puckie

20 Reputation

6 Badges

11 years, 108 days

MaplePrimes Activity


These are replies submitted by puckie

 

Thanks a lot!

/   puckie

 

Hi again!

Yes, of course the palettes. But when I try to input for example f^-1:=x+2 (in 2-D Math) to represent the inverse function of f(x):=x+2, I get get the message "Error, illegal use of an object as a name".

How can avoid this behavior?

Thanks   /   puckie

 

Hi again!

 

Thanks a lot for your help and the help page on matrix and vector construction.

 

/  puckie

 

Hi again!

 

Thanks a lot for your help and the help page on matrix and vector construction.

 

/  puckie

 

 

Hi!

 

It worked!

I've analyzed your code and I've understood it well, except for:

M1 := `<,>`(`<|>`(`F/V`, ``, `<|>`(V)), `<|>`(`$`(``, nops(V)+2)), `<|>`(`<,>`(F), `<,>`([`$`(``, nops(F))]), M))

Those symbols are mystical for me right now -;

But of course I'll go on trying to learn more on matrices and spreadsheets. I've found a useful help page at http://www.maplesoft.com/support/help/Maple/view.aspx?path=examples/spread

 

Thanks a lot!

 

/puckie

 

 

Hi!

 

It worked!

I've analyzed your code and I've understood it well, except for:

M1 := `<,>`(`<|>`(`F/V`, ``, `<|>`(V)), `<|>`(`$`(``, nops(V)+2)), `<|>`(`<,>`(F), `<,>`([`$`(``, nops(F))]), M))

Those symbols are mystical for me right now -;

But of course I'll go on trying to learn more on matrices and spreadsheets. I've found a useful help page at http://www.maplesoft.com/support/help/Maple/view.aspx?path=examples/spread

 

Thanks a lot!

 

/puckie

 

Hi!

I've got the right values in (4), (5), (6), but the wrong ones in the matrix and consequently in the spreadsheet. How can it be? Pls. see the attached .wm. I'm using Maple 16. Oh, by the way, I've just noticed that you too got the wrong values in the matrix and in the worksheet.

Table showing the values for multiple functions

NULL

y__1 := proc (t) options operator, arrow; 8.93*t+103.0 end proc;

proc (t) options operator, arrow; 8.93*t+103.0 end proc

(1)

y__2 := proc (t) options operator, arrow; 1.886*t^2+(-1)*5.24*t+305.7 end proc;

proc (t) options operator, arrow; 1.886*(t^2)+(-1)*5.24*t+305.7 end proc

(2)

y__3 := proc (t) options operator, arrow; (-1)*.361*t^2+7.97*t+14.2 end proc;

proc (t) options operator, arrow; (-1)*.361*(t^2)+7.97*t+14.2 end proc

(3)

NULL

y__1(4), y__1(5), y__1(6), y__1(7), y__1(8), y__1(9), y__1(10)

138.72, 147.65, 156.58, 165.51, 174.44, 183.37, 192.30

(4)

NULL

y__2(4), y__2(5), y__2(6), y__2(7), y__2(8), y__2(9), y__2(10)

314.916, 326.650, 342.156, 361.434, 384.484, 411.306, 441.900

(5)

NULL

y__3(4), y__3(5), y__3(6), y__3(7), y__3(8), y__3(9), y__3(10)

40.304, 45.025, 49.024, 52.301, 54.856, 56.689, 57.800

(6)

NULL

F := [y__1, y__2, y__3]; V := [1, 2, 3, 4, 5, 6]; M := Matrix(nops(F), nops(V), proc (i, j) options operator, arrow; F[i](V[j]) end proc); M1 := `<,>`(`<|>`(`F/V`, ``, `<|>`(V)), `<|>`(`$`(``, nops(V)+2)), `<|>`(`<,>`(F), `<,>`([`$`(``, nops(F))]), M)); ssid := Spread:-CreateSpreadsheet(); Spread:-SetMatrix(ssid, M1)

M := Matrix(3, 6, {(1, 1) = 111.93, (1, 2) = 120.86, (1, 3) = 129.79, (1, 4) = 138.72, (1, 5) = 147.65, (1, 6) = 156.58, (2, 1) = 302.346, (2, 2) = 302.764, (2, 3) = 306.954, (2, 4) = 314.916, (2, 5) = 326.650, (2, 6) = 342.156, (3, 1) = 21.809, (3, 2) = 28.696, (3, 3) = 34.861, (3, 4) = 40.304, (3, 5) = 45.025, (3, 6) = 49.024})

 

M1:=[[[`F/V`,,1,2,3,4,5,6],[,,,,,,,],[y__1,,111.93,120.86,129.79,138.72,147.65,156.58],[y__2,,302.346,302.764,306.954,314.916,326.650,342.156],[y__3,,21.809,28.696,34.861,40.304,45.025,49.024]]]

 
Spreadsheet(1)
 

`Spreadsheet(1)`

(7)

NULL


Download Table_showing_the_va.mw

Thanks for your patience, I'm quite new to Maple but I really want to learn it well -;

/ puckie

 


 

 

Hi!

I've got the right values in (4), (5), (6), but the wrong ones in the matrix and consequently in the spreadsheet. How can it be? Pls. see the attached .wm. I'm using Maple 16. Oh, by the way, I've just noticed that you too got the wrong values in the matrix and in the worksheet.

Table showing the values for multiple functions

NULL

y__1 := proc (t) options operator, arrow; 8.93*t+103.0 end proc;

proc (t) options operator, arrow; 8.93*t+103.0 end proc

(1)

y__2 := proc (t) options operator, arrow; 1.886*t^2+(-1)*5.24*t+305.7 end proc;

proc (t) options operator, arrow; 1.886*(t^2)+(-1)*5.24*t+305.7 end proc

(2)

y__3 := proc (t) options operator, arrow; (-1)*.361*t^2+7.97*t+14.2 end proc;

proc (t) options operator, arrow; (-1)*.361*(t^2)+7.97*t+14.2 end proc

(3)

NULL

y__1(4), y__1(5), y__1(6), y__1(7), y__1(8), y__1(9), y__1(10)

138.72, 147.65, 156.58, 165.51, 174.44, 183.37, 192.30

(4)

NULL

y__2(4), y__2(5), y__2(6), y__2(7), y__2(8), y__2(9), y__2(10)

314.916, 326.650, 342.156, 361.434, 384.484, 411.306, 441.900

(5)

NULL

y__3(4), y__3(5), y__3(6), y__3(7), y__3(8), y__3(9), y__3(10)

40.304, 45.025, 49.024, 52.301, 54.856, 56.689, 57.800

(6)

NULL

F := [y__1, y__2, y__3]; V := [1, 2, 3, 4, 5, 6]; M := Matrix(nops(F), nops(V), proc (i, j) options operator, arrow; F[i](V[j]) end proc); M1 := `<,>`(`<|>`(`F/V`, ``, `<|>`(V)), `<|>`(`$`(``, nops(V)+2)), `<|>`(`<,>`(F), `<,>`([`$`(``, nops(F))]), M)); ssid := Spread:-CreateSpreadsheet(); Spread:-SetMatrix(ssid, M1)

M := Matrix(3, 6, {(1, 1) = 111.93, (1, 2) = 120.86, (1, 3) = 129.79, (1, 4) = 138.72, (1, 5) = 147.65, (1, 6) = 156.58, (2, 1) = 302.346, (2, 2) = 302.764, (2, 3) = 306.954, (2, 4) = 314.916, (2, 5) = 326.650, (2, 6) = 342.156, (3, 1) = 21.809, (3, 2) = 28.696, (3, 3) = 34.861, (3, 4) = 40.304, (3, 5) = 45.025, (3, 6) = 49.024})

 

M1:=[[[`F/V`,,1,2,3,4,5,6],[,,,,,,,],[y__1,,111.93,120.86,129.79,138.72,147.65,156.58],[y__2,,302.346,302.764,306.954,314.916,326.650,342.156],[y__3,,21.809,28.696,34.861,40.304,45.025,49.024]]]

 
Spreadsheet(1)
 

`Spreadsheet(1)`

(7)

NULL


Download Table_showing_the_va.mw

Thanks for your patience, I'm quite new to Maple but I really want to learn it well -;

/ puckie

 


 

 

Ok, almost there...

I wonder how to write the underline symbol (?) in the functions name, e.g. `y__1`. And those that surround the functions name, are they grave accents?

Thanks   /   puckie

 

Ok, almost there...

I wonder how to write the underline symbol (?) in the functions name, e.g. `y__1`. And those that surround the functions name, are they grave accents?

Thanks   /   puckie

Hi again!

It works in the sense that inserts:

in the table, but doesn't insert the values:

 

Take your time to have a look at it! It's not urgent, but of course it'd please me a lot if I find out how to get the right output.

/puckie

Hi again!

It works in the sense that inserts:

in the table, but doesn't insert the values:

 

Take your time to have a look at it! It's not urgent, but of course it'd please me a lot if I find out how to get the right output.

/puckie

Hi again!

 

I made some changes and this time I didn't get any values at all in my table...

 

Anyway, attached you'll find my spreadsheet. Please give it a look. Very kind of you indeed!

 

/

Table showing the values for multiple functions

``

`#msub(mi("y"),mn("1"))` := proc (t) options operator, arrow; 8.93*t+103.0 end proc;

proc (t) options operator, arrow; 8.93*t+103.0 end proc

(1)

`#msub(mi("y"),mn("2"))` := proc (t) options operator, arrow; 1.886*t^2+(-1)*5.24*t+305.7 end proc;

proc (t) options operator, arrow; 1.886*(t^2)+(-1)*5.24*t+305.7 end proc

(2)

`#msub(mi("y"),mn("3"))` := proc (t) options operator, arrow; (-1)*.361*t^2+7.97*t+14.2 end proc;

proc (t) options operator, arrow; (-1)*.361*(t^2)+7.97*t+14.2 end proc

(3)

``

`#msub(mi("y"),mn("1"))`(4), `#msub(mi("y"),mn("1"))`(5), `#msub(mi("y"),mn("1"))`(6), `#msub(mi("y"),mn("1"))`(7), `#msub(mi("y"),mn("1"))`(8), `#msub(mi("y"),mn("1"))`(9), `#msub(mi("y"),mn("1"))`(10)

138.72, 147.65, 156.58, 165.51, 174.44, 183.37, 192.30

(4)

``

`#msub(mi("y"),mn("2"))`(4), `#msub(mi("y"),mn("2"))`(5), `#msub(mi("y"),mn("2"))`(6), `#msub(mi("y"),mn("2"))`(7), `#msub(mi("y"),mn("2"))`(8), `#msub(mi("y"),mn("2"))`(9), `#msub(mi("y"),mn("2"))`(10)

314.916, 326.650, 342.156, 361.434, 384.484, 411.306, 441.900

(5)

``

`#msub(mi("y"),mn("3"))`(4), `#msub(mi("y"),mn("3"))`(5), `#msub(mi("y"),mn("3"))`(6), `#msub(mi("y"),mn("3"))`(7), `#msub(mi("y"),mn("3"))`(8), `#msub(mi("y"),mn("3"))`(9), `#msub(mi("y"),mn("3"))`(10)

40.304, 45.025, 49.024, 52.301, 54.856, 56.689, 57.800

(6)

``

F := [`#msub(mi("y",fontstyle = "normal"),mn("1"))`, `#msub(mi("y",fontstyle = "normal"),mn("2"))`, `#msub(mi("y",fontstyle = "normal"),mn("3"))`]; V := [1, 2, 3, 4, 5, 6]; M := Matrix(nops(F), nops(V), proc (i, j) options operator, arrow; F[i](V[j]) end proc); M1 := `<,>`(`<|>`(`F/V`, ``, `<|>`(V)), `<|>`(`$`(``, nops(V)+2)), `<|>`(`<,>`(F), `<,>`([`$`(``, nops(F))]), M)); ssid := Spread:-CreateSpreadsheet(); Spread:-SetMatrix(ssid, M1)

M := Matrix(3, 6, {(1, 1) = y[1](1), (1, 2) = y[1](2), (1, 3) = y[1](3), (1, 4) = y[1](4), (1, 5) = y[1](5), (1, 6) = y[1](6), (2, 1) = y[2](1), (2, 2) = y[2](2), (2, 3) = y[2](3), (2, 4) = y[2](4), (2, 5) = y[2](5), (2, 6) = y[2](6), (3, 1) = y[3](1), (3, 2) = y[3](2), (3, 3) = y[3](3), (3, 4) = y[3](4), (3, 5) = y[3](5), (3, 6) = y[3](6)})

 

M1:=[[[`F/V`,,1,2,3,4,5,6],[,,,,,,,],[y[1],,y[1](1),y[1](2),y[1](3),y[1](4),y[1](5),y[1](6)],[y[2],,y[2](1),y[2](2),y[2](3),y[2](4),y[2](5),y[2](6)],[y[3],,y[3](1),y[3](2),y[3](3),y[3](4),y[3](5),y[3](6)]]]

 
Spreadsheet(1)
 

`Spreadsheet(1)`

(7)

``


Download Table_showing_the_va.mw

Table showing the values for multiple functions

``

`#msub(mi("y"),mn("1"))` := proc (t) options operator, arrow; 8.93*t+103.0 end proc;

proc (t) options operator, arrow; 8.93*t+103.0 end proc

(1)

`#msub(mi("y"),mn("2"))` := proc (t) options operator, arrow; 1.886*t^2+(-1)*5.24*t+305.7 end proc;

proc (t) options operator, arrow; 1.886*(t^2)+(-1)*5.24*t+305.7 end proc

(2)

`#msub(mi("y"),mn("3"))` := proc (t) options operator, arrow; (-1)*.361*t^2+7.97*t+14.2 end proc;

proc (t) options operator, arrow; (-1)*.361*(t^2)+7.97*t+14.2 end proc

(3)

``

`#msub(mi("y"),mn("1"))`(4), `#msub(mi("y"),mn("1"))`(5), `#msub(mi("y"),mn("1"))`(6), `#msub(mi("y"),mn("1"))`(7), `#msub(mi("y"),mn("1"))`(8), `#msub(mi("y"),mn("1"))`(9), `#msub(mi("y"),mn("1"))`(10)

138.72, 147.65, 156.58, 165.51, 174.44, 183.37, 192.30

(4)

``

`#msub(mi("y"),mn("2"))`(4), `#msub(mi("y"),mn("2"))`(5), `#msub(mi("y"),mn("2"))`(6), `#msub(mi("y"),mn("2"))`(7), `#msub(mi("y"),mn("2"))`(8), `#msub(mi("y"),mn("2"))`(9), `#msub(mi("y"),mn("2"))`(10)

314.916, 326.650, 342.156, 361.434, 384.484, 411.306, 441.900

(5)

``

`#msub(mi("y"),mn("3"))`(4), `#msub(mi("y"),mn("3"))`(5), `#msub(mi("y"),mn("3"))`(6), `#msub(mi("y"),mn("3"))`(7), `#msub(mi("y"),mn("3"))`(8), `#msub(mi("y"),mn("3"))`(9), `#msub(mi("y"),mn("3"))`(10)

40.304, 45.025, 49.024, 52.301, 54.856, 56.689, 57.800

(6)

``

F := [`#msub(mi("y",fontstyle = "normal"),mn("1"))`, `#msub(mi("y",fontstyle = "normal"),mn("2"))`, `#msub(mi("y",fontstyle = "normal"),mn("3"))`]; V := [1, 2, 3, 4, 5, 6]; M := Matrix(nops(F), nops(V), proc (i, j) options operator, arrow; F[i](V[j]) end proc); M1 := `<,>`(`<|>`(`F/V`, ``, `<|>`(V)), `<|>`(`$`(``, nops(V)+2)), `<|>`(`<,>`(F), `<,>`([`$`(``, nops(F))]), M)); ssid := Spread:-CreateSpreadsheet(); Spread:-SetMatrix(ssid, M1)

M := Matrix(3, 6, {(1, 1) = y[1](1), (1, 2) = y[1](2), (1, 3) = y[1](3), (1, 4) = y[1](4), (1, 5) = y[1](5), (1, 6) = y[1](6), (2, 1) = y[2](1), (2, 2) = y[2](2), (2, 3) = y[2](3), (2, 4) = y[2](4), (2, 5) = y[2](5), (2, 6) = y[2](6), (3, 1) = y[3](1), (3, 2) = y[3](2), (3, 3) = y[3](3), (3, 4) = y[3](4), (3, 5) = y[3](5), (3, 6) = y[3](6)})

 

M1:=[[[`F/V`,,1,2,3,4,5,6],[,,,,,,,],[y[1],,y[1](1),y[1](2),y[1](3),y[1](4),y[1](5),y[1](6)],[y[2],,y[2](1),y[2](2),y[2](3),y[2](4),y[2](5),y[2](6)],[y[3],,y[3](1),y[3](2),y[3](3),y[3](4),y[3](5),y[3](6)]]]

 
Spreadsheet(1)
 

`Spreadsheet(1)`

(7)

``


Download Table_showing_the_va.mw

puckie

Hi again!

 

I made some changes and this time I didn't get any values at all in my table...

 

Anyway, attached you'll find my spreadsheet. Please give it a look. Very kind of you indeed!

 

/

Table showing the values for multiple functions

``

`#msub(mi("y"),mn("1"))` := proc (t) options operator, arrow; 8.93*t+103.0 end proc;

proc (t) options operator, arrow; 8.93*t+103.0 end proc

(1)

`#msub(mi("y"),mn("2"))` := proc (t) options operator, arrow; 1.886*t^2+(-1)*5.24*t+305.7 end proc;

proc (t) options operator, arrow; 1.886*(t^2)+(-1)*5.24*t+305.7 end proc

(2)

`#msub(mi("y"),mn("3"))` := proc (t) options operator, arrow; (-1)*.361*t^2+7.97*t+14.2 end proc;

proc (t) options operator, arrow; (-1)*.361*(t^2)+7.97*t+14.2 end proc

(3)

``

`#msub(mi("y"),mn("1"))`(4), `#msub(mi("y"),mn("1"))`(5), `#msub(mi("y"),mn("1"))`(6), `#msub(mi("y"),mn("1"))`(7), `#msub(mi("y"),mn("1"))`(8), `#msub(mi("y"),mn("1"))`(9), `#msub(mi("y"),mn("1"))`(10)

138.72, 147.65, 156.58, 165.51, 174.44, 183.37, 192.30

(4)

``

`#msub(mi("y"),mn("2"))`(4), `#msub(mi("y"),mn("2"))`(5), `#msub(mi("y"),mn("2"))`(6), `#msub(mi("y"),mn("2"))`(7), `#msub(mi("y"),mn("2"))`(8), `#msub(mi("y"),mn("2"))`(9), `#msub(mi("y"),mn("2"))`(10)

314.916, 326.650, 342.156, 361.434, 384.484, 411.306, 441.900

(5)

``

`#msub(mi("y"),mn("3"))`(4), `#msub(mi("y"),mn("3"))`(5), `#msub(mi("y"),mn("3"))`(6), `#msub(mi("y"),mn("3"))`(7), `#msub(mi("y"),mn("3"))`(8), `#msub(mi("y"),mn("3"))`(9), `#msub(mi("y"),mn("3"))`(10)

40.304, 45.025, 49.024, 52.301, 54.856, 56.689, 57.800

(6)

``

F := [`#msub(mi("y",fontstyle = "normal"),mn("1"))`, `#msub(mi("y",fontstyle = "normal"),mn("2"))`, `#msub(mi("y",fontstyle = "normal"),mn("3"))`]; V := [1, 2, 3, 4, 5, 6]; M := Matrix(nops(F), nops(V), proc (i, j) options operator, arrow; F[i](V[j]) end proc); M1 := `<,>`(`<|>`(`F/V`, ``, `<|>`(V)), `<|>`(`$`(``, nops(V)+2)), `<|>`(`<,>`(F), `<,>`([`$`(``, nops(F))]), M)); ssid := Spread:-CreateSpreadsheet(); Spread:-SetMatrix(ssid, M1)

M := Matrix(3, 6, {(1, 1) = y[1](1), (1, 2) = y[1](2), (1, 3) = y[1](3), (1, 4) = y[1](4), (1, 5) = y[1](5), (1, 6) = y[1](6), (2, 1) = y[2](1), (2, 2) = y[2](2), (2, 3) = y[2](3), (2, 4) = y[2](4), (2, 5) = y[2](5), (2, 6) = y[2](6), (3, 1) = y[3](1), (3, 2) = y[3](2), (3, 3) = y[3](3), (3, 4) = y[3](4), (3, 5) = y[3](5), (3, 6) = y[3](6)})

 

M1:=[[[`F/V`,,1,2,3,4,5,6],[,,,,,,,],[y[1],,y[1](1),y[1](2),y[1](3),y[1](4),y[1](5),y[1](6)],[y[2],,y[2](1),y[2](2),y[2](3),y[2](4),y[2](5),y[2](6)],[y[3],,y[3](1),y[3](2),y[3](3),y[3](4),y[3](5),y[3](6)]]]

 
Spreadsheet(1)
 

`Spreadsheet(1)`

(7)

``


Download Table_showing_the_va.mw

Table showing the values for multiple functions

``

`#msub(mi("y"),mn("1"))` := proc (t) options operator, arrow; 8.93*t+103.0 end proc;

proc (t) options operator, arrow; 8.93*t+103.0 end proc

(1)

`#msub(mi("y"),mn("2"))` := proc (t) options operator, arrow; 1.886*t^2+(-1)*5.24*t+305.7 end proc;

proc (t) options operator, arrow; 1.886*(t^2)+(-1)*5.24*t+305.7 end proc

(2)

`#msub(mi("y"),mn("3"))` := proc (t) options operator, arrow; (-1)*.361*t^2+7.97*t+14.2 end proc;

proc (t) options operator, arrow; (-1)*.361*(t^2)+7.97*t+14.2 end proc

(3)

``

`#msub(mi("y"),mn("1"))`(4), `#msub(mi("y"),mn("1"))`(5), `#msub(mi("y"),mn("1"))`(6), `#msub(mi("y"),mn("1"))`(7), `#msub(mi("y"),mn("1"))`(8), `#msub(mi("y"),mn("1"))`(9), `#msub(mi("y"),mn("1"))`(10)

138.72, 147.65, 156.58, 165.51, 174.44, 183.37, 192.30

(4)

``

`#msub(mi("y"),mn("2"))`(4), `#msub(mi("y"),mn("2"))`(5), `#msub(mi("y"),mn("2"))`(6), `#msub(mi("y"),mn("2"))`(7), `#msub(mi("y"),mn("2"))`(8), `#msub(mi("y"),mn("2"))`(9), `#msub(mi("y"),mn("2"))`(10)

314.916, 326.650, 342.156, 361.434, 384.484, 411.306, 441.900

(5)

``

`#msub(mi("y"),mn("3"))`(4), `#msub(mi("y"),mn("3"))`(5), `#msub(mi("y"),mn("3"))`(6), `#msub(mi("y"),mn("3"))`(7), `#msub(mi("y"),mn("3"))`(8), `#msub(mi("y"),mn("3"))`(9), `#msub(mi("y"),mn("3"))`(10)

40.304, 45.025, 49.024, 52.301, 54.856, 56.689, 57.800

(6)

``

F := [`#msub(mi("y",fontstyle = "normal"),mn("1"))`, `#msub(mi("y",fontstyle = "normal"),mn("2"))`, `#msub(mi("y",fontstyle = "normal"),mn("3"))`]; V := [1, 2, 3, 4, 5, 6]; M := Matrix(nops(F), nops(V), proc (i, j) options operator, arrow; F[i](V[j]) end proc); M1 := `<,>`(`<|>`(`F/V`, ``, `<|>`(V)), `<|>`(`$`(``, nops(V)+2)), `<|>`(`<,>`(F), `<,>`([`$`(``, nops(F))]), M)); ssid := Spread:-CreateSpreadsheet(); Spread:-SetMatrix(ssid, M1)

M := Matrix(3, 6, {(1, 1) = y[1](1), (1, 2) = y[1](2), (1, 3) = y[1](3), (1, 4) = y[1](4), (1, 5) = y[1](5), (1, 6) = y[1](6), (2, 1) = y[2](1), (2, 2) = y[2](2), (2, 3) = y[2](3), (2, 4) = y[2](4), (2, 5) = y[2](5), (2, 6) = y[2](6), (3, 1) = y[3](1), (3, 2) = y[3](2), (3, 3) = y[3](3), (3, 4) = y[3](4), (3, 5) = y[3](5), (3, 6) = y[3](6)})

 

M1:=[[[`F/V`,,1,2,3,4,5,6],[,,,,,,,],[y[1],,y[1](1),y[1](2),y[1](3),y[1](4),y[1](5),y[1](6)],[y[2],,y[2](1),y[2](2),y[2](3),y[2](4),y[2](5),y[2](6)],[y[3],,y[3](1),y[3](2),y[3](3),y[3](4),y[3](5),y[3](6)]]]

 
Spreadsheet(1)
 

`Spreadsheet(1)`

(7)

``


Download Table_showing_the_va.mw

puckie

Hello!

 

Thanks a lot for your answer! I followed your advice and got results only for my 3rd function, y3, as you can see from the attached .pdf.

Could you please help me to get a complete table with all the values?

 

Thanks again!

 

puckie

1 2 Page 1 of 2