vv

13305 Reputation

20 Badges

9 years, 115 days

MaplePrimes Activity


These are answers submitted by vv

latex(``* e, 'output'='string')

Int(1/( (a^2+x^2)^(3/2) * x ), x=0..infinity):
% = value(%) assuming a>0;

Int(1/((a^2+x^2)^(3/2)*x), x = 0 .. infinity) = infinity

(1)

You probably want:

 

Int(1/( (a^2+x^2)^(3/2) ) * x, x=0..infinity):
% = simplify(value(%)) assuming a>0;

Int(x/(a^2+x^2)^(3/2), x = 0 .. infinity) = 1/a

(2)

A smaller degree system but with 7 equations

 

restart;

> #

with(RootFinding):

b := [114.069^2, 109.2389^2, 103.892^2, 99.76348^2, 97.24296^2];
b := floor~(b);  # optional
f := [x1^2+x2^2+x3^2+2*(x1*x2*cos(x4)+x2*x3*cos(x5)+x1*x3*cos(x4+x5))-b[1],
      x1^2+x2^2+x3^2+2*(x1*x2*cos(2*x4)+x2*x3*cos(2*x5)+x1*x3*cos(2*(x4+x5)))-b[2],
      x1^2+x2^2+x3^2+2*(x1*x2*cos(3*x4)+x2*x3*cos(3*x5)+x1*x3*cos(3*(x4+x5)))-b[3],
      x1^2+x2^2+x3^2+2*(x1*x2*cos(4*x4)+x2*x3*cos(4*x5)+x1*x3*cos(4*(x4+x5)))-b[4],
      x1^2+x2^2+x3^2+2*(x1*x2*cos(5*x4)+x2*x3*cos(5*x5)+x1*x3*cos(5*(x4+x5)))-b[5] ]:

[13011.73676, 11933.13727, 10793.54766, 9952.751942, 9456.193270]

 

[13011, 11933, 10793, 9952, 9456]

(1)

F:=[ eval( expand(f), [cos(x4)=x4, cos(x5)=x5, sin(x4)=y4, sin(x5)=y5] )[],
    x4^2+y4^2-1, x5^2+y5^2-1];

[2*x1*x3*x4*x5-2*x1*x3*y4*y5+2*x1*x2*x4+2*x2*x3*x5+x1^2+x2^2+x3^2-13011, 8*x1*x3*x4^2*x5^2-8*x1*x3*x4*x5*y4*y5+4*x1*x2*x4^2-4*x1*x3*x4^2-4*x1*x3*x5^2+4*x2*x3*x5^2+x1^2-2*x1*x2+2*x1*x3+x2^2-2*x2*x3+x3^2-11933, 32*x1*x3*x4^3*x5^3-32*x1*x3*x4^2*x5^2*y4*y5-24*x1*x3*x4^3*x5+8*x1*x3*x4^2*y4*y5-24*x1*x3*x4*x5^3+8*x1*x3*x5^2*y4*y5+8*x1*x2*x4^3+8*x2*x3*x5^3+18*x1*x3*x4*x5-2*x1*x3*y4*y5-6*x1*x2*x4-6*x2*x3*x5+x1^2+x2^2+x3^2-10793, 128*x1*x3*x4^4*x5^4-128*x1*x3*x4^3*x5^3*y4*y5-128*x1*x3*x4^4*x5^2+64*x1*x3*x4^3*x5*y4*y5-128*x1*x3*x4^2*x5^4+64*x1*x3*x4*x5^3*y4*y5+16*x1*x2*x4^4+16*x1*x3*x4^4+128*x1*x3*x4^2*x5^2-32*x1*x3*x4*x5*y4*y5+16*x1*x3*x5^4+16*x2*x3*x5^4-16*x1*x2*x4^2-16*x1*x3*x4^2-16*x1*x3*x5^2-16*x2*x3*x5^2+x1^2+2*x1*x2+2*x1*x3+x2^2+2*x2*x3+x3^2-9952, 512*x1*x3*x4^5*x5^5-512*x1*x3*x4^4*x5^4*y4*y5-640*x1*x3*x4^5*x5^3+384*x1*x3*x4^4*x5^2*y4*y5-640*x1*x3*x4^3*x5^5+384*x1*x3*x4^2*x5^4*y4*y5+160*x1*x3*x4^5*x5-32*x1*x3*x4^4*y4*y5+800*x1*x3*x4^3*x5^3-288*x1*x3*x4^2*x5^2*y4*y5+160*x1*x3*x4*x5^5-32*x1*x3*x5^4*y4*y5+32*x1*x2*x4^5+32*x2*x3*x5^5-200*x1*x3*x4^3*x5+24*x1*x3*x4^2*y4*y5-200*x1*x3*x4*x5^3+24*x1*x3*x5^2*y4*y5-40*x1*x2*x4^3-40*x2*x3*x5^3+50*x1*x3*x4*x5-2*x1*x3*y4*y5+10*x1*x2*x4+10*x2*x3*x5+x1^2+x2^2+x3^2-9456, x4^2+y4^2-1, x5^2+y5^2-1]

(2)

Groebner:-IsProper(F);          # ==> true i.e. the system is compatible

true

(3)

Groebner:-IsZeroDimensional(F); # --> true i.e. finite number of solutions

true

(4)

#Groebner:-Basis(F, tdeg(x1,x2,x3,x4,x5,y4,y5));

Groebner:-SuggestVariableOrder(F);

y5, y4, x3, x2, x1, x5, x4

(5)

G:=Groebner:-Basis(F, tdeg(y5, y4, x3, x2, x1, x5, x4));

`[Length of output exceeds limit of 1000000]`

(6)

Probably a plex basis is also doable but larger.

 

nops(G)

292

(7)

 

Probably "it's a shame" is not the best formulation.

restart;

gA:=x->mA*x+nA: gB:=x->mB*x+nB: gC:=x->mC*x+nC:

Oa:= xa,ya : Ob:= xb,yb : Oc:= xc,yc :

det:=LinearAlgebra:-Determinant:

Numeric:=NULL:

# numeric (optional)
xa:=1: xb:=4: xc:=8: ya:=0: yb:=0: yc:=0:
mA:=2: mB:=-3: mC:=-1: nA:=4: nB:=-3: nC:=10:
Numeric:=explicit:

sys:=
'det'(<a_, gA(a_),1; b_, gB(b_),1; Oc,1>),
'det'(<b_, gB(b_),1; c_, gC(c_),1; Oa,1>),
'det'(<c_, gC(c_),1; a_, gA(a_),1; Ob,1>):

sol:=solve({sys}, {a_,b_,c_}, Numeric);  # A = [a_,gA(a_)] etc

{a_ = -2, b_ = -1, c_ = 10}, {a_ = 64/151, b_ = -86/25, c_ = -103/8}

(1)

with(plots):

display(
plot([gA(x), gB(x), gC(x)], x=-16..13, color=green),                                             #gA,gB,gC
pointplot([[Oa],[Ob],[Oc]], symbol=solidcircle,symbolsize=12, color=gold),                       #Oa,Ob,Oc
pointplot( eval([[a_, gA(a_)], [b_, gB(b_)], [c_, gC(c_)]], sol[2]), symbolsize=20, color=red),  #A,B,C
plot( eval( [gA(a_) + (gB(b_)-gA(a_))/(b_-a_)*(x-a_),                                            #AB
             gB(b_) + (gC(c_)-gB(b_))/(c_-b_)*(x-b_),                                            #BC
             gC(c_) + (gA(a_)-gC(c_))/(a_-c_)*(x-c_)],  sol[2]),                                 #AC
     x=-16..13, color=blue)
);

 

 

 

P.S. In the worksheet the code is better formatted.
Download ABC-vv.mw

n must be >3
The polygon with maximal area is the cyclic one.
Denote L[i] the sides, here L[i] = i, and r the radius of the circle.
Let a[i] be the angle A[i]OA[i+1], where A[1], ..., A[n] are the vertices
and O is the center of the circumscribed circle. Then 

Sum(arcsin(L[i]/r/2, i=1..n) = Pi  ==> r

restart
R := n -> local i,r; fsolve(sum(arcsin(i/r/2), i=1..n) - Pi, r =n/2 .. 2*n):

Vector( 17, k -> 'R'(k+3)=R(k+3));

n:=7:  # Graphic example
r:=R(n):
b[0]:=0:
for i to n do a[i] := 2*arcsin(i/r/2); b[i]:=b[i-1]+a[i] od:
MaxArea:=r^2/2*add(sin(a[i]), i=1..n); 
plot([seq]([cos(b[i]),sin(b[i])], i=0..n), axes=none);

        MaxArea := 54.72494665

evala(%);
#           2

Hint for a student solution "by hand":
-  Use  (a+b)^3 = a^3 + b^3 + 3*a*b*(a + b)

-- Obtain a cubic equation satisfied by your number x and factor it as (x-2)(...)=0. 

                          

intat(f(x), x=a)  computes an antiderivative F(x) of f(x) and returns F(a).

Two antiderivatives may differ by an additive constant, depending e,g. on the method used to compute it.

 intat is useful when it is desired to subsequently perform a change of variable, or in the case of symbolic manipulation of the solutions of differential equations.

 

So, for example,

intat(x^2, x=1);

1/3

(1)

has not much sense, unless you know which antiderivative was computed.

 

restart;

f := sin(x)*cos(x) + 1/x;

sin(x)*cos(x)+1/x

(2)

F1 := intat(f, x=a);

ln(a)+(1/2)*sin(a)^2

(3)

F2 := intat(simplify(f), x=a);

ln(a)-(1/4)*cos(2*a)

(4)

simplify(F1-F2);

1/4

(5)

F3 := Int(f, x=0..a); value(%);

Int(sin(x)*cos(x)+1/x, x = 0 .. a)

 

infinity

(6)

Note. When Intat(f(x), x=a)  is replaced by Int(f(x). x=0..a), odesolve will verify it, but 0 could be out of dom(f), so, nonsense!

 

1/2*evalf(Int(min(-6*cos(t), 2-2*cos(t))^2, t=Pi/2..3*Pi/2));
identify(%);
#                          15.70796327
#                              5 Pi

Using Edge is ok, Firefox too; maybe try some font settings:

 

The answer for your previous problem works here too.

restart;
eq:=x^2+y^2-N*(1+x*y):  # [x=0, y=sqrt(N)] and [x=sqrt(N),y=0] are solutions!
XY:=[X=x, Y=2*y-x*N]: xy:=solve(XY,[x,y])[]:
EQ:=simplify(eval(eq,xy)):
for N in [9, 49 , 729] do
  SOL:=isolve(EQ):
  sol[N]:=map(u -> simplify(eval(xy, u)), [SOL]);
  num:={seq}(simplify(sol[N])[],_Z1=0..2);
  print('N'=N, select(type,num, [anything=integer,anything=integer]));
od:

N = 9, {[x = -1497363, y = -13307787], 
  [x = -1497363, y = -168480], [x = -168480, y = -1497363], 
  [x = -168480, y = -18957], [x = -18957, y = -168480], 
  [x = -18957, y = -2133], [x = -2133, y = -18957], 
  [x = -2133, y = -240], [x = -240, y = -2133], 
  [x = -240, y = -27], [x = -27, y = -240], [x = -27, y = -3], 
  [x = -3, y = -27], [x = -3, y = 0], [x = 0, y = -3], 
  [x = 0, y = 3], [x = 3, y = 0], [x = 3, y = 27], 
  [x = 27, y = 3], [x = 27, y = 240], [x = 240, y = 27], 
  [x = 240, y = 2133], [x = 2133, y = 240], 
  [x = 2133, y = 18957], [x = 18957, y = 2133], 
  [x = 18957, y = 168480], [x = 168480, y = 18957], 
  [x = 168480, y = 1497363], [x = 1497363, y = 168480], 
  [x = 1497363, y = 13307787]}

N = 49, {[x = -96687343207, y = -4735705783543], 
  [x = -96687343207, y = -1974033600], 
  [x = -1974033600, y = -96687343207], 
  [x = -1974033600, y = -40303193], 
  [x = -40303193, y = -1974033600], [x = -40303193, y = -822857], 
  [x = -822857, y = -40303193], [x = -822857, y = -16800], 
  [x = -16800, y = -822857], [x = -16800, y = -343], 
  [x = -343, y = -16800], [x = -343, y = -7], [x = -7, y = -343], 
  [x = -7, y = 0], [x = 0, y = -7], [x = 0, y = 7], 
  [x = 7, y = 0], [x = 7, y = 343], [x = 343, y = 7], 
  [x = 343, y = 16800], [x = 16800, y = 343], 
  [x = 16800, y = 822857], [x = 822857, y = 16800], 
  [x = 822857, y = 40303193], [x = 40303193, y = 822857], 
  [x = 40303193, y = 1974033600], [x = 1974033600, y = 40303193], 
  [x = 1974033600, y = 96687343207], 
  [x = 96687343207, y = 1974033600], 
  [x = 96687343207, y = 4735705783543]}

N = 729, {[x = -4052517025117644747, y = -2954279352292037818803], 
  [x = -4052517025117644747, y = -5559018725201760], 
  [x = -5559018725201760, y = -4052517025117644747], 
  [x = -5559018725201760, y = -7625554438293], 
  [x = -7625554438293, y = -5559018725201760], 
  [x = -7625554438293, y = -10460313837], 
  [x = -10460313837, y = -7625554438293], 
  [x = -10460313837, y = -14348880], 
  [x = -14348880, y = -10460313837], [x = -14348880, y = -19683], 
  [x = -19683, y = -14348880], [x = -19683, y = -27], 
  [x = -27, y = -19683], [x = -27, y = 0], [x = 0, y = -27], 
  [x = 0, y = 27], [x = 27, y = 0], [x = 27, y = 19683], 
  [x = 19683, y = 27], [x = 19683, y = 14348880], 
  [x = 14348880, y = 19683], [x = 14348880, y = 10460313837], 
  [x = 10460313837, y = 14348880], 
  [x = 10460313837, y = 7625554438293], 
  [x = 7625554438293, y = 10460313837], 
  [x = 7625554438293, y = 5559018725201760], 
  [x = 5559018725201760, y = 7625554438293], 
  [x = 5559018725201760, y = 4052517025117644747], 
  [x = 4052517025117644747, y = 5559018725201760], 
  [x = 4052517025117644747, y = 2954279352292037818803]}

With sol[N] you may inspect the general solution depending on _Z1.


 

 

isolve is old and should be updated.

Actually isolve knows to solve generalized Pell equations. It only needs a little help to convert the diophantine quadratic to generalized Pell form.

At the end we must filter the obtained numeric solutions in order to eliminate the non-integer ones due to the form of xy, see below.

 

restart;

eq:=x^2 - 12*x*y + 6*y^2 + 4*x + 12*y - 3:

XY:=[X = 2*x-12*y+4, Y = -5*y+3]; # via complete squares

[X = 2*x-12*y+4, Y = -5*y+3]

(1)

xy:=solve(XY,[x,y])[];

[x = (1/2)*X+8/5-(6/5)*Y, y = -(1/5)*Y+3/5]

(2)

EQ:=simplify(eval(eq,xy));

(1/4)*X^2+19/5-(6/5)*Y^2

(3)

SOL:=isolve( EQ ):

sol:=map(u -> simplify(eval(xy, u)), [SOL]);

[[x = (1/10)*(30^(1/2)+7)*(11-2*30^(1/2))^_Z1+8/5+(1/10)*(-30^(1/2)+7)*(11+2*30^(1/2))^_Z1, y = (1/60)*(-30^(1/2)+12)*(11-2*30^(1/2))^_Z1+3/5+(1/60)*(30^(1/2)+12)*(11+2*30^(1/2))^_Z1], [x = (1/10)*(3*30^(1/2)-17)*(11-2*30^(1/2))^_Z1+8/5+(1/10)*(-3*30^(1/2)-17)*(11+2*30^(1/2))^_Z1, y = (1/60)*(30^(1/2)-12)*(11-2*30^(1/2))^_Z1+3/5+(1/60)*(-30^(1/2)-12)*(11+2*30^(1/2))^_Z1], [x = (1/10)*(-3*30^(1/2)-17)*(11-2*30^(1/2))^_Z1+8/5+(1/10)*(3*30^(1/2)-17)*(11+2*30^(1/2))^_Z1, y = (1/60)*(-30^(1/2)-12)*(11-2*30^(1/2))^_Z1+3/5+(1/60)*(30^(1/2)-12)*(11+2*30^(1/2))^_Z1], [x = (1/10)*(-30^(1/2)+7)*(11-2*30^(1/2))^_Z1+8/5+(1/10)*(30^(1/2)+7)*(11+2*30^(1/2))^_Z1, y = (1/60)*(30^(1/2)+12)*(11-2*30^(1/2))^_Z1+3/5+(1/60)*(-30^(1/2)+12)*(11+2*30^(1/2))^_Z1], [x = (1/10)*(30^(1/2)-7)*(11-2*30^(1/2))^_Z1+8/5+(1/10)*(-30^(1/2)-7)*(11+2*30^(1/2))^_Z1, y = (1/60)*(-30^(1/2)-12)*(11-2*30^(1/2))^_Z1+3/5+(1/60)*(30^(1/2)-12)*(11+2*30^(1/2))^_Z1], [x = (1/10)*(3*30^(1/2)+17)*(11-2*30^(1/2))^_Z1+8/5+(1/10)*(-3*30^(1/2)+17)*(11+2*30^(1/2))^_Z1, y = (1/60)*(30^(1/2)+12)*(11-2*30^(1/2))^_Z1+3/5+(1/60)*(-30^(1/2)+12)*(11+2*30^(1/2))^_Z1], [x = (1/10)*(-3*30^(1/2)+17)*(11-2*30^(1/2))^_Z1+8/5+(1/10)*(3*30^(1/2)+17)*(11+2*30^(1/2))^_Z1, y = (1/60)*(-30^(1/2)+12)*(11-2*30^(1/2))^_Z1+3/5+(1/60)*(30^(1/2)+12)*(11+2*30^(1/2))^_Z1], [x = (1/10)*(-30^(1/2)-7)*(11-2*30^(1/2))^_Z1+8/5+(1/10)*(30^(1/2)-7)*(11+2*30^(1/2))^_Z1, y = (1/60)*(30^(1/2)-12)*(11-2*30^(1/2))^_Z1+3/5+(1/60)*(-30^(1/2)-12)*(11+2*30^(1/2))^_Z1]]

(4)

nops(sol)

8

(5)

num:={seq}(simplify(sol)[],_Z1=0..20): # some numeric solutions

numsols:=select(type,num,  [anything=integer,anything=integer]);

{[x = 3, y = 1], [x = 3, y = 3], [x = 5, y = 1], [x = 5, y = 7], [x = 29, y = 3], [x = 29, y = 53], [x = 75, y = 7], [x = 75, y = 141], [x = 603, y = 53], [x = 603, y = 1151], [x = 1613, y = 141], [x = 1613, y = 3083], [x = 13205, y = 1151], [x = 13205, y = 25257], [x = 35379, y = 3083], [x = 35379, y = 67673], [x = 289875, y = 25257], [x = 289875, y = 554491], [x = 776693, y = 67673], [x = 776693, y = 1485711], [x = 6364013, y = 554491], [x = 6364013, y = 12173533], [x = 17051835, y = 1485711], [x = 17051835, y = 32617957], [x = 139718379, y = 12173533], [x = 139718379, y = 267263223], [x = 374363645, y = 32617957], [x = 374363645, y = 716109331], [x = 3067440293, y = 267263223], [x = 3067440293, y = 5867617361], [x = 8218948323, y = 716109331], [x = 8218948323, y = 15721787313], [x = 67343968035, y = 5867617361], [x = 67343968035, y = 128820318707], [x = 180442499429, y = 15721787313], [x = 180442499429, y = 345163211543], [x = 1478499856445, y = 128820318707], [x = 1478499856445, y = 2828179394181], [x = 3961516039083, y = 345163211543], [x = 3961516039083, y = 7577868866621], [x = 32459652873723, y = 2828179394181], [x = 32459652873723, y = 62091126353263], [x = 86972910360365, y = 7577868866621], [x = 86972910360365, y = 166367951854107], [x = 712633863365429, y = 62091126353263], [x = 712633863365429, y = 1363176600377593], [x = 1909442511888915, y = 166367951854107], [x = 1909442511888915, y = 3652517071923721], [x = 15645485341165683, y = 1363176600377593], [x = 15645485341165683, y = 29927794081953771], [x = 41920762351195733, y = 3652517071923721], [x = 41920762351195733, y = 80189007630467743], [x = 343488043642279565, y = 29927794081953771], [x = 343488043642279565, y = 657048293202605357], [x = 920347329214417179, y = 80189007630467743], [x = 920347329214417179, y = 1760505650798366613], [x = 7541091474788984715, y = 657048293202605357], [x = 7541091474788984715, y = 14425134656375364071], [x = 20205720480365982173, y = 1760505650798366613], [x = 20205720480365982173, y = 38650935309933597731], [x = 165560524401715384133, y = 14425134656375364071], [x = 165560524401715384133, y = 316695914147055404193], [x = 443605503238837190595, y = 38650935309933597731], [x = 443605503238837190595, y = 848560071167740783457], [x = 3634790445362949466179, y = 316695914147055404193], [x = 3634790445362949466179, y = 6952884976578843528163], [x = 9739115350774052210885, y = 848560071167740783457], [x = 9739115350774052210885, y = 18629670630380363638311], [x = 79799829273583172871773, y = 6952884976578843528163], [x = 79799829273583172871773, y = 152646773570587502215381], [x = 213816932213790311448843, y = 18629670630380363638311], [x = 213816932213790311448843, y = 409004193797200259259373], [x = 1751961453573466853712795, y = 152646773570587502215381], [x = 1751961453573466853712795, y = 3351276133576346205210207], [x = 4694233393352612799663629, y = 409004193797200259259373], [x = 4694233393352612799663629, y = 8979462592908025340067883], [x = 38463352149342687608809685, y = 3351276133576346205210207], [x = 38463352149342687608809685, y = 73575428165109029012409161], [x = 103059317721543691281150963, y = 8979462592908025340067883], [x = 103059317721543691281150963, y = 197139172850179357222234041], [x = 844441785831965660540100243, y = 73575428165109029012409161], [x = 2262610756480608595385657525, y = 197139172850179357222234041]}

(6)

nops(numsols);

82

(7)

{seq}( eval(eq, s), s=numsols); #check

{0}

(8)

 

 

Download dioph-sols-vv.mw

 

select(u -> nops(u)=m and andmap(isprime,u), L);

 

 

restart;

dis:= (A,B) -> sqrt( (A[1]-B[1])^2 + (A[2]-B[2])^2 ):
P:= unapply(dis(A,B)+dis(B,C)+dis(C,A), [A,B,C]):

A0:=[0,0]:
A1:=[u1,0]:
A2:=[u2,u3]:
A3:=v1*~A1:
A4:=A1+v2*~(A2-A1):
A5:=A1+v3*~(A2-A1):
A6:=A0+v4*~(A2-A0):
A7:=A0+v5*~(A2-A0):
A8:=A6+v6*~(A4-A6):

eps:=0.05:

perim:=
P(A0,A3,A6)=10, P(A6,A3,A4)=15, P(A3,A1,A4)=11,
P(A6,A8,A7)=9,  P(A8,A5,A7)=13, P(A8,A4,A5)=12,
P(A7,A5,A2)=20:

vars := u1=1..50, u2=1..50, u3=1..50,
v1=eps ..1-eps, v2=eps ..1-eps, v3=eps ..1-eps, v4=eps ..1-eps, v5=eps ..1-eps, v6=eps ..1-eps:

inisol:=[u1 = 8, u2 = 3, u3 = 12, v1 = 0.5, v2 = 0.3, v3 = 0.5, v4 = 0.09, v5 = 0.3, v6 = 0.5]:

sol:=DirectSearch:-SolveEquations([perim], [vars], initialpoint=inisol );

[7.928429359693041*10^(-17), Vector(7, {(1) = 0.1798504456e-8, (2) = -0.1393335225e-8, (3) = -0.7304805649e-9, (4) = 0.7992083439e-8, (5) = -0.1359651947e-8, (6) = 0.1542570516e-8, (7) = 0.2339469063e-8}), [u1 = 8.211758237046912, u2 = 1.8442345202064532, u3 = 12.033442054587029, v1 = .5526589984562774, v2 = .26313930832995064, v3 = .5414796127553622, v4 = 0.7943775626427665e-1, v5 = .2941739734925204, v6 = .485843681048224], 5405]

(1)

plots:-display(plot(eval([A0,A1,A2,A0],sol[3])), plot(eval([A3,A4,A6,A3],sol[3])), plot(eval([A5,A7,A8,A5],sol[3])), scaling=constrained);

 

eval([perim], sol[3]);

[HFloat(10.000000001798504) = 10, HFloat(14.999999998606665) = 15, HFloat(10.99999999926952) = 11, HFloat(9.000000007992083) = 9, HFloat(12.999999998640348) = 13, HFloat(12.00000000154257) = 12, HFloat(20.00000000233947) = 20]

(2)

eval(seq("A"||i=A||i,i=0..8), sol[3])

"A0" = [0, 0], "A1" = [HFloat(8.211758237046912), 0], "A2" = [HFloat(1.8442345202064532), HFloat(12.033442054587029)], "A3" = [HFloat(4.538302082851432), 0], "A4" = [HFloat(6.536212450422957), HFloat(3.166471619072571)], "A5" = [HFloat(4.763873960641556), HFloat(6.515863543831874)], "A6" = [HFloat(0.14650185231032542), HFloat(0.9559096369525809)], "A7" = [HFloat(0.5425257968612042), HFloat(3.539925463989865)], "A8" = [HFloat(3.2509023701302153), HFloat(2.029897207531015)]

(3)

 


(Edited - a typo).

Download perims-vv.mw

The curve length is infinite. The integrand has a singularity at t=ln(Pi/2):

restart;
f:= t -> sqrt((sin(t/cos(exp(t))) + t*(1/cos(exp(t)) + t*exp(t)*sin(exp(t))/cos(exp(t))^2)*cos(t/cos(exp(t))))^2 + (cos(t) - t*sin(t))^2 + 2*t):
a:=ln(Pi/2): evalf(a);
#                          0.4515827054

Digits:=15:
:-int(f, a..a+1/10, numeric, epsilon=1e-5);
#                     3.33001574946940* 10^13  
1 2 3 4 5 6 7 Last Page 2 of 117