Due to a do... for cycle I obtain thes data:
....
> for i from 0 to 10 do x1:=0.1*i: T:=Tx1(x1);print('x1'=x1);y1:=eval((p1s*x1*gamma1)/p); print('y1'=y1);print('T'=T);end do:
x1 = 0.
y1 = 0.
T = 100.0000416
x1 = 0.1
y1 = 0.4454088320
T = 85.93510754
x1 = 0.2
y1 = 0.4597014971
T = 85.41761562
x1 = 0.3
y1 = 0.4343600675
T = 85.92005198
x1 = 0.4
y1 = 0.4122667776
T = 86.09782822
x1 = 0.5
y1 = 0.4080528845
T = 86.09991663
x1 = 0.6
y1 = 0.4306891136
T = 86.42991221
x1 = 0.7
y1 = 0.4904070733
T = 87.60592371
x1 = 0.8
y1 = 0.6013800104
T = 89.96757730
x1 = 0.9
y1 = 0.7762669037
T = 93.42524099
x1 = 1.0
y1 = 1.000000002
T = 97.13963466
y1 = 0.7762669038
T = 93.42524099
x1 = 1.0
y1 = 1.000000002
T = 97.13963466
Do you know how to export these data to Excel?Cause my problem is to plot T(x1),T(y1),y1(x1) and it is impossible for Maple to define T:=->y1 because the equation is very complex. [I can plot T(x1) cause it is easier]. This is my exercise if you need:
the sistem I have to solve is the sequent:
system of p*y1=p1s(T)*x1*gamma1(x1)
{
p*(1-y1)=p2s(T)*(1-y1)gamma2(x1)
So I wrote:
> restart;
> print("1 - ?");
"1 - ?" #unknow fluid
> print("2 - H2O");
"2 - H2O" #water
> A1:=7.74439: #experimental data
> B1:=1437.686:
> C1:=198.463:
> A2:=8.07126:
> B2:=1730.63:
> C2:=233.426:
> p:=760:
> A12:=2.7549:
> A21:=0.925:
> p1s:=10^(A1+(-B1/(T+C1))):
> p2s:=10^(A2+(-B2/(T+C2))):
> gamma1:=exp((A12+2*(A21-A12)*(x1))*(1-x1)^2):
> gamma2:=exp((A21+2*(A12-A21)*(1-x1))*(x1)^2):
> Teb1:=evalf(-(B1/(log[10](p)-A1))-C1):print(Tbp1=Teb1); #Boiling Point Temperature of 1, useless
Tbp1 = 97.1396347
> Teb2:=evalf(-(B2/(log[10](p)-A2))-C2):print(Tbp2=Teb2); #Boiling Point Temperature of 2, useless
Tbp2 = 100.0000416
> gx:= solve(((p1s*x1*gamma1)/p)+((p2s*(1-x1)*gamma2)/p)-1,T): #solution of the system
> Tx1:=x1->evalf(RootOf(10^(1/100000*(774439000*_Z+9928887257)/(1000*_Z+198463))*x1*exp(-1/10000*(-27549+36598*x1)*(-1+x1)^2)+10^(1/50000*(201781500*_Z+3835298419)/(500*_Z+116713))*exp(-1/5000*(-22924+18299*x1)*x1^2)-10^(1/50000*(201781500*_Z+3835298419)/(500*_Z+116713))*exp(-1/5000*(-22924+18299*x1)*x1^2)*x1-760)):
> hy:=solve(p1s*x1*gamma1 - p*y1,x1):
> #gy:=solve(p*(1-y1) + p2s*(h-1)*exp((A21+2*(A12-A21)*(1-h))*(h)^2),T): # this is the complex equation ( I put # )
> Ty1:=y1->evalf(what I'd find from the gy):
> plot([Tx1,Ty1] ,0..1);
Sorry for the very complex reading but I'm an Italian Chemical Engineer student