salim-barzani

1645 Reputation

9 Badges

1 years, 83 days

MaplePrimes Activity


These are replies submitted by salim-barzani

@janhardo  i put condition on it but didn't work it and i don't know how he reach this goal.

@janhardo  but again i didn't get result

ode1 := diff(G(xi), xi)^2 = A^2 + 2*A*B*G(xi) + 2*A*C*G(xi)^2 + 2*B*C*G(xi)^3 + C^2*G(xi)^4;
                              /         
ode1 := Typesetting:-mcomplete|G[ξ], 
                              \         

                    /[ d        ]\\      2
  Typesetting:-_Hold|[---- G(xi)]||^2 = A 
                    \[ dxi      ]//       

   + 2 A B Typesetting:-mcomplete(G, Typesetting:-_Hold([G(xi)]))

   + 2 A C 

                                                        2
  Typesetting:-mcomplete(G, Typesetting:-_Hold([G(xi)])) 

   + 2 B C 

                                                        3
  Typesetting:-mcomplete(G, Typesetting:-_Hold([G(xi)])) 

      2                                                       4
   + C  Typesetting:-mcomplete(G, Typesetting:-_Hold([G(xi)])) 


W := B = -2*A*C;
                        W := B = -2 A C

ode2 := subs(W, ode1);
                              /         
ode2 := Typesetting:-mcomplete|G[ξ], 
                              \         

                    /[ d        ]\\      2
  Typesetting:-_Hold|[---- G(xi)]||^2 = A 
                    \[ dxi      ]//       

        2                                                         
   - 4 A  C Typesetting:-mcomplete(G, Typesetting:-_Hold([G(xi)]))

   + 2 A C 

                                                        2
  Typesetting:-mcomplete(G, Typesetting:-_Hold([G(xi)])) 

          2 
   - 4 A C  

                                                        3
  Typesetting:-mcomplete(G, Typesetting:-_Hold([G(xi)])) 

      2                                                       4
   + C  Typesetting:-mcomplete(G, Typesetting:-_Hold([G(xi)])) 


;
G25 := G(xi) = -1/(2*C)*(sqrt(-2*A*C) + sqrt(-6*A*C)*tanh(1/2*sqrt(-6*A*C)*xi));
G25 := Typesetting:-mcomplete(G, Typesetting:-_Hold([G(xi)])) = - 

          (1/2)           (1/2)     /1         (1/2)   \
  (-2 A C)      + (-6 A C)      tanh|- (-6 A C)      xi|
                                    \2                 /
  ------------------------------------------------------
                           2 C                          


(simplify(odetest(G25, ode2)) assuming (A < 0, 0 < C));

@janhardo  we have to change the ode when we change the ode we have to replace A,B,C changed to thus in eq4 and 5 but how satisfy i don't have idia

@janhardo  after equation 24 the reds one is not satisfy the equation i have to use equation 4-5 condition but i don't know how they use and satisfy the ode 

@janhardo  in equation 4 to 5 there is some substitution maybe they use that can you arrange the condition

@dharr  i got the problem with you explanation i didn't see that when i copy and paste this xi[0] from a mw file to another i don't know why this is happen and when i rewrite again this xi[0] by the same xi[0] it will fix it , but in my function i didn't saw that what  you mentioned thank you so much dear dctor

@janhardo i try this i did this before for another ode , thank you so much john

G15 := G(xi) = -(1/(xi__0 + xi) + B/2)/C

 

@janhardo 
 

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(G(xi)); declare(U(xi))

G(xi)*`will now be displayed as`*G

 

U(xi)*`will now be displayed as`*U

(2)

``

ode := diff(G(xi), xi) = A+B*G(xi)+C*G(xi)^2

diff(G(xi), xi) = A+B*G(xi)+C*G(xi)^2

(3)

G15 := G(xi) = -(2*A*B*(xi+xi[0])+2)/(B^2*(xi+xi[0]))

subs({B^2 = 4*C*A}, simplify(odetest(G15, ode)))

(A*(xi+xi[0])^2*B^4+(2*xi+2*xi[0])*B^3+4*(2-4*C*(xi+xi[0])^2*A^2)*A*C-8*C*(xi+xi[0])*A*B-4*C)/(B^4*(xi+xi[0])^2)

(4)

``


 

Download case9-not_satisfy.mw

@janhardo i will check but i need some time to check

@janhardo  can you try other question of mine i needed to do for some other ode  i have other one which is so close to this can you find even just one of thus solution satisfy the ode? can you do by your Ai really i needed to satisfy odetest at least for one of them , is similar to this ode but totally different but have a trick

 

 

@janhardo  can you try to get thus be zero too becuase i have too make zero all of them  my error is start at here i mentioned in the file , can you undrestand what will happen to this phi  inside function there is must be another idea

@ecterrab  i didn't saw that  , now i got the solved the  problem, thank to you .

@mmcdara after spending more than 2 day and changing variable one by one i get the best shape of existence  plot, your trail is so good and design are emazing, i like your style plot but i have a lot of this long function which i have to plot them becuase of that i asked is make me angry when i spen this time for one plot 

plots-long_term_.mw

@dharr  is so better than before becuase i have a lot of that U(xi) i am looking for them but this index work very good thanks 

@acer it pretty working with this kind of factoring it do all factoring this is so good and i like it, i try to use both of your code to see which one is better the factoring is better work because the other code make fraction  

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

NULL

declare(G(xi)); declare(U(xi))

G(xi)*`will now be displayed as`*G

 

U(xi)*`will now be displayed as`*U

(2)

S4 := diff(G(xi), xi) = p+r*G(xi)+s*G(xi)^2

diff(G(xi), xi) = p+r*G(xi)+s*G(xi)^2

(3)

D11 := sort(S4, order = plex(r, p, s, xi))

diff(G(xi), xi) = G(xi)*r+p+G(xi)^2*s

(4)

forget(latex); latex(D11)

G_{\xi} = p +r G +s \,G^{2}

 

Ode := (24*I)*U(xi)*k^2*w^2-6*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*v*c[1]+4*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*w*c[1]+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*alpha*s*c[1]-(24*I)*U(xi)*k^2*s^2+(24*I)*(diff(diff(U(xi), xi), xi))*s^2-(24*I)*(diff(diff(U(xi), xi), xi))*v^2+(diff(U(xi), xi))*k^4*v*c[1]-4*(diff(U(xi), xi))*k^4*w*c[1]-48*(diff(U(xi), xi))*k*v*w+72*c[2]*U(xi)^2*(diff(U(xi), xi))*v-48*(diff(U(xi), xi))*k*s^2+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*v*c[1]-(4*I)*(diff(diff(U(xi), xi), xi))*k^3*v*c[1]+72*(diff(U(xi), xi))*U(xi)^2*beta*s*c[2]-10*(diff(diff(diff(U(xi), xi), xi), xi))*alpha*k^2*s*c[1]+5*(diff(U(xi), xi))*alpha*k^4*s*c[1]+(4*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*v*c[1]+(6*I)*(diff(diff(U(xi), xi), xi))*k^3*w*c[1]-(24*I)*U(xi)^3*k*w*c[2]+I*U(xi)*alpha*k^5*s*c[1]-(10*I)*(diff(diff(U(xi), xi), xi))*alpha*k^3*s*c[1]+(24*I)*U(xi)^3*beta*k*s*c[2]+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*alpha*k*s*c[1]-I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*w*c[1]-I*U(xi)*k^5*w*c[1] = 0

-I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*w*c[1]+I*U(xi)*alpha*k^5*s*c[1]-6*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*v*c[1]+4*(diff(diff(diff(U(xi), xi), xi), xi))*k^2*w*c[1]+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*alpha*s*c[1]-4*(diff(U(xi), xi))*k^4*w*c[1]-48*(diff(U(xi), xi))*k*v*w+72*c[2]*U(xi)^2*(diff(U(xi), xi))*v+(24*I)*(diff(diff(U(xi), xi), xi))*s^2-(24*I)*(diff(diff(U(xi), xi), xi))*v^2+(diff(U(xi), xi))*k^4*v*c[1]+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*v*c[1]-48*(diff(U(xi), xi))*k*s^2-10*(diff(diff(diff(U(xi), xi), xi), xi))*alpha*k^2*s*c[1]+72*(diff(U(xi), xi))*U(xi)^2*beta*s*c[2]-(24*I)*U(xi)*k^2*s^2+(24*I)*U(xi)*k^2*w^2+5*(diff(U(xi), xi))*alpha*k^4*s*c[1]-(24*I)*U(xi)^3*k*w*c[2]+(4*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*v*c[1]-I*U(xi)*k^5*w*c[1]-(4*I)*(diff(diff(U(xi), xi), xi))*k^3*v*c[1]+(6*I)*(diff(diff(U(xi), xi), xi))*k^3*w*c[1]+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*alpha*k*s*c[1]-(10*I)*(diff(diff(U(xi), xi), xi))*alpha*k^3*s*c[1]+(24*I)*U(xi)^3*beta*k*s*c[2] = 0

(5)

alt2 := eval(collect(Ode, [U(xi), diff(U(xi), xi), diff(diff(U(xi), xi), xi), diff(diff(diff(U(xi), xi), xi), xi), diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi)], proc (u) options operator, arrow; subsindets(simplify(u), And(`+`, satisfies(proc (uu) options operator, arrow; type(denom(uu), {integer, `&*`(integer, specfunc(__K))}) end proc)), proc (uu) options operator, arrow; map(`*`, uu, denom(uu))/__K(denom(uu)) end proc) end proc), __K = (proc (u) options operator, arrow; u end proc))

(24*I)*k*c[2]*(beta*s-w)*U(xi)^3+72*c[2]*(beta*s+v)*(diff(U(xi), xi))*U(xi)^2+I*(c[1]*(alpha*s-w)*k^3-24*s^2+24*w^2)*k^2*U(xi)+(1/5)*(5*c[1]*(5*alpha*s+v-4*w)*k^3-240*s^2-240*w*v)*k*(diff(U(xi), xi))+(-(2*I)*(5*alpha*s+2*v-3*w)*k^3*c[1]+(24*I)*s^2-(24*I)*v^2)*(diff(diff(U(xi), xi), xi))-2*k^2*c[1]*(5*alpha*s+3*v-2*w)*(diff(diff(diff(U(xi), xi), xi), xi))+c[1]*(alpha*s+v)*(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))+I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*c[1]*(5*alpha*s+4*v-w) = 0

(6)

alt1 := collect(Ode, [U(xi), diff(U(xi), xi), diff(diff(U(xi), xi), xi), diff(diff(diff(U(xi), xi), xi), xi), diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi)], factor)

(24*I)*k*c[2]*(beta*s-w)*U(xi)^3+72*c[2]*(beta*s+v)*(diff(U(xi), xi))*U(xi)^2+I*(alpha*k^3*s*c[1]-k^3*w*c[1]-24*s^2+24*w^2)*k^2*U(xi)+k*(5*alpha*k^3*s*c[1]+k^3*v*c[1]-4*k^3*w*c[1]-48*s^2-48*v*w)*(diff(U(xi), xi))-(2*I)*(5*alpha*k^3*s*c[1]+2*k^3*v*c[1]-3*k^3*w*c[1]-12*s^2+12*v^2)*(diff(diff(U(xi), xi), xi))-2*k^2*c[1]*(5*alpha*s+3*v-2*w)*(diff(diff(diff(U(xi), xi), xi), xi))+c[1]*(alpha*s+v)*(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))+I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*k*c[1]*(5*alpha*s+4*v-w) = 0

(7)
 

NULL

Download work-latex.mw

First 6 7 8 9 10 11 12 Last Page 8 of 41