sharena2

50 Reputation

5 Badges

10 years, 295 days

MaplePrimes Activity


These are replies submitted by sharena2

here is my initial and boundary condition

@zack94 sharena_ina@yahoo.com

@jahan The problem is that the success of this isolate command depends on each differential equation not having more than one function differentiated.

Maybe u have two or more function differentiated in one differential equation.

 

@tomleslie i got this. :) thank you

@Preben Alsholm its work maple 12 too.. thank you preben.. :)

@Preben Alsholm Thank you Preben.. yeah.. i got the results better.. :)

@Preben Alsholm Thank you preben.. :)

@Preben Alsholm Thank you so much.. You help me a lot.. I will try as your suggestion.. :)
I noticed before, You helped me a lot also to my other problem. thank you very much.

@Preben Alsholm thank you for your suggestion. i am really appreciate it. Actually i want to shoot the initial value of this system of ODE to get better profile.. so, i am doing shooting method to choose the best value of initial condition. do you have any suggestion on this??

@Carl Love already change it.. but why it still cannot run

 

shooting92.mw

NULL

restart

Shootlib := "E:\\shooting/":

libname := Shootlib, libname:

with(Shoot):

with(plots):

n := 2:

FNS := {F(eta), H(eta), f(eta), g(eta), u(eta), v(eta)}:

ODE := {g(eta)*(diff(g(eta), eta))+B*(f(eta)+g(eta)) = 0, g(eta)*(diff(F(eta), eta))+F(eta)^2+B*(F(eta)-u(eta)) = 0, g(eta)*(diff(H(eta), eta))+H(eta)*(diff(g(eta), eta))+F(eta)*H(eta) = 0, diff(v(eta), eta)+f(eta)*v(eta)-u(eta)^2+B*H(eta)*(F(eta)-u(eta))-M*u(eta) = 0, diff(f(eta), eta) = u(eta), diff(u(eta), eta) = v(eta)};

{g(eta)*(diff(H(eta), eta))+H(eta)*(diff(g(eta), eta))+F(eta)*H(eta) = 0, g(eta)*(diff(g(eta), eta))+0.2e-1*f(eta)+0.2e-1*g(eta) = 0, g(eta)*(diff(F(eta), eta))+F(eta)^2+0.2e-1*F(eta)-0.2e-1*u(eta) = 0, diff(v(eta), eta)+f(eta)*v(eta)-u(eta)^2+0.2e-1*H(eta)*(F(eta)-u(eta))-3*u(eta) = 0, diff(f(eta), eta) = u(eta), diff(u(eta), eta) = v(eta)}

(1)

IC := {F(0) = gamma, H(0) = delta, f(0) = 0, g(0) = z, u(0) = 1, v(0) = alpha};

{F(0) = gamma, H(0) = delta, f(0) = 0, g(0) = z, u(0) = 1, v(0) = alpha}

(2)

BC := {F(L) = 0, H(L) = n, g(L) = -f(L), u(L) = 0};

{F(6) = 0, H(6) = 2, g(6) = -f(6), u(6) = 0}

(3)

infolevel[shoot] := 1:

S := shoot(ODE, IC, BC, FNS, [alpha = 0, gamma = 0, z = -.2, delta = 0])

Error, (in isolate) cannot isolate for a function when it appears with different arguments

 

"`"

NULL


Download shooting92.mw

@nm here it is the shootlib Shoot9.zip

its ok if you dont have E:\ drive.. it depends on where you save the package..

@Preben Alsholm reproduce paper.. but the paper using pertubation method

@Preben Alsholm thank you preben supposely the result for H could be different.. it just deacrease.. not like above.. :)

@emmantop why when i plot the graph it doesnt smooth

Re_b.mw

restart; with(plots)

NULL

k := .1:

NULL

Eq1 := diff(F(eta), eta, eta, eta)+F(eta)*(diff(F(eta), eta, eta))-epsilon*(-Gr*H(eta)+k*(diff(F(eta), eta))-2*E*G(eta)) = 0:

NULL

Eq2 := diff(G(eta), eta, eta)+F(eta)*(diff(G(eta), eta))-epsilon*(k*G(eta)+2*E*(diff(F(eta), eta))) = 0:

NULL

Eq3 := diff(H(eta), eta, eta)+Pr*(diff(H(eta), eta))*F(eta)+Pr*Ec*((diff(F(eta), eta, eta))^2+(diff(G(eta), eta))^2)/epsilon = 0:

NULL

bcs1 := F(0) = 1, (D(F))(0) = 1, G(0) = 0, H(0) = 1, H(blt) = 0, (D(F))(blt) = 0, G(blt) = 0:

NULL

L := [9, 11, 13]:

NULL

for k to 3 do sol[k] := dsolve(eval({Eq1, Eq2, Eq3, bcs1}, Gr = L[k]), [F(eta), G(eta), H(eta)], numeric, output = Array([0., .1, .2, .3]), method = bvp[midrich], maxmesh = 1024) end do

sol[1] := Matrix(2, 1, {(1, 1) = Array(1..8, {(1) = eta, (2) = F(eta), (3) = diff(F(eta), eta), (4) = diff(diff(F(eta), eta), eta), (5) = G(eta), (6) = diff(G(eta), eta), (7) = H(eta), (8) = diff(H(eta), eta)}), (2, 1) = Matrix(4, 8, {(1, 1) = 0., (1, 2) = 1., (1, 3) = 1., (1, 4) = -.616513245451918880, (1, 5) = 0., (1, 6) = -0.365079560110798854e-4, (1, 7) = 1., (1, 8) = 543.238571888561864, (2, 1) = .1, (2, 2) = 1.09697376444551508, (2, 3) = .939684443168121940, (2, 4) = -.602657131781613509, (2, 5) = -0.323208443389844161e-5, (2, 6) = -0.282755451142960276e-4, (2, 7) = 37.6639098706898566, (2, 8) = 224.874573120608176, (3, 1) = .2, (3, 2) = 1.18788411135658678, (3, 3) = .877972583974905406, (3, 4) = -.635013632310898690, (3, 5) = -0.568477896649885870e-5, (3, 6) = -0.209324158454894268e-4, (3, 7) = 51.1793048395012349, (3, 8) = 64.2595987149986456, (4, 1) = .3, (4, 2) = 1.27244025763197600, (4, 3) = .812507260877153303, (4, 4) = -.673319986398500880, (4, 5) = -0.745018788339254178e-5, (4, 6) = -0.145365796939885152e-4, (4, 7) = 53.2500859270758938, (4, 8) = -13.2180943779474323})})

 

sol[2] := Matrix(2, 1, {(1, 1) = Array(1..8, {(1) = eta, (2) = F(eta), (3) = diff(F(eta), eta), (4) = diff(diff(F(eta), eta), eta), (5) = G(eta), (6) = diff(G(eta), eta), (7) = H(eta), (8) = diff(H(eta), eta)}), (2, 1) = Matrix(4, 8, {(1, 1) = 0., (1, 2) = 1.00000000000000022, (1, 3) = 1.00000000000000022, (1, 4) = -.408292002275665644, (1, 5) = 0., (1, 6) = -0.392375976819995316e-4, (1, 7) = 1.00000000000000022, (1, 8) = 487.293028549244696, (2, 1) = .1, (2, 2) = 1.09797481950146046, (2, 3) = .959263559062912718, (2, 4) = -.420882799934848451, (2, 5) = -0.348975866533273944e-5, (2, 6) = -0.306839944583460516e-4, (2, 7) = 34.7987165081622082, (2, 8) = 217.330126322185322, (3, 1) = .2, (3, 2) = 1.19169777752158956, (3, 3) = .914079638379007298, (3, 4) = -.487139635105100610, (3, 5) = -0.616385886933053954e-5, (3, 6) = -0.229416053950951786e-4, (3, 7) = 48.7625312873056346, (3, 8) = 77.5141192200115938, (4, 1) = .3, (4, 2) = 1.28054222998765278, (4, 3) = .861539087414407989, (4, 4) = -.563026599944716266, (4, 5) = -0.810816109288695915e-5, (4, 6) = -0.161003874423230143e-4, (4, 7) = 52.5581433811691100, (4, 8) = 6.31120546752923417})})

 

sol[3] := Matrix(2, 1, {(1, 1) = Array(1..8, {(1) = eta, (2) = F(eta), (3) = diff(F(eta), eta), (4) = diff(diff(F(eta), eta), eta), (5) = G(eta), (6) = diff(G(eta), eta), (7) = H(eta), (8) = diff(H(eta), eta)}), (2, 1) = Matrix(4, 8, {(1, 1) = 0., (1, 2) = .99999999999999988, (1, 3) = .99999999999999988, (1, 4) = -.133107517008851955, (1, 5) = 0., (1, 6) = -0.428742083216617430e-4, (1, 7) = .99999999999999988, (1, 8) = 452.921712822429697, (2, 1) = .1, (2, 2) = 1.09929902448845862, (2, 3) = .985184676799642722, (2, 4) = -.179393199242224548, (2, 5) = -0.383305946129988947e-5, (2, 6) = -0.338929044456336962e-4, (2, 7) = 33.1500492674621441, (2, 8) = 214.939921070949482, (3, 1) = .2, (3, 2) = 1.19675427891883234, (3, 3) = .962104577306234665, (3, 4) = -.287581647961248798, (3, 5) = -0.680213167737946238e-5, (3, 6) = -0.256178563242523848e-4, (3, 7) = 47.7495394660904610, (3, 8) = 90.7012122342138128, (4, 1) = .3, (4, 2) = 1.29132287456059424, (4, 3) = .927222084551188708, (4, 4) = -.409915489291924228, (4, 5) = -0.898457027346376026e-5, (4, 6) = -0.181798178863676105e-4, (4, 7) = 53.2472372265203973, (4, 8) = 25.9584400322858180})})

(1)

``

odeplot(sol[1], [[eta, diff(F(eta), eta)], [eta, G(eta)], [eta, H(eta)]], 0 .. 3);

 

``

NULL

NULL


Download Re_b.mw

@dharr could you show me how to do it... i dont really fimilar to this..

1 2 3 Page 1 of 3