9 years, 6 days

## evaluating forever......

Maple 17

hello people

I have this computation which has to do with my undergraduate project and each time I compute some work (vary parameters), it seems to evaluate forever. although my computer isn't recent and has 2GB of RAM the computation didn't seem to me as much of a task for it. computation works fine with some parameters as 0 but the moment I change it to a natural number, it evaluates forever.

Is there anyway I could speed up computation in maple? or do I just need a faster computer? but I have a dead line for next week. can I upload my worksheet for someone here to help me execute?

## How do I solve this problem using Differ...

 (1)

 (2)

 (3)

 (4)

 > restart:
 > with(student):
 > with(plots):
 >
 >
 >
 >
 (1)
 >
 (2)
 >
 (3)
 >
 >
 (4)
 >
 >
 >
 (5)
 >

Thank you so much for your time. Here's the real problem

f'''(η) + 3f(η)f''(η) - 2[f'(η)] 2 + θ(η) - m*f'(η) = 0

θ''(η) + 3*Pr*f(η)θ'(η) + s*θ(η) = 0

Boundary conditions are:

at η=0: f(η)=f'(η)=0; θ(η)=1;

as η→∞ f'(η)=1; θ(η)=0;

Where m = magnetic parameter (in this case taken as 2)

S = shrinking parameter (in this case taken as 1)

Pr = taken as 1 too

I haven't been able to solve this using differential transforms method (i.e getting the values of f''(0) and θ'(0) denoted by A and B respectively) but shooting method works just fine. :( I seriously need help with this. Thanks you in advance.
I've attached my codes above and i'm hoping someone helps me out real soon. thanks very one.

## Differential Transforms Method...

Maple 17

hello everyone. I have an undergradute project i'm currently working on and I'm stuck where I have to use the Differential Transforms Method to solve a problem with boundary conditions at infinity

restart;

Digits := 5;

F[0] := 0; F[1] := 0; F[2] := (1/2)*A; T[0] := 1; T[1] := B; M := 2; S := 1;

for k from 0 to 10 do F[k+3] := (2*(sum((r+1)*F[r+1]*(k+1-r)*F[k+1-r], r = 0 .. k))-T[k]-3*(sum((k+1-r)*(k+2-r)*F[r]*F[k+2-r], r = 0 .. k))-M*(k+1)*F[k+1])*factorial(k)/factorial(k+3);

T[k+2] := (-3*(sum((k+1-r)*F[r]*T[k+1-r], r = 0 .. k))-S*T[k])*factorial(k)/factorial(k+2)

end do; f := 0; t := 0;

for k from 0 to 10 do

f := f+F[k]*x^k;

t := t+T[k]*x^k end do;

print(f);
print(t);

but the problem is that i cant seem to evaluate

or higer diagonal pade-approximant. any help will be greatly appreciated. thank you.

 Page 1 of 1
﻿