Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

Some menu fonts have become smaller under Windows 10 for some reason.
There where no changes of the system settings nor system updates. A system restart did not restore to normal font size. This also on Maple 2024 and lower.

Any ideas what could have caused this and how to restore to normal?

That's from annother Windows 10 system.

 

How to solve these pde equations in maple to get the similar type graphs.

Ode equations we can solve directly but these equations are pde .

in the article they have solved the governing equations by series solution? 

can we solve these equations in maple also by series solution or any other method is there to solve these equations

I have used plot3d in Maple to generate a 3D plot, but I’m not sure how to export it in high resolution. I tried right-clicking to export the image directly, but the SVG output appeared garbled, and the JPEG version was too low in quality. I also attempted to export the plot using commands, but the resulting image still lacked sufficient resolution. I would like to ask how I can properly export a high-quality 3D figure from Maple.

Commands I have tried:

plotsetup(jpeg, plotoutput = "C:/Users/gfy/Desktop/data5151.jpg", plotoptions = `dpi=1200`);
print(ddd);
plotsetup(default);

I have a print format problem in Maple 2024.  For documents I print out, I use a special layout where all the contents are inside a table. The table is rigged to print on A4 paper. This is useful for my math notes. I havent done this for 18+ months. There appears to be a bug in Maple 2024. Only the first page is printed. Things work ok in Maple 2023. Maybe it is a setting difference or corruption in my install. Could somebody confirm this. Also if you can reproduce the problem could you let me know if it is in Maple 2025. I haven't upgraded yet.

 

2025-05-15_Q_page_print_formating.mw 
2025-05-15_Q_page_print_formating_M_2023.pdf
2025-05-15_Q_page_print_formating_M_2024.pdf

The last few mornings there's been a high rate of spam.  I just deleted 5 or 6 posts.  How are they getting through and why haven't they stopped?

in Maple 2025 on Linux, I see random Error, (in evala/Factors) the modular inverse does not exist from call to allvalues().

Sometimes it happens and sometimes not. Any explanation of this?

 

It seems Maple uses random number generatror to decide when to generate an internal error as I am not able to see a pattern.

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1868. The version installed in this computer is 1866 created 2025, May 6, 10:52 hours Pacific Time, found in the directory /home/me/maple/toolbox/2025/Physics Updates/lib/`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 17 and is the same as the version installed in this computer, created May 5, 2025, 12:37 hours Eastern Time.`

restart;

kernelopts('assertlevel'=2):

sol:=[1/3*exp(RootOf(-5*I*Pi-ln(256/(x+1)^6/(exp(_Z)^81+9)*(exp(_Z)^81+3)^3)+162*_Z))^81+2];
allvalues(sol);

[(1/3)*(exp(RootOf(-(5*I)*Pi-ln(256*((exp(_Z))^81+3)^3/((x+1)^6*((exp(_Z))^81+9)))+162*_Z)))^81+2]

Error, (in evala/Factors) the modular inverse does not exist

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

Error, (in evala/Factors) the modular inverse does not exist

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

Error, (in evala/Factors) the modular inverse does not exist

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

 


 

Download why_fail_sometimes_may_11_2025_V2.mw

Update was able to produce this also in Maple 2024.2 on windows

interface(version);

`Standard Worksheet Interface, Maple 2024.2, Windows 10, October 29 2024 Build ID 1872373`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1868. The version installed in this computer is 1849 created 2025, March 12, 12:37 hours Pacific Time, found in the directory C:\Users\Owner\maple\toolbox\2024\Physics Updates\lib\`

restart;

kernelopts('assertlevel'=2):
sol:=[1/3*exp(RootOf(-5*I*Pi-ln(256/(x+1)^6/(exp(_Z)^81+9)*(exp(_Z)^81+3)^3)+162*_Z))^81+2];
allvalues(sol);

[(1/3)*(exp(RootOf(-(5*I)*Pi-ln(256*((exp(_Z))^81+3)^3/((x+1)^6*((exp(_Z))^81+9)))+162*_Z)))^81+2]

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

Error, (in evala/Factors) the modular inverse does not exist

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

Error, (in evala/Factors) the modular inverse does not exist

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

`[Length of output exceeds limit of 100000]`

allvalues(sol);

Error, (in evala/Factors) the modular inverse does not exist

 


 

Download modular_inverse_maple_2024_2.mw

 

I would like to automatically select a set of parameters that gives me a "good" solution, ideally, one where not all parameters are zero. The parameters A[0], A[1], A[2], B[1], and B[2] are essential and must always be included. The other parameters are optional and can be selected in various combinations (e.g., one, two, or more at a time).

Currently, I manually add or remove these optional parameters, which is time-consuming. I’m looking for a way to automate the selection process to find the best combination of parameters that yields a valid and meaningful (non-zero) solution.

How can I approach this systematically?

params.mw

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

with(LargeExpressions)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, t), quiet); declare(V(xi), quiet); declare(U(xi), quiet)

NULL

CoefficientNullity := [0 = k^3*(beta*s-w)*(A[0]+A[1]+A[2]+B[1]+B[2])*(-5*beta*s*A[0]^2*c[2]-10*beta*s*A[0]*A[1]*c[2]-10*beta*s*A[0]*A[2]*c[2]-10*beta*s*A[0]*B[1]*c[2]-10*beta*s*A[0]*B[2]*c[2]-5*beta*s*A[1]^2*c[2]-10*beta*s*A[1]*A[2]*c[2]-10*beta*s*A[1]*B[1]*c[2]-10*beta*s*A[1]*B[2]*c[2]-5*beta*s*A[2]^2*c[2]-10*beta*s*A[2]*B[1]*c[2]-10*beta*s*A[2]*B[2]*c[2]-5*beta*s*B[1]^2*c[2]-10*beta*s*B[1]*B[2]*c[2]-5*beta*s*B[2]^2*c[2]+3*beta*k*s*w+5*w*A[0]^2*c[2]+10*w*A[0]*A[1]*c[2]+10*w*A[0]*A[2]*c[2]+10*w*A[0]*B[1]*c[2]+10*w*A[0]*B[2]*c[2]+5*w*A[1]^2*c[2]+10*w*A[1]*A[2]*c[2]+10*w*A[1]*B[1]*c[2]+10*w*A[1]*B[2]*c[2]+5*w*A[2]^2*c[2]+10*w*A[2]*B[1]*c[2]+10*w*A[2]*B[2]*c[2]+5*w*B[1]^2*c[2]+10*w*B[1]*B[2]*c[2]+5*w*B[2]^2*c[2]+2*k*s^2-5*k*w^2), 0 = (beta*s-w)*(5*beta*k^3*s*A[0]^3*c[2]-15*beta*k^3*s*A[0]^2*A[1]*c[2]-45*beta*k^3*s*A[0]^2*A[2]*c[2]+45*beta*k^3*s*A[0]^2*B[1]*c[2]+45*beta*k^3*s*A[0]^2*B[2]*c[2]-45*beta*k^3*s*A[0]*A[1]^2*c[2]-150*beta*k^3*s*A[0]*A[1]*A[2]*c[2]+30*beta*k^3*s*A[0]*A[1]*B[1]*c[2]+30*beta*k^3*s*A[0]*A[1]*B[2]*c[2]-105*beta*k^3*s*A[0]*A[2]^2*c[2]-30*beta*k^3*s*A[0]*A[2]*B[1]*c[2]-30*beta*k^3*s*A[0]*A[2]*B[2]*c[2]+75*beta*k^3*s*A[0]*B[1]^2*c[2]+150*beta*k^3*s*A[0]*B[1]*B[2]*c[2]+75*beta*k^3*s*A[0]*B[2]^2*c[2]-25*beta*k^3*s*A[1]^3*c[2]-105*beta*k^3*s*A[1]^2*A[2]*c[2]-15*beta*k^3*s*A[1]^2*B[1]*c[2]-15*beta*k^3*s*A[1]^2*B[2]*c[2]-135*beta*k^3*s*A[1]*A[2]^2*c[2]-90*beta*k^3*s*A[1]*A[2]*B[1]*c[2]-90*beta*k^3*s*A[1]*A[2]*B[2]*c[2]+45*beta*k^3*s*A[1]*B[1]^2*c[2]+90*beta*k^3*s*A[1]*B[1]*B[2]*c[2]+45*beta*k^3*s*A[1]*B[2]^2*c[2]-55*beta*k^3*s*A[2]^3*c[2]-75*beta*k^3*s*A[2]^2*B[1]*c[2]-75*beta*k^3*s*A[2]^2*B[2]*c[2]+15*beta*k^3*s*A[2]*B[1]^2*c[2]+30*beta*k^3*s*A[2]*B[1]*B[2]*c[2]+15*beta*k^3*s*A[2]*B[2]^2*c[2]+35*beta*k^3*s*B[1]^3*c[2]+105*beta*k^3*s*B[1]^2*B[2]*c[2]+105*beta*k^3*s*B[1]*B[2]^2*c[2]+35*beta*k^3*s*B[2]^3*c[2]-3*beta*k^4*s*w*A[0]+3*beta*k^4*s*w*A[1]+9*beta*k^4*s*w*A[2]-9*beta*k^4*s*w*B[1]-9*beta*k^4*s*w*B[2]-5*k^3*w*A[0]^3*c[2]+15*k^3*w*A[0]^2*A[1]*c[2]+45*k^3*w*A[0]^2*A[2]*c[2]-45*k^3*w*A[0]^2*B[1]*c[2]-45*k^3*w*A[0]^2*B[2]*c[2]+45*k^3*w*A[0]*A[1]^2*c[2]+150*k^3*w*A[0]*A[1]*A[2]*c[2]-30*k^3*w*A[0]*A[1]*B[1]*c[2]-30*k^3*w*A[0]*A[1]*B[2]*c[2]+105*k^3*w*A[0]*A[2]^2*c[2]+30*k^3*w*A[0]*A[2]*B[1]*c[2]+30*k^3*w*A[0]*A[2]*B[2]*c[2]-75*k^3*w*A[0]*B[1]^2*c[2]-150*k^3*w*A[0]*B[1]*B[2]*c[2]-75*k^3*w*A[0]*B[2]^2*c[2]+25*k^3*w*A[1]^3*c[2]+105*k^3*w*A[1]^2*A[2]*c[2]+15*k^3*w*A[1]^2*B[1]*c[2]+15*k^3*w*A[1]^2*B[2]*c[2]+135*k^3*w*A[1]*A[2]^2*c[2]+90*k^3*w*A[1]*A[2]*B[1]*c[2]+90*k^3*w*A[1]*A[2]*B[2]*c[2]-45*k^3*w*A[1]*B[1]^2*c[2]-90*k^3*w*A[1]*B[1]*B[2]*c[2]-45*k^3*w*A[1]*B[2]^2*c[2]+55*k^3*w*A[2]^3*c[2]+75*k^3*w*A[2]^2*B[1]*c[2]+75*k^3*w*A[2]^2*B[2]*c[2]-15*k^3*w*A[2]*B[1]^2*c[2]-30*k^3*w*A[2]*B[1]*B[2]*c[2]-15*k^3*w*A[2]*B[2]^2*c[2]-35*k^3*w*B[1]^3*c[2]-105*k^3*w*B[1]^2*B[2]*c[2]-105*k^3*w*B[1]*B[2]^2*c[2]-35*k^3*w*B[2]^3*c[2]+40*beta^2*k^2*s^2*A[1]+80*beta^2*k^2*s^2*A[2]-40*beta^2*k^2*s^2*B[1]-40*beta^2*k^2*s^2*B[2]-2*k^4*s^2*A[0]+2*k^4*s^2*A[1]+6*k^4*s^2*A[2]-6*k^4*s^2*B[1]-6*k^4*s^2*B[2]+5*k^4*w^2*A[0]-5*k^4*w^2*A[1]-15*k^4*w^2*A[2]+15*k^4*w^2*B[1]+15*k^4*w^2*B[2]-80*beta*k^2*s*w*A[1]-160*beta*k^2*s*w*A[2]+80*beta*k^2*s*w*B[1]+80*beta*k^2*s*w*B[2]+40*k^2*s^2*A[1]+80*k^2*s^2*A[2]-40*k^2*s^2*B[1]-40*k^2*s^2*B[2]-160*beta*s*w*A[1]-320*beta*s*w*A[2]+160*beta*s*w*B[1]+160*beta*s*w*B[2]+160*s^2*A[1]+320*s^2*A[2]-160*s^2*B[1]-160*s^2*B[2]), 0 = (beta*s-w)*(25*beta*k^3*s*A[0]^3*c[2]+75*beta*k^3*s*A[0]^2*A[1]*c[2]+15*beta*k^3*s*A[0]^2*A[2]*c[2]+15*beta*k^3*s*A[0]^2*B[1]*c[2]+15*beta*k^3*s*A[0]^2*B[2]*c[2]+15*beta*k^3*s*A[0]*A[1]^2*c[2]-210*beta*k^3*s*A[0]*A[1]*A[2]*c[2]+150*beta*k^3*s*A[0]*A[1]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[1]*B[2]*c[2]-285*beta*k^3*s*A[0]*A[2]^2*c[2]+150*beta*k^3*s*A[0]*A[2]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[2]*B[2]*c[2]-105*beta*k^3*s*A[0]*B[1]^2*c[2]-210*beta*k^3*s*A[0]*B[1]*B[2]*c[2]-105*beta*k^3*s*A[0]*B[2]^2*c[2]-35*beta*k^3*s*A[1]^3*c[2]-285*beta*k^3*s*A[1]^2*A[2]*c[2]+75*beta*k^3*s*A[1]^2*B[1]*c[2]+75*beta*k^3*s*A[1]^2*B[2]*c[2]-525*beta*k^3*s*A[1]*A[2]^2*c[2]+30*beta*k^3*s*A[1]*A[2]*B[1]*c[2]+30*beta*k^3*s*A[1]*A[2]*B[2]*c[2]+15*beta*k^3*s*A[1]*B[1]^2*c[2]+30*beta*k^3*s*A[1]*B[1]*B[2]*c[2]+15*beta*k^3*s*A[1]*B[2]^2*c[2]-275*beta*k^3*s*A[2]^3*c[2]-105*beta*k^3*s*A[2]^2*B[1]*c[2]-105*beta*k^3*s*A[2]^2*B[2]*c[2]+75*beta*k^3*s*A[2]*B[1]^2*c[2]+150*beta*k^3*s*A[2]*B[1]*B[2]*c[2]+75*beta*k^3*s*A[2]*B[2]^2*c[2]-95*beta*k^3*s*B[1]^3*c[2]-285*beta*k^3*s*B[1]^2*B[2]*c[2]-285*beta*k^3*s*B[1]*B[2]^2*c[2]-95*beta*k^3*s*B[2]^3*c[2]-15*beta*k^4*s*w*A[0]-15*beta*k^4*s*w*A[1]-3*beta*k^4*s*w*A[2]-3*beta*k^4*s*w*B[1]-3*beta*k^4*s*w*B[2]-25*k^3*w*A[0]^3*c[2]-75*k^3*w*A[0]^2*A[1]*c[2]-15*k^3*w*A[0]^2*A[2]*c[2]-15*k^3*w*A[0]^2*B[1]*c[2]-15*k^3*w*A[0]^2*B[2]*c[2]-15*k^3*w*A[0]*A[1]^2*c[2]+210*k^3*w*A[0]*A[1]*A[2]*c[2]-150*k^3*w*A[0]*A[1]*B[1]*c[2]-150*k^3*w*A[0]*A[1]*B[2]*c[2]+285*k^3*w*A[0]*A[2]^2*c[2]-150*k^3*w*A[0]*A[2]*B[1]*c[2]-150*k^3*w*A[0]*A[2]*B[2]*c[2]+105*k^3*w*A[0]*B[1]^2*c[2]+210*k^3*w*A[0]*B[1]*B[2]*c[2]+105*k^3*w*A[0]*B[2]^2*c[2]+35*k^3*w*A[1]^3*c[2]+285*k^3*w*A[1]^2*A[2]*c[2]-75*k^3*w*A[1]^2*B[1]*c[2]-75*k^3*w*A[1]^2*B[2]*c[2]+525*k^3*w*A[1]*A[2]^2*c[2]-30*k^3*w*A[1]*A[2]*B[1]*c[2]-30*k^3*w*A[1]*A[2]*B[2]*c[2]-15*k^3*w*A[1]*B[1]^2*c[2]-30*k^3*w*A[1]*B[1]*B[2]*c[2]-15*k^3*w*A[1]*B[2]^2*c[2]+275*k^3*w*A[2]^3*c[2]+105*k^3*w*A[2]^2*B[1]*c[2]+105*k^3*w*A[2]^2*B[2]*c[2]-75*k^3*w*A[2]*B[1]^2*c[2]-150*k^3*w*A[2]*B[1]*B[2]*c[2]-75*k^3*w*A[2]*B[2]^2*c[2]+95*k^3*w*B[1]^3*c[2]+285*k^3*w*B[1]^2*B[2]*c[2]+285*k^3*w*B[1]*B[2]^2*c[2]+95*k^3*w*B[2]^3*c[2]+120*beta^2*k^2*s^2*A[1]+560*beta^2*k^2*s^2*A[2]+200*beta^2*k^2*s^2*B[1]+200*beta^2*k^2*s^2*B[2]-10*k^4*s^2*A[0]-10*k^4*s^2*A[1]-2*k^4*s^2*A[2]-2*k^4*s^2*B[1]-2*k^4*s^2*B[2]+25*k^4*w^2*A[0]+25*k^4*w^2*A[1]+5*k^4*w^2*A[2]+5*k^4*w^2*B[1]+5*k^4*w^2*B[2]-240*beta*k^2*s*w*A[1]-1120*beta*k^2*s*w*A[2]-400*beta*k^2*s*w*B[1]-400*beta*k^2*s*w*B[2]+120*k^2*s^2*A[1]+560*k^2*s^2*A[2]+200*k^2*s^2*B[1]+200*k^2*s^2*B[2]-2400*beta*s*w*A[1]-9920*beta*s*w*A[2]-2720*beta*s*w*B[1]-2720*beta*s*w*B[2]+2400*s^2*A[1]+9920*s^2*A[2]+2720*s^2*B[1]+2720*s^2*B[2]), 0 = (beta*s-w)*(-25*beta*k^3*s*A[0]^3*c[2]+75*beta*k^3*s*A[0]^2*A[1]*c[2]+165*beta*k^3*s*A[0]^2*A[2]*c[2]-165*beta*k^3*s*A[0]^2*B[1]*c[2]-165*beta*k^3*s*A[0]^2*B[2]*c[2]+165*beta*k^3*s*A[0]*A[1]^2*c[2]+150*beta*k^3*s*A[0]*A[1]*A[2]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[1]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[2]*c[2]-315*beta*k^3*s*A[0]*A[2]^2*c[2]+150*beta*k^3*s*A[0]*A[2]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[2]*B[2]*c[2]-75*beta*k^3*s*A[0]*B[1]^2*c[2]-150*beta*k^3*s*A[0]*B[1]*B[2]*c[2]-75*beta*k^3*s*A[0]*B[2]^2*c[2]+25*beta*k^3*s*A[1]^3*c[2]-315*beta*k^3*s*A[1]^2*A[2]*c[2]+75*beta*k^3*s*A[1]^2*B[1]*c[2]+75*beta*k^3*s*A[1]^2*B[2]*c[2]-1125*beta*k^3*s*A[1]*A[2]^2*c[2]+330*beta*k^3*s*A[1]*A[2]*B[1]*c[2]+330*beta*k^3*s*A[1]*A[2]*B[2]*c[2]-165*beta*k^3*s*A[1]*B[1]^2*c[2]-330*beta*k^3*s*A[1]*B[1]*B[2]*c[2]-165*beta*k^3*s*A[1]*B[2]^2*c[2]-825*beta*k^3*s*A[2]^3*c[2]+75*beta*k^3*s*A[2]^2*B[1]*c[2]+75*beta*k^3*s*A[2]^2*B[2]*c[2]-75*beta*k^3*s*A[2]*B[1]^2*c[2]-150*beta*k^3*s*A[2]*B[1]*B[2]*c[2]-75*beta*k^3*s*A[2]*B[2]^2*c[2]+105*beta*k^3*s*B[1]^3*c[2]+315*beta*k^3*s*B[1]^2*B[2]*c[2]+315*beta*k^3*s*B[1]*B[2]^2*c[2]+105*beta*k^3*s*B[2]^3*c[2]+15*beta*k^4*s*w*A[0]-15*beta*k^4*s*w*A[1]-33*beta*k^4*s*w*A[2]+33*beta*k^4*s*w*B[1]+33*beta*k^4*s*w*B[2]+25*k^3*w*A[0]^3*c[2]-75*k^3*w*A[0]^2*A[1]*c[2]-165*k^3*w*A[0]^2*A[2]*c[2]+165*k^3*w*A[0]^2*B[1]*c[2]+165*k^3*w*A[0]^2*B[2]*c[2]-165*k^3*w*A[0]*A[1]^2*c[2]-150*k^3*w*A[0]*A[1]*A[2]*c[2]+150*k^3*w*A[0]*A[1]*B[1]*c[2]+150*k^3*w*A[0]*A[1]*B[2]*c[2]+315*k^3*w*A[0]*A[2]^2*c[2]-150*k^3*w*A[0]*A[2]*B[1]*c[2]-150*k^3*w*A[0]*A[2]*B[2]*c[2]+75*k^3*w*A[0]*B[1]^2*c[2]+150*k^3*w*A[0]*B[1]*B[2]*c[2]+75*k^3*w*A[0]*B[2]^2*c[2]-25*k^3*w*A[1]^3*c[2]+315*k^3*w*A[1]^2*A[2]*c[2]-75*k^3*w*A[1]^2*B[1]*c[2]-75*k^3*w*A[1]^2*B[2]*c[2]+1125*k^3*w*A[1]*A[2]^2*c[2]-330*k^3*w*A[1]*A[2]*B[1]*c[2]-330*k^3*w*A[1]*A[2]*B[2]*c[2]+165*k^3*w*A[1]*B[1]^2*c[2]+330*k^3*w*A[1]*B[1]*B[2]*c[2]+165*k^3*w*A[1]*B[2]^2*c[2]+825*k^3*w*A[2]^3*c[2]-75*k^3*w*A[2]^2*B[1]*c[2]-75*k^3*w*A[2]^2*B[2]*c[2]+75*k^3*w*A[2]*B[1]^2*c[2]+150*k^3*w*A[2]*B[1]*B[2]*c[2]+75*k^3*w*A[2]*B[2]^2*c[2]-105*k^3*w*B[1]^3*c[2]-315*k^3*w*B[1]^2*B[2]*c[2]-315*k^3*w*B[1]*B[2]^2*c[2]-105*k^3*w*B[2]^3*c[2]+1120*beta^2*k^2*s^2*A[2]-320*beta^2*k^2*s^2*B[1]-320*beta^2*k^2*s^2*B[2]+10*k^4*s^2*A[0]-10*k^4*s^2*A[1]-22*k^4*s^2*A[2]+22*k^4*s^2*B[1]+22*k^4*s^2*B[2]-25*k^4*w^2*A[0]+25*k^4*w^2*A[1]+55*k^4*w^2*A[2]-55*k^4*w^2*B[1]-55*k^4*w^2*B[2]-2240*beta*k^2*s*w*A[2]+640*beta*k^2*s*w*B[1]+640*beta*k^2*s*w*B[2]+1120*k^2*s^2*A[2]-320*k^2*s^2*B[1]-320*k^2*s^2*B[2]-9600*beta*s*w*A[1]-65920*beta*s*w*A[2]+14720*beta*s*w*B[1]+14720*beta*s*w*B[2]+9600*s^2*A[1]+65920*s^2*A[2]-14720*s^2*B[1]-14720*s^2*B[2]), 0 = (beta*s-w)*(25*beta*k^3*s*A[0]^3*c[2]+75*beta*k^3*s*A[0]^2*A[1]*c[2]-45*beta*k^3*s*A[0]^2*A[2]*c[2]-45*beta*k^3*s*A[0]^2*B[1]*c[2]-45*beta*k^3*s*A[0]^2*B[2]*c[2]-45*beta*k^3*s*A[0]*A[1]^2*c[2]-330*beta*k^3*s*A[0]*A[1]*A[2]*c[2]+150*beta*k^3*s*A[0]*A[1]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[1]*B[2]*c[2]-45*beta*k^3*s*A[0]*A[2]^2*c[2]+150*beta*k^3*s*A[0]*A[2]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[2]*B[2]*c[2]-165*beta*k^3*s*A[0]*B[1]^2*c[2]-330*beta*k^3*s*A[0]*B[1]*B[2]*c[2]-165*beta*k^3*s*A[0]*B[2]^2*c[2]-55*beta*k^3*s*A[1]^3*c[2]-45*beta*k^3*s*A[1]^2*A[2]*c[2]+75*beta*k^3*s*A[1]^2*B[1]*c[2]+75*beta*k^3*s*A[1]^2*B[2]*c[2]+675*beta*k^3*s*A[1]*A[2]^2*c[2]-90*beta*k^3*s*A[1]*A[2]*B[1]*c[2]-90*beta*k^3*s*A[1]*A[2]*B[2]*c[2]-45*beta*k^3*s*A[1]*B[1]^2*c[2]-90*beta*k^3*s*A[1]*B[1]*B[2]*c[2]-45*beta*k^3*s*A[1]*B[2]^2*c[2]+825*beta*k^3*s*A[2]^3*c[2]-165*beta*k^3*s*A[2]^2*B[1]*c[2]-165*beta*k^3*s*A[2]^2*B[2]*c[2]+75*beta*k^3*s*A[2]*B[1]^2*c[2]+150*beta*k^3*s*A[2]*B[1]*B[2]*c[2]+75*beta*k^3*s*A[2]*B[2]^2*c[2]-15*beta*k^3*s*B[1]^3*c[2]-45*beta*k^3*s*B[1]^2*B[2]*c[2]-45*beta*k^3*s*B[1]*B[2]^2*c[2]-15*beta*k^3*s*B[2]^3*c[2]-15*beta*k^4*s*w*A[0]-15*beta*k^4*s*w*A[1]+9*beta*k^4*s*w*A[2]+9*beta*k^4*s*w*B[1]+9*beta*k^4*s*w*B[2]-25*k^3*w*A[0]^3*c[2]-75*k^3*w*A[0]^2*A[1]*c[2]+45*k^3*w*A[0]^2*A[2]*c[2]+45*k^3*w*A[0]^2*B[1]*c[2]+45*k^3*w*A[0]^2*B[2]*c[2]+45*k^3*w*A[0]*A[1]^2*c[2]+330*k^3*w*A[0]*A[1]*A[2]*c[2]-150*k^3*w*A[0]*A[1]*B[1]*c[2]-150*k^3*w*A[0]*A[1]*B[2]*c[2]+45*k^3*w*A[0]*A[2]^2*c[2]-150*k^3*w*A[0]*A[2]*B[1]*c[2]-150*k^3*w*A[0]*A[2]*B[2]*c[2]+165*k^3*w*A[0]*B[1]^2*c[2]+330*k^3*w*A[0]*B[1]*B[2]*c[2]+165*k^3*w*A[0]*B[2]^2*c[2]+55*k^3*w*A[1]^3*c[2]+45*k^3*w*A[1]^2*A[2]*c[2]-75*k^3*w*A[1]^2*B[1]*c[2]-75*k^3*w*A[1]^2*B[2]*c[2]-675*k^3*w*A[1]*A[2]^2*c[2]+90*k^3*w*A[1]*A[2]*B[1]*c[2]+90*k^3*w*A[1]*A[2]*B[2]*c[2]+45*k^3*w*A[1]*B[1]^2*c[2]+90*k^3*w*A[1]*B[1]*B[2]*c[2]+45*k^3*w*A[1]*B[2]^2*c[2]-825*k^3*w*A[2]^3*c[2]+165*k^3*w*A[2]^2*B[1]*c[2]+165*k^3*w*A[2]^2*B[2]*c[2]-75*k^3*w*A[2]*B[1]^2*c[2]-150*k^3*w*A[2]*B[1]*B[2]*c[2]-75*k^3*w*A[2]*B[2]^2*c[2]+15*k^3*w*B[1]^3*c[2]+45*k^3*w*B[1]^2*B[2]*c[2]+45*k^3*w*B[1]*B[2]^2*c[2]+15*k^3*w*B[2]^3*c[2]+160*beta^2*k^2*s^2*A[1]-80*beta^2*k^2*s^2*A[2]-10*k^4*s^2*A[0]-10*k^4*s^2*A[1]+6*k^4*s^2*A[2]+6*k^4*s^2*B[1]+6*k^4*s^2*B[2]+25*k^4*w^2*A[0]+25*k^4*w^2*A[1]-15*k^4*w^2*A[2]-15*k^4*w^2*B[1]-15*k^4*w^2*B[2]-320*beta*k^2*s*w*A[1]+160*beta*k^2*s*w*A[2]+160*k^2*s^2*A[1]-80*k^2*s^2*A[2]+8000*beta*s*w*A[1]+100160*beta*s*w*A[2]+20160*beta*s*w*B[1]+20160*beta*s*w*B[2]-8000*s^2*A[1]-100160*s^2*A[2]-20160*s^2*B[1]-20160*s^2*B[2]), 0 = (beta*s-w)*(-25*beta*k^3*s*A[0]^3*c[2]+75*beta*k^3*s*A[0]^2*A[1]*c[2]+105*beta*k^3*s*A[0]^2*A[2]*c[2]-105*beta*k^3*s*A[0]^2*B[1]*c[2]-105*beta*k^3*s*A[0]^2*B[2]*c[2]+105*beta*k^3*s*A[0]*A[1]^2*c[2]-210*beta*k^3*s*A[0]*A[1]*A[2]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[1]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[2]*c[2]-315*beta*k^3*s*A[0]*A[2]^2*c[2]+150*beta*k^3*s*A[0]*A[2]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[2]*B[2]*c[2]+105*beta*k^3*s*A[0]*B[1]^2*c[2]+210*beta*k^3*s*A[0]*B[1]*B[2]*c[2]+105*beta*k^3*s*A[0]*B[2]^2*c[2]-35*beta*k^3*s*A[1]^3*c[2]-315*beta*k^3*s*A[1]^2*A[2]*c[2]+75*beta*k^3*s*A[1]^2*B[1]*c[2]+75*beta*k^3*s*A[1]^2*B[2]*c[2]+315*beta*k^3*s*A[1]*A[2]^2*c[2]+210*beta*k^3*s*A[1]*A[2]*B[1]*c[2]+210*beta*k^3*s*A[1]*A[2]*B[2]*c[2]-105*beta*k^3*s*A[1]*B[1]^2*c[2]-210*beta*k^3*s*A[1]*B[1]*B[2]*c[2]-105*beta*k^3*s*A[1]*B[2]^2*c[2]+1155*beta*k^3*s*A[2]^3*c[2]-105*beta*k^3*s*A[2]^2*B[1]*c[2]-105*beta*k^3*s*A[2]^2*B[2]*c[2]-75*beta*k^3*s*A[2]*B[1]^2*c[2]-150*beta*k^3*s*A[2]*B[1]*B[2]*c[2]-75*beta*k^3*s*A[2]*B[2]^2*c[2]+105*beta*k^3*s*B[1]^3*c[2]+315*beta*k^3*s*B[1]^2*B[2]*c[2]+315*beta*k^3*s*B[1]*B[2]^2*c[2]+105*beta*k^3*s*B[2]^3*c[2]+15*beta*k^4*s*w*A[0]-15*beta*k^4*s*w*A[1]-21*beta*k^4*s*w*A[2]+21*beta*k^4*s*w*B[1]+21*beta*k^4*s*w*B[2]+25*k^3*w*A[0]^3*c[2]-75*k^3*w*A[0]^2*A[1]*c[2]-105*k^3*w*A[0]^2*A[2]*c[2]+105*k^3*w*A[0]^2*B[1]*c[2]+105*k^3*w*A[0]^2*B[2]*c[2]-105*k^3*w*A[0]*A[1]^2*c[2]+210*k^3*w*A[0]*A[1]*A[2]*c[2]+150*k^3*w*A[0]*A[1]*B[1]*c[2]+150*k^3*w*A[0]*A[1]*B[2]*c[2]+315*k^3*w*A[0]*A[2]^2*c[2]-150*k^3*w*A[0]*A[2]*B[1]*c[2]-150*k^3*w*A[0]*A[2]*B[2]*c[2]-105*k^3*w*A[0]*B[1]^2*c[2]-210*k^3*w*A[0]*B[1]*B[2]*c[2]-105*k^3*w*A[0]*B[2]^2*c[2]+35*k^3*w*A[1]^3*c[2]+315*k^3*w*A[1]^2*A[2]*c[2]-75*k^3*w*A[1]^2*B[1]*c[2]-75*k^3*w*A[1]^2*B[2]*c[2]-315*k^3*w*A[1]*A[2]^2*c[2]-210*k^3*w*A[1]*A[2]*B[1]*c[2]-210*k^3*w*A[1]*A[2]*B[2]*c[2]+105*k^3*w*A[1]*B[1]^2*c[2]+210*k^3*w*A[1]*B[1]*B[2]*c[2]+105*k^3*w*A[1]*B[2]^2*c[2]-1155*k^3*w*A[2]^3*c[2]+105*k^3*w*A[2]^2*B[1]*c[2]+105*k^3*w*A[2]^2*B[2]*c[2]+75*k^3*w*A[2]*B[1]^2*c[2]+150*k^3*w*A[2]*B[1]*B[2]*c[2]+75*k^3*w*A[2]*B[2]^2*c[2]-105*k^3*w*B[1]^3*c[2]-315*k^3*w*B[1]^2*B[2]*c[2]-315*k^3*w*B[1]*B[2]^2*c[2]-105*k^3*w*B[2]^3*c[2]+120*beta^2*k^2*s^2*A[1]+960*beta^2*k^2*s^2*A[2]-280*beta^2*k^2*s^2*B[1]-280*beta^2*k^2*s^2*B[2]+10*k^4*s^2*A[0]-10*k^4*s^2*A[1]-14*k^4*s^2*A[2]+14*k^4*s^2*B[1]+14*k^4*s^2*B[2]-25*k^4*w^2*A[0]+25*k^4*w^2*A[1]+35*k^4*w^2*A[2]-35*k^4*w^2*B[1]-35*k^4*w^2*B[2]-240*beta*k^2*s*w*A[1]-1920*beta*k^2*s*w*A[2]+560*beta*k^2*s*w*B[1]+560*beta*k^2*s*w*B[2]+120*k^2*s^2*A[1]+960*k^2*s^2*A[2]-280*k^2*s^2*B[1]-280*k^2*s^2*B[2]+4320*beta*s*w*A[1]+168960*beta*s*w*A[2]-32480*beta*s*w*B[1]-32480*beta*s*w*B[2]-4320*s^2*A[1]-168960*s^2*A[2]+32480*s^2*B[1]+32480*s^2*B[2]), 0 = (beta*s-w)*(25*beta*k^3*s*A[0]^3*c[2]+75*beta*k^3*s*A[0]^2*A[1]*c[2]-105*beta*k^3*s*A[0]^2*A[2]*c[2]-105*beta*k^3*s*A[0]^2*B[1]*c[2]-105*beta*k^3*s*A[0]^2*B[2]*c[2]-105*beta*k^3*s*A[0]*A[1]^2*c[2]-210*beta*k^3*s*A[0]*A[1]*A[2]*c[2]+150*beta*k^3*s*A[0]*A[1]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[1]*B[2]*c[2]+315*beta*k^3*s*A[0]*A[2]^2*c[2]+150*beta*k^3*s*A[0]*A[2]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[2]*B[2]*c[2]-105*beta*k^3*s*A[0]*B[1]^2*c[2]-210*beta*k^3*s*A[0]*B[1]*B[2]*c[2]-105*beta*k^3*s*A[0]*B[2]^2*c[2]-35*beta*k^3*s*A[1]^3*c[2]+315*beta*k^3*s*A[1]^2*A[2]*c[2]+75*beta*k^3*s*A[1]^2*B[1]*c[2]+75*beta*k^3*s*A[1]^2*B[2]*c[2]+315*beta*k^3*s*A[1]*A[2]^2*c[2]-210*beta*k^3*s*A[1]*A[2]*B[1]*c[2]-210*beta*k^3*s*A[1]*A[2]*B[2]*c[2]-105*beta*k^3*s*A[1]*B[1]^2*c[2]-210*beta*k^3*s*A[1]*B[1]*B[2]*c[2]-105*beta*k^3*s*A[1]*B[2]^2*c[2]-1155*beta*k^3*s*A[2]^3*c[2]-105*beta*k^3*s*A[2]^2*B[1]*c[2]-105*beta*k^3*s*A[2]^2*B[2]*c[2]+75*beta*k^3*s*A[2]*B[1]^2*c[2]+150*beta*k^3*s*A[2]*B[1]*B[2]*c[2]+75*beta*k^3*s*A[2]*B[2]^2*c[2]+105*beta*k^3*s*B[1]^3*c[2]+315*beta*k^3*s*B[1]^2*B[2]*c[2]+315*beta*k^3*s*B[1]*B[2]^2*c[2]+105*beta*k^3*s*B[2]^3*c[2]-15*beta*k^4*s*w*A[0]-15*beta*k^4*s*w*A[1]+21*beta*k^4*s*w*A[2]+21*beta*k^4*s*w*B[1]+21*beta*k^4*s*w*B[2]-25*k^3*w*A[0]^3*c[2]-75*k^3*w*A[0]^2*A[1]*c[2]+105*k^3*w*A[0]^2*A[2]*c[2]+105*k^3*w*A[0]^2*B[1]*c[2]+105*k^3*w*A[0]^2*B[2]*c[2]+105*k^3*w*A[0]*A[1]^2*c[2]+210*k^3*w*A[0]*A[1]*A[2]*c[2]-150*k^3*w*A[0]*A[1]*B[1]*c[2]-150*k^3*w*A[0]*A[1]*B[2]*c[2]-315*k^3*w*A[0]*A[2]^2*c[2]-150*k^3*w*A[0]*A[2]*B[1]*c[2]-150*k^3*w*A[0]*A[2]*B[2]*c[2]+105*k^3*w*A[0]*B[1]^2*c[2]+210*k^3*w*A[0]*B[1]*B[2]*c[2]+105*k^3*w*A[0]*B[2]^2*c[2]+35*k^3*w*A[1]^3*c[2]-315*k^3*w*A[1]^2*A[2]*c[2]-75*k^3*w*A[1]^2*B[1]*c[2]-75*k^3*w*A[1]^2*B[2]*c[2]-315*k^3*w*A[1]*A[2]^2*c[2]+210*k^3*w*A[1]*A[2]*B[1]*c[2]+210*k^3*w*A[1]*A[2]*B[2]*c[2]+105*k^3*w*A[1]*B[1]^2*c[2]+210*k^3*w*A[1]*B[1]*B[2]*c[2]+105*k^3*w*A[1]*B[2]^2*c[2]+1155*k^3*w*A[2]^3*c[2]+105*k^3*w*A[2]^2*B[1]*c[2]+105*k^3*w*A[2]^2*B[2]*c[2]-75*k^3*w*A[2]*B[1]^2*c[2]-150*k^3*w*A[2]*B[1]*B[2]*c[2]-75*k^3*w*A[2]*B[2]^2*c[2]-105*k^3*w*B[1]^3*c[2]-315*k^3*w*B[1]^2*B[2]*c[2]-315*k^3*w*B[1]*B[2]^2*c[2]-105*k^3*w*B[2]^3*c[2]+120*beta^2*k^2*s^2*A[1]-960*beta^2*k^2*s^2*A[2]-280*beta^2*k^2*s^2*B[1]-280*beta^2*k^2*s^2*B[2]-10*k^4*s^2*A[0]-10*k^4*s^2*A[1]+14*k^4*s^2*A[2]+14*k^4*s^2*B[1]+14*k^4*s^2*B[2]+25*k^4*w^2*A[0]+25*k^4*w^2*A[1]-35*k^4*w^2*A[2]-35*k^4*w^2*B[1]-35*k^4*w^2*B[2]-240*beta*k^2*s*w*A[1]+1920*beta*k^2*s*w*A[2]+560*beta*k^2*s*w*B[1]+560*beta*k^2*s*w*B[2]+120*k^2*s^2*A[1]-960*k^2*s^2*A[2]-280*k^2*s^2*B[1]-280*k^2*s^2*B[2]+4320*beta*s*w*A[1]-168960*beta*s*w*A[2]-32480*beta*s*w*B[1]-32480*beta*s*w*B[2]-4320*s^2*A[1]+168960*s^2*A[2]+32480*s^2*B[1]+32480*s^2*B[2]), 0 = (beta*s-w)*(-25*beta*k^3*s*A[0]^3*c[2]+75*beta*k^3*s*A[0]^2*A[1]*c[2]+45*beta*k^3*s*A[0]^2*A[2]*c[2]-45*beta*k^3*s*A[0]^2*B[1]*c[2]-45*beta*k^3*s*A[0]^2*B[2]*c[2]+45*beta*k^3*s*A[0]*A[1]^2*c[2]-330*beta*k^3*s*A[0]*A[1]*A[2]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[1]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[2]*c[2]+45*beta*k^3*s*A[0]*A[2]^2*c[2]+150*beta*k^3*s*A[0]*A[2]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[2]*B[2]*c[2]+165*beta*k^3*s*A[0]*B[1]^2*c[2]+330*beta*k^3*s*A[0]*B[1]*B[2]*c[2]+165*beta*k^3*s*A[0]*B[2]^2*c[2]-55*beta*k^3*s*A[1]^3*c[2]+45*beta*k^3*s*A[1]^2*A[2]*c[2]+75*beta*k^3*s*A[1]^2*B[1]*c[2]+75*beta*k^3*s*A[1]^2*B[2]*c[2]+675*beta*k^3*s*A[1]*A[2]^2*c[2]+90*beta*k^3*s*A[1]*A[2]*B[1]*c[2]+90*beta*k^3*s*A[1]*A[2]*B[2]*c[2]-45*beta*k^3*s*A[1]*B[1]^2*c[2]-90*beta*k^3*s*A[1]*B[1]*B[2]*c[2]-45*beta*k^3*s*A[1]*B[2]^2*c[2]-825*beta*k^3*s*A[2]^3*c[2]-165*beta*k^3*s*A[2]^2*B[1]*c[2]-165*beta*k^3*s*A[2]^2*B[2]*c[2]-75*beta*k^3*s*A[2]*B[1]^2*c[2]-150*beta*k^3*s*A[2]*B[1]*B[2]*c[2]-75*beta*k^3*s*A[2]*B[2]^2*c[2]-15*beta*k^3*s*B[1]^3*c[2]-45*beta*k^3*s*B[1]^2*B[2]*c[2]-45*beta*k^3*s*B[1]*B[2]^2*c[2]-15*beta*k^3*s*B[2]^3*c[2]+15*beta*k^4*s*w*A[0]-15*beta*k^4*s*w*A[1]-9*beta*k^4*s*w*A[2]+9*beta*k^4*s*w*B[1]+9*beta*k^4*s*w*B[2]+25*k^3*w*A[0]^3*c[2]-75*k^3*w*A[0]^2*A[1]*c[2]-45*k^3*w*A[0]^2*A[2]*c[2]+45*k^3*w*A[0]^2*B[1]*c[2]+45*k^3*w*A[0]^2*B[2]*c[2]-45*k^3*w*A[0]*A[1]^2*c[2]+330*k^3*w*A[0]*A[1]*A[2]*c[2]+150*k^3*w*A[0]*A[1]*B[1]*c[2]+150*k^3*w*A[0]*A[1]*B[2]*c[2]-45*k^3*w*A[0]*A[2]^2*c[2]-150*k^3*w*A[0]*A[2]*B[1]*c[2]-150*k^3*w*A[0]*A[2]*B[2]*c[2]-165*k^3*w*A[0]*B[1]^2*c[2]-330*k^3*w*A[0]*B[1]*B[2]*c[2]-165*k^3*w*A[0]*B[2]^2*c[2]+55*k^3*w*A[1]^3*c[2]-45*k^3*w*A[1]^2*A[2]*c[2]-75*k^3*w*A[1]^2*B[1]*c[2]-75*k^3*w*A[1]^2*B[2]*c[2]-675*k^3*w*A[1]*A[2]^2*c[2]-90*k^3*w*A[1]*A[2]*B[1]*c[2]-90*k^3*w*A[1]*A[2]*B[2]*c[2]+45*k^3*w*A[1]*B[1]^2*c[2]+90*k^3*w*A[1]*B[1]*B[2]*c[2]+45*k^3*w*A[1]*B[2]^2*c[2]+825*k^3*w*A[2]^3*c[2]+165*k^3*w*A[2]^2*B[1]*c[2]+165*k^3*w*A[2]^2*B[2]*c[2]+75*k^3*w*A[2]*B[1]^2*c[2]+150*k^3*w*A[2]*B[1]*B[2]*c[2]+75*k^3*w*A[2]*B[2]^2*c[2]+15*k^3*w*B[1]^3*c[2]+45*k^3*w*B[1]^2*B[2]*c[2]+45*k^3*w*B[1]*B[2]^2*c[2]+15*k^3*w*B[2]^3*c[2]+160*beta^2*k^2*s^2*A[1]+80*beta^2*k^2*s^2*A[2]+10*k^4*s^2*A[0]-10*k^4*s^2*A[1]-6*k^4*s^2*A[2]+6*k^4*s^2*B[1]+6*k^4*s^2*B[2]-25*k^4*w^2*A[0]+25*k^4*w^2*A[1]+15*k^4*w^2*A[2]-15*k^4*w^2*B[1]-15*k^4*w^2*B[2]-320*beta*k^2*s*w*A[1]-160*beta*k^2*s*w*A[2]+160*k^2*s^2*A[1]+80*k^2*s^2*A[2]+8000*beta*s*w*A[1]-100160*beta*s*w*A[2]+20160*beta*s*w*B[1]+20160*beta*s*w*B[2]-8000*s^2*A[1]+100160*s^2*A[2]-20160*s^2*B[1]-20160*s^2*B[2]), 0 = (beta*s-w)*(-25*beta*k^3*s*A[0]^3*c[2]-75*beta*k^3*s*A[0]^2*A[1]*c[2]+165*beta*k^3*s*A[0]^2*A[2]*c[2]+165*beta*k^3*s*A[0]^2*B[1]*c[2]+165*beta*k^3*s*A[0]^2*B[2]*c[2]+165*beta*k^3*s*A[0]*A[1]^2*c[2]-150*beta*k^3*s*A[0]*A[1]*A[2]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[1]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[2]*c[2]-315*beta*k^3*s*A[0]*A[2]^2*c[2]-150*beta*k^3*s*A[0]*A[2]*B[1]*c[2]-150*beta*k^3*s*A[0]*A[2]*B[2]*c[2]-75*beta*k^3*s*A[0]*B[1]^2*c[2]-150*beta*k^3*s*A[0]*B[1]*B[2]*c[2]-75*beta*k^3*s*A[0]*B[2]^2*c[2]-25*beta*k^3*s*A[1]^3*c[2]-315*beta*k^3*s*A[1]^2*A[2]*c[2]-75*beta*k^3*s*A[1]^2*B[1]*c[2]-75*beta*k^3*s*A[1]^2*B[2]*c[2]+1125*beta*k^3*s*A[1]*A[2]^2*c[2]+330*beta*k^3*s*A[1]*A[2]*B[1]*c[2]+330*beta*k^3*s*A[1]*A[2]*B[2]*c[2]+165*beta*k^3*s*A[1]*B[1]^2*c[2]+330*beta*k^3*s*A[1]*B[1]*B[2]*c[2]+165*beta*k^3*s*A[1]*B[2]^2*c[2]-825*beta*k^3*s*A[2]^3*c[2]-75*beta*k^3*s*A[2]^2*B[1]*c[2]-75*beta*k^3*s*A[2]^2*B[2]*c[2]-75*beta*k^3*s*A[2]*B[1]^2*c[2]-150*beta*k^3*s*A[2]*B[1]*B[2]*c[2]-75*beta*k^3*s*A[2]*B[2]^2*c[2]-105*beta*k^3*s*B[1]^3*c[2]-315*beta*k^3*s*B[1]^2*B[2]*c[2]-315*beta*k^3*s*B[1]*B[2]^2*c[2]-105*beta*k^3*s*B[2]^3*c[2]+15*beta*k^4*s*w*A[0]+15*beta*k^4*s*w*A[1]-33*beta*k^4*s*w*A[2]-33*beta*k^4*s*w*B[1]-33*beta*k^4*s*w*B[2]+25*k^3*w*A[0]^3*c[2]+75*k^3*w*A[0]^2*A[1]*c[2]-165*k^3*w*A[0]^2*A[2]*c[2]-165*k^3*w*A[0]^2*B[1]*c[2]-165*k^3*w*A[0]^2*B[2]*c[2]-165*k^3*w*A[0]*A[1]^2*c[2]+150*k^3*w*A[0]*A[1]*A[2]*c[2]+150*k^3*w*A[0]*A[1]*B[1]*c[2]+150*k^3*w*A[0]*A[1]*B[2]*c[2]+315*k^3*w*A[0]*A[2]^2*c[2]+150*k^3*w*A[0]*A[2]*B[1]*c[2]+150*k^3*w*A[0]*A[2]*B[2]*c[2]+75*k^3*w*A[0]*B[1]^2*c[2]+150*k^3*w*A[0]*B[1]*B[2]*c[2]+75*k^3*w*A[0]*B[2]^2*c[2]+25*k^3*w*A[1]^3*c[2]+315*k^3*w*A[1]^2*A[2]*c[2]+75*k^3*w*A[1]^2*B[1]*c[2]+75*k^3*w*A[1]^2*B[2]*c[2]-1125*k^3*w*A[1]*A[2]^2*c[2]-330*k^3*w*A[1]*A[2]*B[1]*c[2]-330*k^3*w*A[1]*A[2]*B[2]*c[2]-165*k^3*w*A[1]*B[1]^2*c[2]-330*k^3*w*A[1]*B[1]*B[2]*c[2]-165*k^3*w*A[1]*B[2]^2*c[2]+825*k^3*w*A[2]^3*c[2]+75*k^3*w*A[2]^2*B[1]*c[2]+75*k^3*w*A[2]^2*B[2]*c[2]+75*k^3*w*A[2]*B[1]^2*c[2]+150*k^3*w*A[2]*B[1]*B[2]*c[2]+75*k^3*w*A[2]*B[2]^2*c[2]+105*k^3*w*B[1]^3*c[2]+315*k^3*w*B[1]^2*B[2]*c[2]+315*k^3*w*B[1]*B[2]^2*c[2]+105*k^3*w*B[2]^3*c[2]+1120*beta^2*k^2*s^2*A[2]+320*beta^2*k^2*s^2*B[1]+320*beta^2*k^2*s^2*B[2]+10*k^4*s^2*A[0]+10*k^4*s^2*A[1]-22*k^4*s^2*A[2]-22*k^4*s^2*B[1]-22*k^4*s^2*B[2]-25*k^4*w^2*A[0]-25*k^4*w^2*A[1]+55*k^4*w^2*A[2]+55*k^4*w^2*B[1]+55*k^4*w^2*B[2]-2240*beta*k^2*s*w*A[2]-640*beta*k^2*s*w*B[1]-640*beta*k^2*s*w*B[2]+1120*k^2*s^2*A[2]+320*k^2*s^2*B[1]+320*k^2*s^2*B[2]+9600*beta*s*w*A[1]-65920*beta*s*w*A[2]-14720*beta*s*w*B[1]-14720*beta*s*w*B[2]-9600*s^2*A[1]+65920*s^2*A[2]+14720*s^2*B[1]+14720*s^2*B[2]), 0 = (beta*s-w)*(-25*beta*k^3*s*A[0]^3*c[2]+75*beta*k^3*s*A[0]^2*A[1]*c[2]-15*beta*k^3*s*A[0]^2*A[2]*c[2]+15*beta*k^3*s*A[0]^2*B[1]*c[2]+15*beta*k^3*s*A[0]^2*B[2]*c[2]-15*beta*k^3*s*A[0]*A[1]^2*c[2]-210*beta*k^3*s*A[0]*A[1]*A[2]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[1]*c[2]-150*beta*k^3*s*A[0]*A[1]*B[2]*c[2]+285*beta*k^3*s*A[0]*A[2]^2*c[2]+150*beta*k^3*s*A[0]*A[2]*B[1]*c[2]+150*beta*k^3*s*A[0]*A[2]*B[2]*c[2]+105*beta*k^3*s*A[0]*B[1]^2*c[2]+210*beta*k^3*s*A[0]*B[1]*B[2]*c[2]+105*beta*k^3*s*A[0]*B[2]^2*c[2]-35*beta*k^3*s*A[1]^3*c[2]+285*beta*k^3*s*A[1]^2*A[2]*c[2]+75*beta*k^3*s*A[1]^2*B[1]*c[2]+75*beta*k^3*s*A[1]^2*B[2]*c[2]-525*beta*k^3*s*A[1]*A[2]^2*c[2]-30*beta*k^3*s*A[1]*A[2]*B[1]*c[2]-30*beta*k^3*s*A[1]*A[2]*B[2]*c[2]+15*beta*k^3*s*A[1]*B[1]^2*c[2]+30*beta*k^3*s*A[1]*B[1]*B[2]*c[2]+15*beta*k^3*s*A[1]*B[2]^2*c[2]+275*beta*k^3*s*A[2]^3*c[2]-105*beta*k^3*s*A[2]^2*B[1]*c[2]-105*beta*k^3*s*A[2]^2*B[2]*c[2]-75*beta*k^3*s*A[2]*B[1]^2*c[2]-150*beta*k^3*s*A[2]*B[1]*B[2]*c[2]-75*beta*k^3*s*A[2]*B[2]^2*c[2]-95*beta*k^3*s*B[1]^3*c[2]-285*beta*k^3*s*B[1]^2*B[2]*c[2]-285*beta*k^3*s*B[1]*B[2]^2*c[2]-95*beta*k^3*s*B[2]^3*c[2]+15*beta*k^4*s*w*A[0]-15*beta*k^4*s*w*A[1]+3*beta*k^4*s*w*A[2]-3*beta*k^4*s*w*B[1]-3*beta*k^4*s*w*B[2]+25*k^3*w*A[0]^3*c[2]-75*k^3*w*A[0]^2*A[1]*c[2]+15*k^3*w*A[0]^2*A[2]*c[2]-15*k^3*w*A[0]^2*B[1]*c[2]-15*k^3*w*A[0]^2*B[2]*c[2]+15*k^3*w*A[0]*A[1]^2*c[2]+210*k^3*w*A[0]*A[1]*A[2]*c[2]+150*k^3*w*A[0]*A[1]*B[1]*c[2]+150*k^3*w*A[0]*A[1]*B[2]*c[2]-285*k^3*w*A[0]*A[2]^2*c[2]-150*k^3*w*A[0]*A[2]*B[1]*c[2]-150*k^3*w*A[0]*A[2]*B[2]*c[2]-105*k^3*w*A[0]*B[1]^2*c[2]-210*k^3*w*A[0]*B[1]*B[2]*c[2]-105*k^3*w*A[0]*B[2]^2*c[2]+35*k^3*w*A[1]^3*c[2]-285*k^3*w*A[1]^2*A[2]*c[2]-75*k^3*w*A[1]^2*B[1]*c[2]-75*k^3*w*A[1]^2*B[2]*c[2]+525*k^3*w*A[1]*A[2]^2*c[2]+30*k^3*w*A[1]*A[2]*B[1]*c[2]+30*k^3*w*A[1]*A[2]*B[2]*c[2]-15*k^3*w*A[1]*B[1]^2*c[2]-30*k^3*w*A[1]*B[1]*B[2]*c[2]-15*k^3*w*A[1]*B[2]^2*c[2]-275*k^3*w*A[2]^3*c[2]+105*k^3*w*A[2]^2*B[1]*c[2]+105*k^3*w*A[2]^2*B[2]*c[2]+75*k^3*w*A[2]*B[1]^2*c[2]+150*k^3*w*A[2]*B[1]*B[2]*c[2]+75*k^3*w*A[2]*B[2]^2*c[2]+95*k^3*w*B[1]^3*c[2]+285*k^3*w*B[1]^2*B[2]*c[2]+285*k^3*w*B[1]*B[2]^2*c[2]+95*k^3*w*B[2]^3*c[2]+120*beta^2*k^2*s^2*A[1]-560*beta^2*k^2*s^2*A[2]+200*beta^2*k^2*s^2*B[1]+200*beta^2*k^2*s^2*B[2]+10*k^4*s^2*A[0]-10*k^4*s^2*A[1]+2*k^4*s^2*A[2]-2*k^4*s^2*B[1]-2*k^4*s^2*B[2]-25*k^4*w^2*A[0]+25*k^4*w^2*A[1]-5*k^4*w^2*A[2]+5*k^4*w^2*B[1]+5*k^4*w^2*B[2]-240*beta*k^2*s*w*A[1]+1120*beta*k^2*s*w*A[2]-400*beta*k^2*s*w*B[1]-400*beta*k^2*s*w*B[2]+120*k^2*s^2*A[1]-560*k^2*s^2*A[2]+200*k^2*s^2*B[1]+200*k^2*s^2*B[2]-2400*beta*s*w*A[1]+9920*beta*s*w*A[2]-2720*beta*s*w*B[1]-2720*beta*s*w*B[2]+2400*s^2*A[1]-9920*s^2*A[2]+2720*s^2*B[1]+2720*s^2*B[2]), 0 = (beta*s-w)*(-5*beta*k^3*s*A[0]^3*c[2]-15*beta*k^3*s*A[0]^2*A[1]*c[2]+45*beta*k^3*s*A[0]^2*A[2]*c[2]+45*beta*k^3*s*A[0]^2*B[1]*c[2]+45*beta*k^3*s*A[0]^2*B[2]*c[2]+45*beta*k^3*s*A[0]*A[1]^2*c[2]-150*beta*k^3*s*A[0]*A[1]*A[2]*c[2]-30*beta*k^3*s*A[0]*A[1]*B[1]*c[2]-30*beta*k^3*s*A[0]*A[1]*B[2]*c[2]+105*beta*k^3*s*A[0]*A[2]^2*c[2]-30*beta*k^3*s*A[0]*A[2]*B[1]*c[2]-30*beta*k^3*s*A[0]*A[2]*B[2]*c[2]-75*beta*k^3*s*A[0]*B[1]^2*c[2]-150*beta*k^3*s*A[0]*B[1]*B[2]*c[2]-75*beta*k^3*s*A[0]*B[2]^2*c[2]-25*beta*k^3*s*A[1]^3*c[2]+105*beta*k^3*s*A[1]^2*A[2]*c[2]-15*beta*k^3*s*A[1]^2*B[1]*c[2]-15*beta*k^3*s*A[1]^2*B[2]*c[2]-135*beta*k^3*s*A[1]*A[2]^2*c[2]+90*beta*k^3*s*A[1]*A[2]*B[1]*c[2]+90*beta*k^3*s*A[1]*A[2]*B[2]*c[2]+45*beta*k^3*s*A[1]*B[1]^2*c[2]+90*beta*k^3*s*A[1]*B[1]*B[2]*c[2]+45*beta*k^3*s*A[1]*B[2]^2*c[2]+55*beta*k^3*s*A[2]^3*c[2]-75*beta*k^3*s*A[2]^2*B[1]*c[2]-75*beta*k^3*s*A[2]^2*B[2]*c[2]-15*beta*k^3*s*A[2]*B[1]^2*c[2]-30*beta*k^3*s*A[2]*B[1]*B[2]*c[2]-15*beta*k^3*s*A[2]*B[2]^2*c[2]+35*beta*k^3*s*B[1]^3*c[2]+105*beta*k^3*s*B[1]^2*B[2]*c[2]+105*beta*k^3*s*B[1]*B[2]^2*c[2]+35*beta*k^3*s*B[2]^3*c[2]+3*beta*k^4*s*w*A[0]+3*beta*k^4*s*w*A[1]-9*beta*k^4*s*w*A[2]-9*beta*k^4*s*w*B[1]-9*beta*k^4*s*w*B[2]+5*k^3*w*A[0]^3*c[2]+15*k^3*w*A[0]^2*A[1]*c[2]-45*k^3*w*A[0]^2*A[2]*c[2]-45*k^3*w*A[0]^2*B[1]*c[2]-45*k^3*w*A[0]^2*B[2]*c[2]-45*k^3*w*A[0]*A[1]^2*c[2]+150*k^3*w*A[0]*A[1]*A[2]*c[2]+30*k^3*w*A[0]*A[1]*B[1]*c[2]+30*k^3*w*A[0]*A[1]*B[2]*c[2]-105*k^3*w*A[0]*A[2]^2*c[2]+30*k^3*w*A[0]*A[2]*B[1]*c[2]+30*k^3*w*A[0]*A[2]*B[2]*c[2]+75*k^3*w*A[0]*B[1]^2*c[2]+150*k^3*w*A[0]*B[1]*B[2]*c[2]+75*k^3*w*A[0]*B[2]^2*c[2]+25*k^3*w*A[1]^3*c[2]-105*k^3*w*A[1]^2*A[2]*c[2]+15*k^3*w*A[1]^2*B[1]*c[2]+15*k^3*w*A[1]^2*B[2]*c[2]+135*k^3*w*A[1]*A[2]^2*c[2]-90*k^3*w*A[1]*A[2]*B[1]*c[2]-90*k^3*w*A[1]*A[2]*B[2]*c[2]-45*k^3*w*A[1]*B[1]^2*c[2]-90*k^3*w*A[1]*B[1]*B[2]*c[2]-45*k^3*w*A[1]*B[2]^2*c[2]-55*k^3*w*A[2]^3*c[2]+75*k^3*w*A[2]^2*B[1]*c[2]+75*k^3*w*A[2]^2*B[2]*c[2]+15*k^3*w*A[2]*B[1]^2*c[2]+30*k^3*w*A[2]*B[1]*B[2]*c[2]+15*k^3*w*A[2]*B[2]^2*c[2]-35*k^3*w*B[1]^3*c[2]-105*k^3*w*B[1]^2*B[2]*c[2]-105*k^3*w*B[1]*B[2]^2*c[2]-35*k^3*w*B[2]^3*c[2]+40*beta^2*k^2*s^2*A[1]-80*beta^2*k^2*s^2*A[2]-40*beta^2*k^2*s^2*B[1]-40*beta^2*k^2*s^2*B[2]+2*k^4*s^2*A[0]+2*k^4*s^2*A[1]-6*k^4*s^2*A[2]-6*k^4*s^2*B[1]-6*k^4*s^2*B[2]-5*k^4*w^2*A[0]-5*k^4*w^2*A[1]+15*k^4*w^2*A[2]+15*k^4*w^2*B[1]+15*k^4*w^2*B[2]-80*beta*k^2*s*w*A[1]+160*beta*k^2*s*w*A[2]+80*beta*k^2*s*w*B[1]+80*beta*k^2*s*w*B[2]+40*k^2*s^2*A[1]-80*k^2*s^2*A[2]-40*k^2*s^2*B[1]-40*k^2*s^2*B[2]-160*beta*s*w*A[1]+320*beta*s*w*A[2]+160*beta*s*w*B[1]+160*beta*s*w*B[2]+160*s^2*A[1]-320*s^2*A[2]-160*s^2*B[1]-160*s^2*B[2]), 0 = k^3*(beta*s-w)*(A[0]-A[1]+A[2]-B[1]-B[2])*(-5*beta*s*A[0]^2*c[2]+10*beta*s*A[0]*A[1]*c[2]-10*beta*s*A[0]*A[2]*c[2]+10*beta*s*A[0]*B[1]*c[2]+10*beta*s*A[0]*B[2]*c[2]-5*beta*s*A[1]^2*c[2]+10*beta*s*A[1]*A[2]*c[2]-10*beta*s*A[1]*B[1]*c[2]-10*beta*s*A[1]*B[2]*c[2]-5*beta*s*A[2]^2*c[2]+10*beta*s*A[2]*B[1]*c[2]+10*beta*s*A[2]*B[2]*c[2]-5*beta*s*B[1]^2*c[2]-10*beta*s*B[1]*B[2]*c[2]-5*beta*s*B[2]^2*c[2]+3*beta*k*s*w+5*w*A[0]^2*c[2]-10*w*A[0]*A[1]*c[2]+10*w*A[0]*A[2]*c[2]-10*w*A[0]*B[1]*c[2]-10*w*A[0]*B[2]*c[2]+5*w*A[1]^2*c[2]-10*w*A[1]*A[2]*c[2]+10*w*A[1]*B[1]*c[2]+10*w*A[1]*B[2]*c[2]+5*w*A[2]^2*c[2]-10*w*A[2]*B[1]*c[2]-10*w*A[2]*B[2]*c[2]+5*w*B[1]^2*c[2]+10*w*B[1]*B[2]*c[2]+5*w*B[2]^2*c[2]+2*k*s^2-5*k*w^2)]

indets(CoefficientNullity)

{beta, k, s, w, A[0], A[1], A[2], B[1], B[2], c[2]}

(2)

sols := solve(CoefficientNullity, [beta, k, s, w, A[0], A[1], A[2], B[1], B[2], c[2]]); sols := `assuming`([eval(sols)], [b > 0]); whattype(sols); print(cat(`$`('_', 120))); `~`[print](sols)

[[beta = beta, k = 0, s = 0, w = w, A[0] = A[0], A[1] = A[1], A[2] = A[2], B[1] = B[1], B[2] = B[2], c[2] = c[2]], [beta = beta, k = 0, s = s, w = w, A[0] = A[0], A[1] = 0, A[2] = 0, B[1] = -B[2], B[2] = B[2], c[2] = c[2]], [beta = w/s, k = 0, s = s, w = w, A[0] = A[0], A[1] = A[1], A[2] = A[2], B[1] = B[1], B[2] = B[2], c[2] = c[2]], [beta = beta, k = 0, s = beta*w, w = w, A[0] = A[0], A[1] = A[1], A[2] = A[2], B[1] = B[1], B[2] = B[2], c[2] = c[2]]]

 

list

 

________________________________________________________________________________________________________________________

 

[beta = beta, k = 0, s = 0, w = w, A[0] = A[0], A[1] = A[1], A[2] = A[2], B[1] = B[1], B[2] = B[2], c[2] = c[2]]

 

[beta = beta, k = 0, s = s, w = w, A[0] = A[0], A[1] = 0, A[2] = 0, B[1] = -B[2], B[2] = B[2], c[2] = c[2]]

 

[beta = w/s, k = 0, s = s, w = w, A[0] = A[0], A[1] = A[1], A[2] = A[2], B[1] = B[1], B[2] = B[2], c[2] = c[2]]

 

[beta = beta, k = 0, s = beta*w, w = w, A[0] = A[0], A[1] = A[1], A[2] = A[2], B[1] = B[1], B[2] = B[2], c[2] = c[2]]

(3)

Download params.mw

Hi everyone, I am trying to plot graphs for dp/dx versus x from my ordinary differential equation numerically. My file is working, but the outcome is straight lines, which means I am doing something wrong. Could anyone  please have a look on my file.

Help-dpdx.mw

the expected  results should be  look like this

I do not remember seeing this before or reporting. Just in case, here is how to reproduce it. This happens also in Maple 2024.2

The problem with these errors is that they can not be cought using try/catch.

I was testing a solution which most likely wrong, but I get 

                 Error, (in content/gcd) too many levels of recursion

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1866 and is the same as the version installed in this computer, created 2025, May 6, 10:52 hours Pacific Time.`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 17 and is the same as the version installed in this computer, created May 5, 2025, 12:37 hours Eastern Time.`

restart;

sol:=ln((1/9*u(x)*6^(1/3)/surd((-9*A^2+2*A*x^(3/2))/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4),3)+1)^(1/3)/(1/81*u(x)^2*6^(2/3)/surd((-9*A^2+2*A*x^(3/2))/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4),3)^2-1/9*u(x)*6^(1/3)/surd((-9*A^2+2*A*x^(3/2))/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4),3)+1)^(1/6))+1/3*3^(1/2)*arctan(1/3*(2/9*u(x)*6^(1/3)/surd((-9*A^2+2*A*x^(3/2))/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4),3)-1)*3^(1/2)) = Int(3/2*(-32*x^(15/2)-6480*A^2*x^(9/2)-65610*A^4*x^(3/2)+720*A*x^6+29160*A^3*x^3+59049*A^5)/surd(-A*(-2*x^(3/2)+9*A)/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4),3)/(-128*x^11-54432*A^2*x^8-1837080*A^4*x^5+4782969*A^7*x^(1/2)-7440174*A^6*x^2+4960116*A^5*x^(7/2)+408240*A^3*x^(13/2)+4032*A*x^(19/2))*A*6^(1/3),x)+2*_C1;
ode:=diff(u(x),x) = -1/18/x^(1/2)*(-576*A*x^(9/2)-11664*A^3*x^(3/2)+32*x^6+3888*A^2*x^3+13122*A^4)/(-2*x^(3/2)+9*A)^3*u(x)^3-1/18/x^(1/2)*(1944*A*x^(5/2)-216*x^4-4374*A^2*x)/(-2*x^(3/2)+9*A)^3*u(x)-1/18/x^(1/2)*(486*A*x^(3/2)-2187*A^2)/(-2*x^(3/2)+9*A)^3;

ln(((1/9)*u(x)*6^(1/3)/surd((-9*A^2+2*A*x^(3/2))/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4), 3)+1)^(1/3)/((1/81)*u(x)^2*6^(2/3)/surd((-9*A^2+2*A*x^(3/2))/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4), 3)^2-(1/9)*u(x)*6^(1/3)/surd((-9*A^2+2*A*x^(3/2))/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4), 3)+1)^(1/6))+(1/3)*3^(1/2)*arctan((1/3)*((2/9)*u(x)*6^(1/3)/surd((-9*A^2+2*A*x^(3/2))/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4), 3)-1)*3^(1/2)) = Int((3/2)*(-32*x^(15/2)-6480*A^2*x^(9/2)-65610*A^4*x^(3/2)+720*A*x^6+29160*A^3*x^3+59049*A^5)*A*6^(1/3)/(surd(-A*(-2*x^(3/2)+9*A)/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4), 3)*(-128*x^11-54432*A^2*x^8-1837080*A^4*x^5+4782969*A^7*x^(1/2)-7440174*A^6*x^2+4960116*A^5*x^(7/2)+408240*A^3*x^(13/2)+4032*A*x^(19/2))), x)+2*_C1

diff(u(x), x) = -(1/18)*(-576*A*x^(9/2)-11664*A^3*x^(3/2)+32*x^6+3888*A^2*x^3+13122*A^4)*u(x)^3/(x^(1/2)*(-2*x^(3/2)+9*A)^3)-(1/18)*(1944*A*x^(5/2)-216*x^4-4374*A^2*x)*u(x)/(x^(1/2)*(-2*x^(3/2)+9*A)^3)-(1/18)*(486*A*x^(3/2)-2187*A^2)/(x^(1/2)*(-2*x^(3/2)+9*A)^3)

try
    odetest(sol,ode);
catch:
    print("cought error ok");
end try;

Error, (in content/gcd) too many levels of recursion

 

 

Download content_gce_odetest_error_may_7_2025.mw

I asked similar question 5 years ago about Physics update but it was not possible to find this information

How-To-Find-What-Changed-In-Physics

I'd like to ask now again same about  SupportTools. Can one find out what update is actually included in new version?

Even if it is just 2-3 lines. It will be good if users had an idea what was fixed or improved in the new version.

Any update to software should inlcude such information. Not asking for details, just general information will be nice. Right now one does an update and have no idea at all what the new update fixed or improved which is not good.

May be such information can be displayed on screen after a user updates?

Yes , i can ..a procedure for thiis?

restart; with(plots); printf("Step 1: Declare l and b as free variables for the 3D plot.\n"); l := 'l'; b := 'b'; printf("Step 2: Set fixed values for remaining parameters.\n"); a := 1; c := 1; d := .2; f := 1; epsilon := 1; printf("Step 3: Define the 3D gain function G(l,b) with fixed a,c,d and variable l,b.\n"); G := proc (l, b) options operator, arrow; 2*Im(sqrt(-a^2*f*d-a*b+(1/2)*l^2-3*a+(1/2)*sqrt(-48*a^3*f*d+4*epsilon*l^3*c-24*a*epsilon*l*c+l^4+4*l^2*c^2-48*a^2*b-12*a*l^2+36*a^2))) end proc; printf("Step 4: Create a 3D surface plot of G(l,b).\n"); gainPlot := plot3d(G(l, b), l = -6 .. 4, b = .1 .. 1.2, labels = ["Wave number l", "Parameter b", "Gain G(l,b)"], title = "3D MI Gain Spectrum over (l, b)", shading = zhue, axes = boxed, grid = [60, 60]); printf("Step 5: Display the 3D surface plot.\n"); gainPlot

Step 1: Declare l and b as free variables for the 3D plot.
Step 2: Set fixed values for remaining parameters.
Step 3: Define the 3D gain function G(l,b) with fixed a,c,d and variable l,b.
Step 4: Create a 3D surface plot of G(l,b).
Step 5: Display the 3D surface plot.

 

 
 

 

Download can_we_plotthisin_3Dshapemprimes5-5-2025.mw

in here How we can seperate the coefficent of conjugate this conjugate sign how remove from my equation ?

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, t)); declare(U(xi)); declare(V(xi)); declare(P(x, t)); declare(q(x, t))

u(x, t)*`will now be displayed as`*u

 

U(xi)*`will now be displayed as`*U

 

V(xi)*`will now be displayed as`*V

 

P(x, t)*`will now be displayed as`*P

 

q(x, t)*`will now be displayed as`*q

(2)

pde := I*(diff(u(x, t), t))+diff(u(x, t), `$`(x, 2))+abs(u(x, t))^2*u(x, t) = 0

I*(diff(u(x, t), t))+diff(diff(u(x, t), x), x)+abs(u(x, t))^2*u(x, t) = 0

(3)

S := u(x, t) = (sqrt(a)+P(x, t))*exp(I*a*t)

u(x, t) = (a^(1/2)+P(x, t))*exp(I*a*t)

(4)

S1 := conjugate(u(x, t)) = (sqrt(a)+conjugate(P(x, t)))*exp(-I*a*t)

conjugate(u(x, t)) = (a^(1/2)+conjugate(P(x, t)))*exp(-I*a*t)

(5)

Q := abs(u(x, t))^2 = u(x, t)*conjugate(u(x, t))

abs(u(x, t))^2 = u(x, t)*conjugate(u(x, t))

(6)

F1 := expand(simplify(subs({S, S1}, rhs(Q))))

a+a^(1/2)*P(x, t)+a^(1/2)*conjugate(P(x, t))+abs(P(x, t))^2

(7)

F2 := abs(u(x, t))^2 = remove(has, F1, abs(P(x, t))^2)

abs(u(x, t))^2 = a+a^(1/2)*P(x, t)+a^(1/2)*conjugate(P(x, t))

(8)

FF := collect(F2, sqrt(a))

abs(u(x, t))^2 = a+(P(x, t)+conjugate(P(x, t)))*a^(1/2)

(9)

F3 := abs(u(x, t))^2*u(x, t) = (a+(P(x, t)+conjugate(P(x, t)))*sqrt(a))*rhs(S)

abs(u(x, t))^2*u(x, t) = (a+(P(x, t)+conjugate(P(x, t)))*a^(1/2))*(a^(1/2)+P(x, t))*exp(I*a*t)

(10)

F4 := remove(has, F3, P(x, t)*conjugate(P(x, t)))

abs(u(x, t))^2*u(x, t) = (a+(P(x, t)+conjugate(P(x, t)))*a^(1/2))*(a^(1/2)+P(x, t))*exp(I*a*t)

(11)

expand(%)

abs(u(x, t))^2*u(x, t) = exp(I*a*t)*a^(3/2)+2*exp(I*a*t)*a*P(x, t)+exp(I*a*t)*a^(1/2)*P(x, t)^2+exp(I*a*t)*a*conjugate(P(x, t))+exp(I*a*t)*a^(1/2)*conjugate(P(x, t))*P(x, t)

(12)

pde_linear, pde_nonlinear := selectremove(proc (term) options operator, arrow; not has((eval(term, P(x, t) = T*P(x, t)))/T, T) end proc, expand(%))

() = (), abs(u(x, t))^2*u(x, t) = exp(I*a*t)*a^(3/2)+2*exp(I*a*t)*a*P(x, t)+exp(I*a*t)*a^(1/2)*P(x, t)^2+exp(I*a*t)*a*conjugate(P(x, t))+exp(I*a*t)*a^(1/2)*conjugate(P(x, t))*P(x, t)

(13)

F6 := abs(u(x, t))^2*u(x, t) = exp(I*a*t)*a^(3/2)+2*exp(I*a*t)*a*P(x, t)+exp(I*a*t)*a*conjugate(P(x, t))

abs(u(x, t))^2*u(x, t) = exp(a*t*I)*a^(3/2)+2*exp(a*t*I)*a*P(x, t)+exp(a*t*I)*a*conjugate(P(x, t))

(14)

subs({F6, S}, pde)

I*(diff((a^(1/2)+P(x, t))*exp(a*t*I), t))+diff(diff((a^(1/2)+P(x, t))*exp(a*t*I), x), x)+exp(a*t*I)*a^(3/2)+2*exp(a*t*I)*a*P(x, t)+exp(a*t*I)*a*conjugate(P(x, t)) = 0

(15)

eval(%)

I*((diff(P(x, t), t))*exp(a*t*I)+I*(a^(1/2)+P(x, t))*a*exp(a*t*I))+(diff(diff(P(x, t), x), x))*exp(a*t*I)+exp(a*t*I)*a^(3/2)+2*exp(a*t*I)*a*P(x, t)+exp(a*t*I)*a*conjugate(P(x, t)) = 0

(16)

expand(%)

I*(diff(P(x, t), t))*exp(a*t*I)+exp(a*t*I)*a*P(x, t)+(diff(diff(P(x, t), x), x))*exp(a*t*I)+exp(a*t*I)*a*conjugate(P(x, t)) = 0

(17)

expand(%/exp(I*a*t))

I*(diff(P(x, t), t))+a*P(x, t)+diff(diff(P(x, t), x), x)+a*conjugate(P(x, t)) = 0

(18)

PP := collect(%, a)

(P(x, t)+conjugate(P(x, t)))*a+I*(diff(P(x, t), t))+diff(diff(P(x, t), x), x) = 0

(19)

U1 := P(x, t) = r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))

P(x, t) = r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))

(20)

eval(subs(U1, PP))

(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))+conjugate(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))))*a+I*(-I*r[1]*m*exp(I*(l*x-m*t))+I*r[2]*m*exp(-I*(l*x-m*t)))-r[1]*l^2*exp(I*(l*x-m*t))-r[2]*l^2*exp(-I*(l*x-m*t)) = 0

(21)

simplify((r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))+conjugate(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))))*a+I*(-I*r[1]*m*exp(I*(l*x-m*t))+I*r[2]*m*exp(-I*(l*x-m*t)))-r[1]*l^2*exp(I*(l*x-m*t))-r[2]*l^2*exp(-I*(l*x-m*t)) = 0)

conjugate(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t)))*a+r[2]*(-l^2+a-m)*exp(-I*(l*x-m*t))+r[1]*exp(I*(l*x-m*t))*(-l^2+a+m) = 0

(22)

J := eval(%)

conjugate(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t)))*a+r[2]*(-l^2+a-m)*exp(-I*(l*x-m*t))+r[1]*exp(I*(l*x-m*t))*(-l^2+a+m) = 0

(23)

expand(%)

a*conjugate(r[1])*exp(I*conjugate(m)*conjugate(t))/exp(I*conjugate(l)*conjugate(x))+a*conjugate(r[2])*exp(I*conjugate(l)*conjugate(x))/exp(I*conjugate(m)*conjugate(t))-r[2]*exp(I*m*t)*l^2/exp(I*l*x)+r[2]*exp(I*m*t)*a/exp(I*l*x)-r[2]*exp(I*m*t)*m/exp(I*l*x)-r[1]*exp(I*l*x)*l^2/exp(I*m*t)+r[1]*exp(I*l*x)*a/exp(I*m*t)+r[1]*exp(I*l*x)*m/exp(I*m*t) = 0

(24)

indets(%)

{a, l, m, t, x, r[1], r[2], exp(I*l*x), exp(I*m*t), exp(I*conjugate(l)*conjugate(x)), exp(I*conjugate(m)*conjugate(t)), conjugate(l), conjugate(m), conjugate(t), conjugate(x), conjugate(r[1]), conjugate(r[2])}

(25)

subs({exp(-I*(l*x-m*t)) = Y, exp(I*(l*x-m*t)) = X}, J)

conjugate(X*r[1]+Y*r[2])*a+r[2]*(-l^2+a-m)*Y+r[1]*X*(-l^2+a+m) = 0

(26)

collect(%, {X, Y})

conjugate(X*r[1]+Y*r[2])*a+r[2]*(-l^2+a-m)*Y+r[1]*X*(-l^2+a+m) = 0

(27)

Download conjugate.mw

I am currently working with an ordinary differential equation (ODE) that I find difficult to express and solve accurately. In this ODE, the symbol f represents an exponential function rather than a typical variable, which adds to the confusion. Although I have followed the format used in related research papers, the results I obtain are not satisfactory.

Since this type of ODE is new and somewhat unfamiliar to me, I would greatly appreciate your guidance in:

  1. Properly formulating the ODE.

  2. Understanding the role of f in the context of exponential functions.

  3. Finding the correct and complete solutions.

  4. Learning how to clearly present each solution step by step.

Thank you in advance for your support.

AA.mw

Manually factoring each equation in this system one by one is time-consuming and inefficient. Is there a way to automate the factoring of expressions into two multiplicative terms—some of which may be single-term factors—using code?

restart

with(PDEtools)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

G1 := 5*lambda^2*alpha[1]^4*alpha[0]*a[4]+lambda^2*alpha[1]^4*a[3]-10*lambda*alpha[1]^2*alpha[0]^3*a[4]+lambda*k^2*a[1]*alpha[1]^2-6*lambda*alpha[1]^2*alpha[0]^2*a[3]+alpha[0]^5*a[4]-k^2*a[1]*alpha[0]^2-3*lambda*alpha[1]^2*alpha[0]*a[2]+alpha[0]^4*a[3]+lambda*w*alpha[1]^2+alpha[0]^3*a[2]-w*alpha[0]^2+((lambda^2*a[4]*alpha[1]^5-10*lambda*a[4]*alpha[0]^2*alpha[1]^3-4*lambda*a[3]*alpha[0]*alpha[1]^3+5*a[4]*alpha[0]^4*alpha[1]-2*k^2*a[1]*alpha[0]*alpha[1]-lambda*a[2]*alpha[1]^3+4*a[3]*alpha[0]^3*alpha[1]+3*a[2]*alpha[0]^2*alpha[1]-2*w*alpha[0]*alpha[1])*(diff(G(xi), xi))+lambda^2*beta[0]*a[5]*alpha[1]^2-4*mu*lambda*alpha[1]^4*a[3]+5*lambda^2*beta[0]*alpha[1]^4*a[4]-3*lambda*beta[0]*alpha[1]^2*a[2]-lambda*beta[0]*a[5]*alpha[0]^2-(1/2)*lambda*a[1]*alpha[0]*beta[0]-2*k^2*a[1]*alpha[0]*beta[0]+12*mu*alpha[1]^2*alpha[0]^2*a[3]+6*mu*alpha[1]^2*alpha[0]*a[2]-2*mu*k^2*a[1]*alpha[1]^2-(1/2)*mu*lambda*alpha[1]^2*a[1]+20*mu*alpha[1]^2*alpha[0]^3*a[4]-20*mu*lambda*alpha[1]^4*alpha[0]*a[4]-2*mu*lambda*alpha[1]^2*a[5]*alpha[0]-30*lambda*beta[0]*alpha[1]^2*alpha[0]^2*a[4]-12*lambda*beta[0]*alpha[1]^2*alpha[0]*a[3]-2*w*alpha[0]*beta[0]+5*beta[0]*alpha[0]^4*a[4]+4*beta[0]*alpha[0]^3*a[3]+3*beta[0]*alpha[0]^2*a[2]-2*mu*w*alpha[1]^2)/G(xi)+((1/4)*(3*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^2*a[1]+6*mu*beta[0]*alpha[1]^2*a[2]+3*mu*beta[0]*a[5]*alpha[0]^2-6*lambda*beta[0]^2*alpha[1]^2*a[3]-2*lambda*beta[0]^2*a[5]*alpha[0]+(6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]^2*a[3]+(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]*a[2]-12*mu^2*alpha[1]^2*a[5]*alpha[0]+3*mu*a[1]*alpha[0]*beta[0]*(1/2)+10*beta[0]^2*alpha[0]^3*a[4]+6*beta[0]^2*alpha[0]^2*a[3]+3*beta[0]^2*alpha[0]*a[2]-k^2*a[1]*beta[0]^2+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]^3*a[4]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*k^2*a[1]*alpha[1]^2+(5*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^4*alpha[0]*a[4]+(4*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^2*a[5]*alpha[0]+(1/2)*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[1]-9*mu^2*alpha[1]^2*a[1]*(1/4)-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*w*alpha[1]^2+(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2)*alpha[1]^4*a[3]-(1/4)*lambda*beta[0]^2*a[1]-30*lambda*beta[0]^2*alpha[1]^2*alpha[0]*a[4]+24*mu*beta[0]*alpha[1]^2*alpha[0]*a[3]+60*mu*beta[0]*alpha[1]^2*alpha[0]^2*a[4]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*lambda*a[5]*alpha[0]-20*mu*lambda*beta[0]*alpha[1]^4*a[4]-7*mu*lambda*beta[0]*a[5]*alpha[1]^2+(2*mu*alpha[1]^3*a[2]-2*w*alpha[1]*beta[0]-4*lambda*beta[0]*alpha[1]^3*a[3]+8*mu*alpha[1]^3*alpha[0]*a[3]+mu*alpha[1]*a[5]*alpha[0]^2+(1/2)*mu*alpha[1]*alpha[0]*a[1]+20*mu*alpha[1]^3*alpha[0]^2*a[4]-4*mu*lambda*alpha[1]^5*a[4]-mu*lambda*alpha[1]^3*a[5]+20*beta[0]*alpha[1]*alpha[0]^3*a[4]+12*beta[0]*alpha[1]*alpha[0]^2*a[3]+6*beta[0]*alpha[1]*alpha[0]*a[2]-2*k^2*a[1]*alpha[1]*beta[0]-(1/2)*lambda*beta[0]*alpha[1]*a[1]-20*lambda*beta[0]*alpha[1]^3*alpha[0]*a[4]-2*lambda*beta[0]*a[5]*alpha[1]*alpha[0])*(diff(G(xi), xi))-w*beta[0]^2)/G(xi)^2+(((lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^3*a[2]+(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2)*alpha[1]^5*a[4]+(2*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^3*a[5]+3*beta[0]^2*alpha[1]*a[2]+3*mu*beta[0]*alpha[1]*a[1]*(1/2)+8*mu*beta[0]*alpha[1]^3*a[3]-2*lambda*beta[0]^2*a[5]*alpha[1]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^3*alpha[0]*a[3]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]*a[5]*alpha[0]^2+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]*alpha[0]*a[1]+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^3*alpha[0]^2*a[4]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^3*lambda*a[5]+30*beta[0]^2*alpha[1]*alpha[0]^2*a[4]+12*beta[0]^2*alpha[1]*alpha[0]*a[3]-6*mu^2*alpha[1]^3*a[5]-10*lambda*beta[0]^2*alpha[1]^3*a[4]+40*mu*beta[0]*alpha[1]^3*alpha[0]*a[4]+8*mu*beta[0]*a[5]*alpha[1]*alpha[0])*(diff(G(xi), xi))+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^4*a[3]+(5*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*beta[0]*alpha[1]^4*a[4]+(6*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*beta[0]*a[5]*alpha[1]^2-10*lambda*beta[0]^3*alpha[1]^2*a[4]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^2*a[1]+(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^2*a[2]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*a[5]*alpha[0]^2+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*a[1]*alpha[0]*beta[0]+12*mu*beta[0]^2*alpha[1]^2*a[3]+6*mu*beta[0]^2*a[5]*alpha[0]+(20*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^4*alpha[0]*a[4]+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^2*a[5]*alpha[0]+beta[0]^3*a[2]-14*mu^2*beta[0]*a[5]*alpha[1]^2+(30*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^2*alpha[0]^2*a[4]+(5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*lambda*a[5]*alpha[1]^2+(12*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^2*alpha[0]*a[3]+60*mu*beta[0]^2*alpha[1]^2*alpha[0]*a[4]+mu*beta[0]^2*a[1]-lambda*beta[0]^3*a[5]+10*beta[0]^3*alpha[0]^2*a[4]+4*beta[0]^3*alpha[0]*a[3])/G(xi)^3+((4*beta[0]^3*alpha[1]*a[3]+(1/2)*(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]*a[1]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^3*a[3]+7*mu*beta[0]^2*a[5]*alpha[1]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^5*a[4]+(5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^3*a[5]+20*beta[0]^3*alpha[1]*alpha[0]*a[4]+20*mu*beta[0]^2*alpha[1]^3*a[4]+(20*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^3*alpha[0]*a[4]+(8*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*a[5]*alpha[1]*alpha[0])*(diff(G(xi), xi))+20*mu*beta[0]^3*alpha[1]^2*a[4]+(6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*alpha[1]^2*a[3]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*a[5]*alpha[0]+5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^4*alpha[0]*a[4]+4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^2*a[5]*alpha[0]+(17*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*beta[0]*a[5]*alpha[1]^2+(20*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*beta[0]*alpha[1]^4*a[4]+beta[0]^4*a[3]+(30*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*alpha[1]^2*alpha[0]*a[4]+(1/4)*(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*a[1]+3*mu*beta[0]^3*a[5]+5*beta[0]^4*alpha[0]*a[4]+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^4*a[3]+3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^2*a[1]*(1/4))/G(xi)^4+(((lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^5*a[4]+2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^3*a[5]+5*beta[0]^4*alpha[1]*a[4]+(6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*a[5]*alpha[1]+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*alpha[1]^3*a[4])*(diff(G(xi), xi))+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^3*a[5]+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^3*alpha[1]^2*a[4]+5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*beta[0]*alpha[1]^4*a[4]+6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*beta[0]*a[5]*alpha[1]^2+beta[0]^5*a[4])/G(xi)^5 = 0

indets(G1)

{k, lambda, mu, w, xi, B[1], B[2], a[1], a[2], a[3], a[4], a[5], alpha[0], alpha[1], beta[0], G(xi), diff(G(xi), xi)}

(2)

``

(3)

eq0 := 5*lambda^2*a[4]*alpha[0]*alpha[1]^4+lambda^2*a[3]*alpha[1]^4-10*lambda*a[4]*alpha[0]^3*alpha[1]^2+k^2*lambda*a[1]*alpha[1]^2-6*lambda*a[3]*alpha[0]^2*alpha[1]^2+a[4]*alpha[0]^5-k^2*a[1]*alpha[0]^2-3*lambda*a[2]*alpha[0]*alpha[1]^2+a[3]*alpha[0]^4+lambda*w*alpha[1]^2+a[2]*alpha[0]^3-w*alpha[0]^2 = 0

``

eq1 := lambda^2*a[4]*alpha[1]^5-10*lambda*a[4]*alpha[0]^2*alpha[1]^3-4*lambda*a[3]*alpha[0]*alpha[1]^3+5*a[4]*alpha[0]^4*alpha[1]-2*k^2*a[1]*alpha[0]*alpha[1]-lambda*a[2]*alpha[1]^3+4*a[3]*alpha[0]^3*alpha[1]+3*a[2]*alpha[0]^2*alpha[1]-2*w*alpha[0]*alpha[1] = 0

eq2 := lambda^2*beta[0]*a[5]*alpha[1]^2+6*mu*alpha[1]^2*alpha[0]*a[2]-2*mu*k^2*a[1]*alpha[1]^2-(1/2)*mu*alpha[1]^2*lambda*a[1]+20*mu*alpha[1]^2*alpha[0]^3*a[4]+12*mu*alpha[1]^2*alpha[0]^2*a[3]-(1/2)*lambda*a[1]*alpha[0]*beta[0]-2*k^2*a[1]*alpha[0]*beta[0]-3*lambda*beta[0]*alpha[1]^2*a[2]-lambda*beta[0]*a[5]*alpha[0]^2+5*lambda^2*beta[0]*alpha[1]^4*a[4]-4*mu*lambda*alpha[1]^4*a[3]-2*mu*w*alpha[1]^2+5*beta[0]*alpha[0]^4*a[4]+4*beta[0]*alpha[0]^3*a[3]+3*beta[0]*alpha[0]^2*a[2]-2*w*alpha[0]*beta[0]-20*mu*lambda*alpha[1]^4*alpha[0]*a[4]-2*mu*alpha[1]^2*lambda*a[5]*alpha[0]-30*lambda*beta[0]*alpha[1]^2*alpha[0]^2*a[4]-12*lambda*beta[0]*alpha[1]^2*alpha[0]*a[3] = 0

NULL

eq3 := (1/4)*(3*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^2*a[1]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*k^2*a[1]*alpha[1]^2+(1/2)*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[1]+(5*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^4*alpha[0]*a[4]+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]^3*a[4]+(6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]^2*a[3]-30*lambda*beta[0]^2*alpha[1]^2*alpha[0]*a[4]-20*mu*beta[0]*lambda*alpha[1]^4*a[4]+(4*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^2*a[5]*alpha[0]-12*mu^2*alpha[1]^2*a[5]*alpha[0]+(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]*a[2]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*lambda*a[5]*alpha[0]-7*mu*beta[0]*lambda*a[5]*alpha[1]^2+24*mu*beta[0]*alpha[1]^2*alpha[0]*a[3]-9*mu^2*alpha[1]^2*a[1]*(1/4)-w*beta[0]^2+3*beta[0]^2*alpha[0]*a[2]-(1/4)*lambda*beta[0]^2*a[1]-k^2*a[1]*beta[0]^2+10*beta[0]^2*alpha[0]^3*a[4]+6*beta[0]^2*alpha[0]^2*a[3]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*w*alpha[1]^2+3*mu*a[1]*alpha[0]*beta[0]*(1/2)+(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2)*alpha[1]^4*a[3]+3*mu*beta[0]*a[5]*alpha[0]^2-6*lambda*beta[0]^2*alpha[1]^2*a[3]-2*lambda*beta[0]^2*a[5]*alpha[0]+6*mu*beta[0]*alpha[1]^2*a[2]+60*mu*beta[0]*alpha[1]^2*alpha[0]^2*a[4] = 0

eq4 := 2*mu*alpha[1]^3*a[2]-2*w*alpha[1]*beta[0]-20*lambda*beta[0]*alpha[1]^3*alpha[0]*a[4]-2*lambda*beta[0]*a[5]*alpha[1]*alpha[0]-2*k^2*a[1]*alpha[1]*beta[0]+20*beta[0]*alpha[1]*alpha[0]^3*a[4]+12*beta[0]*alpha[1]*alpha[0]^2*a[3]+6*beta[0]*alpha[1]*alpha[0]*a[2]+8*mu*alpha[1]^3*alpha[0]*a[3]+mu*alpha[1]*a[5]*alpha[0]^2+(1/2)*mu*alpha[1]*alpha[0]*a[1]-4*lambda*beta[0]*alpha[1]^3*a[3]-lambda*alpha[1]^3*mu*a[5]-(1/2)*lambda*beta[0]*alpha[1]*a[1]+20*mu*alpha[1]^3*alpha[0]^2*a[4]-4*mu*lambda*alpha[1]^5*a[4] = 0

eq5 := -6*mu^2*alpha[1]^3*a[5]+(2*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^3*a[5]+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^3*a[2]+(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2)*alpha[1]^5*a[4]+3*beta[0]^2*alpha[1]*a[2]+40*mu*beta[0]*alpha[1]^3*alpha[0]*a[4]+8*mu*beta[0]*a[5]*alpha[1]*alpha[0]+30*beta[0]^2*alpha[1]*alpha[0]^2*a[4]+12*beta[0]^2*alpha[1]*alpha[0]*a[3]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^3*alpha[0]*a[3]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]*a[5]*alpha[0]^2+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]*alpha[0]*a[1]+8*mu*beta[0]*alpha[1]^3*a[3]+3*mu*beta[0]*alpha[1]*a[1]*(1/2)-10*lambda*beta[0]^2*alpha[1]^3*a[4]-2*lambda*beta[0]^2*a[5]*alpha[1]+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^3*alpha[0]^2*a[4]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^3*lambda*a[5] = 0

eq6 := -14*mu^2*beta[0]*a[5]*alpha[1]^2+beta[0]^3*a[2]+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*a[1]*alpha[0]*beta[0]+12*mu*beta[0]^2*alpha[1]^2*a[3]+6*mu*beta[0]^2*a[5]*alpha[0]-10*lambda*beta[0]^3*alpha[1]^2*a[4]+(6*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*beta[0]*a[5]*alpha[1]^2+(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^2*a[2]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*a[5]*alpha[0]^2+(5*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*beta[0]*alpha[1]^4*a[4]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^4*a[3]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^2*a[1]+10*beta[0]^3*alpha[0]^2*a[4]+4*beta[0]^3*alpha[0]*a[3]-lambda*beta[0]^3*a[5]+mu*beta[0]^2*a[1]+(20*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^4*alpha[0]*a[4]+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^2*a[5]*alpha[0]+(30*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^2*alpha[0]^2*a[4]+(5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*lambda*a[5]*alpha[1]^2+(12*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^2*alpha[0]*a[3]+60*mu*beta[0]^2*alpha[1]^2*alpha[0]*a[4] = 0

eq7 := 4*beta[0]^3*alpha[1]*a[3]+(20*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^3*alpha[0]*a[4]+(8*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*a[5]*alpha[1]*alpha[0]+20*beta[0]^3*alpha[1]*alpha[0]*a[4]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^3*a[3]+(5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^3*mu*a[5]+(1/2)*(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]*a[1]+20*mu*beta[0]^2*alpha[1]^3*a[4]+7*mu*beta[0]^2*a[5]*alpha[1]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^5*a[4] = 0

eq8 := 4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^2*a[5]*alpha[0]+5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^4*alpha[0]*a[4]+beta[0]^4*a[3]+(6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*alpha[1]^2*a[3]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*a[5]*alpha[0]+20*mu*beta[0]^3*alpha[1]^2*a[4]+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^4*a[3]+3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^2*a[1]*(1/4)+5*beta[0]^4*alpha[0]*a[4]+3*mu*beta[0]^3*a[5]+(1/4)*(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*a[1]+(30*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*alpha[1]^2*alpha[0]*a[4]+(17*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*mu*a[5]*alpha[1]^2+(20*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*mu*alpha[1]^4*a[4] = 0

eq9 := (10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*alpha[1]^3*a[4]+(6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*a[5]*alpha[1]+5*beta[0]^4*alpha[1]*a[4]+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^5*a[4]+2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^3*a[5] = 0

eq10 := (2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^3*a[5]+beta[0]^5*a[4]+5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*beta[0]*alpha[1]^4*a[4]+6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*beta[0]*a[5]*alpha[1]^2+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^3*alpha[1]^2*a[4] = 0

 

with(LargeExpressions)

COEFFS := solve({eq0, eq1, eq10, eq2, eq3, eq4, eq5, eq6, eq7, eq8, eq9}, {w, a[1], a[2], alpha[0], alpha[1], beta[0]})

Download by_hand!.mw

This question is actually on behalf of a colleague who works with fuzzy mathematics. He typically computes things like fuzzy derivatives by hand, including for specific functions such as "function 14" (though I'm not familiar with the specific form of that function). He’s interested in whether Maple can symbolically and numerically handle tasks in fuzzy calculus — especially taking and plotting fuzzy derivatives.

I’m not experienced with fuzzy systems myself, but I’d like to recommend Maple to him if it supports these features. So my main questions are:

  1. Can Maple compute and plot fuzzy functions and their derivatives?

  2. Does Maple have built-in support or packages for fuzzy arithmetic or fuzzy calculus?

  3. If not natively, is there a workaround or external library that integrates with Maple to do this?

I’d really appreciate any insights or examples. It seems like a missed opportunity for my friend to be doing all this manually when such software might already handle it.

Thanks in advance!

 

1 2 3 4 5 6 7 Last Page 1 of 359