) else L := Vector(4, 'datatype' = 'sfloat'); yout := Vector(4, 'datatype' = 'sfloat'); `dsolve/numeric/lagrange`(39, 4, X, Y, outpoint, yout, L, V) end if; [t = outpoint, seq('[X(t), diff(X(t), t), Y(t), diff(Y(t), t)]'[i] = yout[i], i = 1 .. 4)] end proc; if not type(outpoint, 'numeric') then if outpoint = "start" or outpoint = "left" then return X[1] elif outpoint = "method" then return "bvp" elif outpoint = "right" then return X[39] elif outpoint = "order" then return 6 elif outpoint = "error" then return HFloat(2.722428369590898e-7) elif outpoint = "errorproc" then return eval(errproc) elif outpoint = "rawdata" then return [4, 39, "depnames", X, Y, YP] else error "non-numeric value" end if end if; if outpoint < X[1] or X[39] < outpoint then error "solution is only defined in the range %1..%2", X[1], X[39] end if; if Digits <= trunc(evalhf(Digits)) and (_EnvInFsolve <> true or _EnvDSNumericSaveDigits <= trunc(evalhf(Digits))) then V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0, (3, 1) = .0, (3, 2) = .0, (4, 1) = .0, (4, 2) = .0, (5, 1) = .0, (5, 2) = .0, (6, 1) = .0, (6, 2) = .0, (7, 1) = .0, (7, 2) = .0}, datatype = float[8], order = C_order); yout := Vector(4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8]); evalhf(`dsolve/numeric/hermite`(39, 4, X, Y, YP, outpoint, var(yout), var(L), var(V))) else if _EnvInFsolve = true then Digits := _EnvDSNumericSaveDigits end if; V := array( 1 .. 6, [( 1 ) = (7), ( 2 ) = (0), ( 3 ) = (false), ( 4 ) = (false), ( 5 ) = (false), ( 6 ) = (false)  ] ); L := Matrix(7, 2, {(1, 1) = 0., (1, 2) = 0., (2, 1) = 0., (2, 2) = 0., (3, 1) = 0., (3, 2) = 0., (4, 1) = 0., (4, 2) = 0., (5, 1) = 0., (5, 2) = 0., (6, 1) = 0., (6, 2) = 0., (7, 1) = 0., (7, 2) = 0.}, order = C_order); yout := Vector(4, {(1) = 0., (2) = 0., (3) = 0., (4) = 0.}); `dsolve/numeric/hermite`(39, 4, X, Y, YP, outpoint, yout, L, V) end if; [outpoint, seq(yout[i], i = 1 .. 4)] end proc, (2) = Array(0..0, {}), (3) = [t, X(t), diff(X(t), t), Y(t), diff(Y(t), t)], (4) = 0}); solnproc := data[1]; if not type(outpoint, 'numeric') then if outpoint = "solnprocedure" then return eval(solnproc) elif member(outpoint, ["start", "left", "right", "errorproc", "rawdata", "order", "error"]) then return solnproc(x_bvp) elif outpoint = "sysvars" then return data[3] elif procname <> unknown then return ('procname')(x_bvp) else _ndsol := pointto(data[2][0]); return ('_ndsol')(x_bvp) end if end if; try res := solnproc(outpoint); [t = res[1], seq('[X(t), diff(X(t), t), Y(t), diff(Y(t), t)]'[i] = res[i+1], i = 1 .. 4)] catch: error  end try end proc

(3)

ans(1,1);

[t = 1., X(t) = HFloat(-0.5829077966809866), diff(X(t), t) = HFloat(-1.0500088098537468), Y(t) = HFloat(-1.702840309010038), diff(Y(t), t) = HFloat(-1.446427441705165)]

(4)

plots:-odeplot(ans,[X(t),Y(t)],t=0..15);

 

plots:-odeplot(ans,[t,Y(t)],t=0..15);

 

plots:-odeplot(ans,[t,X(t)],t=0..15);

 

T(x)=-6.643572696*10^(-10)*cos(10733.58723*x)-0.8085449658e-4*cos(323.6693795*x)+0.8085516082e-4;

T(x) = -0.6643572696e-9*cos(10733.58723*x)-0.8085449658e-4*cos(323.6693795*x)+0.8085516082e-4

(5)

p := proc (x, T) options operator, arrow; plots:-odeplot(ans, [t, X(t)*T(x)], 0 .. 15) end proc; plots:-animate(p, [x, 7], x = 1e4 .. 1e6);

proc (x, T) options operator, arrow; plots:-odeplot(ans, [t, X(t)*T(x)], 0 .. 15) end proc

 

 

``

NULL

your part of time answer is too small that choosing range 1e4..1e6 does not affect your results !

you may also see the link  http://www.mapleprimes.com/questions/150659-How-To-Plot-With-The-Results-Of-Desolve-Command  and see Preben Alsholm answer on this topic. good luck !

Download ode.mw

@Carl Love these system of equations are linear, so it seems that using fsolve is due to the complex part and when u use "convert_to_exact= false" option, it does count for the complex part and gives the answer. am i wrong ?

@ilke as i concluded X(t) is your displacement in y direction  and Y(t) is displacement in x direction, since you have maximum of X(t) in the middle which was expected and two extermum for displacement Y(t) in 1/4 and 3/4 . yes sould use numeric method. good luck

what is your beams supports at both end ?! is it clapmed at both end or simply supported ?! tel me your beam specifications so that i can tell your boundary conditions.


``

restart

for x from 0 to 5 do print(evalf(sum((-1)^k*x^(2*k)/factorial(2*k), k = 0 .. 10)), evalf(cos(x))) end do:

0., 1.

 

.5403023059, .5403023059

 

-.4161468365, -.4161468365

 

-.9899924966, -.9899924966

 

-.6536436057, -.6536436209

 

.2836642141, .2836621855

(1)

for x from 0 to 5 do print(evalf(add((-1)^k*x^(2*k)/factorial(2*k), k = 0 .. 10)), evalf(cos(x))) end do:

1., 1.

 

.5403023059, .5403023059

 

-.4161468365, -.4161468365

 

-.9899924966, -.9899924966

 

-.6536436057, -.6536436209

 

.2836642141, .2836621855

(2)

``

``

 

Download maple_18.mw

@Alejandro Jakubi  actually it is a good point to maple primes to check the issue. but i think it is somewaht that they know about,since i send an email ( contact part in the below of this page ) to mapleprimes staff, and it was so interesting that no one answered me !!! now i do not know whether they know what the problem and how to fix ! but they do know how to fix or not !!! , is the problem ! and i think they do !

 i have encountered the problem too, even in my own codes, not downloaded from mapleprimes, i plot in a worksheet and save it and close it , and after opening the file again,there was unwanted gridlines there ! actually you are right .


int(exp(10*(y^4-2*y^2))*exp(-10*(z^4-2*z^2)), [z = -infinity .. y, y = -1 .. 0], numeric);

1276.267563

 

1276.267563

 

1276.267563

(1)

``


Download int.mw

@sarra  

NULL

restart:

ode := diff(y(x), x) = 2*x+y(x);

f:=(x,y)->2*x-y;

 

analyticsol := rhs(dsolve({ode, y(0) = 1}));

RKadaptivestepsize := proc (f, a, b, epsilon, N)

global n;
local x, y,k,z,R,p,h,hstar;

p:=2;

h := evalf(b-a)/N; ## we begin with this setpsize

x[0] := a; y[0] := 1;z[0]:=1; ## Initialisation

for n from 0 to N-1 do  ##loop

x[n+1] := a+(n+1)*h;  ## noeuds

k[1] := f(x[n], y[n]);

k[2] := f(x[n]+h, y[n]+h*k[1]);

k[3] := f(x[n]+h/2, y[n]+h/4*(k[1]+k[2]));

z[n+1] := z[n]+(h/2)*(k[1]+k[2]);## 2-stage runge Kutta.

y[n+1] := y[n]+(h/6)*(k[1]+k[2]+4*k[3]);

R:=abs(y[n+1]-z[n+1]); ## local erreur

hstar:=sqrt(epsilon/R);

if R<=epsilon then

   x[n] := x[n+1]+h;

   y[n]:=y[n+1];
   n:=n+1;

else

 

h:=hstar;

end if;

 end do;

[seq([x[i], y[i]], i = 0 .. N)];

[seq([x[i], z[i]], i = 0 .. N)];

end proc:

epsilon:=1e-8;

ans:=RKadaptivestepsize((x,y)->2*x-y,0,1, epsilon,20);

diff(y(x), x) = 2*x+y(x)

 

proc (x, y) options operator, arrow; 2*x-y end proc

 

-2*x-2+3*exp(x)

 

0.1e-7

 

[[0, 1], [0.5000000000e-1, .9537500000], [0.2529822128e-1, .9431799074], [0.3765843990e-1, .9322041622], [0.4983821056e-1, .9217502798], [0.6185717430e-1, .9117968125], [0.7372782360e-1, .9023241793], [0.8546135836e-1, .8933142925], [0.9706758048e-1, .8847504074], [.1085552954, .8766169594], [.1199324443, .8688994360], [.1312061689, .8615842706], [.1423828190, .8546587533], [.1534683349, .8481109364], [.1644679459, .8419295761], [.1753866618, .8361040561], [.1862287757, .8306243489], [.1969984958, .8254809504], [.2076995128, .8206648486], [.2183352831, .8161674787], [.2289090802, .8119806881]]

(1)

 

plots:-pointplot(ans);

 

 

printf("%a  is the number of steps required using 3-step Runge Kutta Method to achieve an  eroor of 10^(-6) .", n);

20  is the number of steps required using 3-step Runge Kutta Method to achieve an  eroor of 10^(-6) .

 

``

NULL

 

Download corrected.mw

@sarra  go to this link :

http://www.mapleprimes.com/questions/201190-How-Can-I-Use--If-When-I-Solve-This-Ode#answer204566

to see your answer. good luck !

could u tell me what does it mean?> Y'(t)  , it is differentiation with respect to what ?! how can u differentiate from a matrix ? please cleafy your differentiation . tnx

First 13 14 15 16 17 18 19 Last Page 15 of 23