nm

11373 Reputation

20 Badges

13 years, 41 days

MaplePrimes Activity


These are questions asked by nm

Windows 10. From normal command line window:

"C:\Program Files\Maple 2024\bin.X86_64_WINDOWS\mint.exe" foo.mpl

Gives this

The file foo.mpl is

export module ODE() 
    option object; 
    export ode::`=`;
end module;

Notice the funny looking characters in the output.

Why does it happen?

Is this a bug in mint?

Given this foo.mpl

foo:=proc()
    local x:=2,y:=3;       
        
    if MmaTranslator[Mma][LeafCount](x)<MmaTranslator[Mma][LeafCount](y)  then        
        0;
    else
       1;
    fi;  

end proc;   

It says

Procedure foo() on lines 2 to 11
  These names were used as global names but were not declared:  LeafCount, Mma

But if I rewrite the above using :- instead:

foo:=proc()
    local x:=2,y:=3;       
        
    if MmaTranslator:-Mma:-LeafCount(x)<MmaTranslator:-Mma:-LeafCount(y)  then        
        0;
    else
       1;
    fi;  

end proc;  

Now mint is happy and no message are given.

Is not  MmaTranslator:-Mma:-LeafCount(x)  the same as MmaTranslator[Mma][LeafCount](x) ?

Maple itself is happy with both. So why is mint complaining?

I am finding many problems with mint. Will post more problems found when I have more time.

Is mint still actively  maintained by Maplesoft? 

Whenever I have local proc inside a proc, and use local variables from the outer proc inside it, Mint tells me that the variables are not used.

This can't be right. Why does it say that? Here is MWE. I have this foo.mpl file

foo := proc()

local C1;
local y,x;

    proc()
        C1:= `tools/genglobal`(_C); 
        sol:=y(x)=  C1; 
    end proc();

end proc;

We see clearly that C1 is used, also x and y are used. There can be more code using these inside the inner proc. But this is what mint says

"C:\Program Files\Maple 2024\bin.X86_64_WINDOWS\mint.exe" foo.mpl

    |\^/|      Maple 2024 Diagnostic Program
._|\|   |/|_.  Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2024
 \  MINT   /   All rights reserved. Maple is a trademark of
 <____ ____>   Waterloo Maple Inc.
      |
Procedure foo() on lines 1 to 11
  These local variables were never used:  C1, x, y

Any idea why it says these are not used?

Also, I noticed it did not warn me that variable sol is global inside the proc. i.e. I was expecting something like this 

          These names were used as global names but were not declared: sol

Which is typical message mint gives when using a name inside a proc which was not declared,

Maple 2024.2 on Windows

I got email to register to "see" Maple 2025 :

for a special advanced look at Maple 2025

But I do not understand what does registering here means. Do I then get a link to some Maple internal URL to watch Video at that time? It says

Date/Time: Tuesday, March 18, 2025 at 11:00 AM
Language: English
Duration: 1 hour

If I register, then what happens?  do I get a link that opens at the time time to watch it? If so, why does one have to register to watch a Maple video? Why is the link not made public for any one to watch? Does one have to be at the browser at that exact time for the link to open?

I just do not know what a Maple webinar means.  Is it like a youtube video?

THis IC for Abel ode is not valid and should result in no solution. But instead of returning NULL, dsolve throws internal error called Error, (in dsolve) invalid limiting point

restart;

interface(version);

`Standard Worksheet Interface, Maple 2024.2, Windows 10, October 29 2024 Build ID 1872373`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1844 and is the same as the version installed in this computer, created 2025, January 25, 22:5 hours Pacific Time.`

ode:=diff(y(x),x)-x^a*y(x)^3+3*y(x)^2-x^(-a)*y(x)-x^(-2*a)+a*x^(-a-1) = 0;

diff(y(x), x)-x^a*y(x)^3+3*y(x)^2-x^(-a)*y(x)-x^(-2*a)+a*x^(-a-1) = 0

DEtools:-odeadvisor(ode);
sol:=dsolve([ode,y(1)=1])

[_Abel]

Error, (in dsolve) invalid limiting point

tracelast;

 dsolve called with arguments: [diff(y(x), x)-x^a*y(x)^3+3*y(x)^2-x^(-a)*y(x)-x^(-2*a)+a*x^(-a-1) = 0, y(1) = 1], arbitraryconstants = subscripted, atomizenames = true, build = false, numeric = false, type = none
 #(dsolve,80): error

 \`dsolve/IC\` called with arguments: [diff(y(x), x)-x^a*y(x)^3+3*y(x)^2-x^(-a)*y(x)-x^(-2*a)+a*x^(-a-1) = 0, y(1) = 1], {y(x)}, skipimplicit = false, skippparticularsolforlinearODEs = true, solution = {}, usesolutions = particular and general
 #(\`dsolve/IC\`,64): draft := procname(_passed,':-usesolutions = "general"');

 \`dsolve/IC\` called with arguments: [diff(y(x), x)-x^a*y(x)^3+3*y(x)^2-x^(-a)*y(x)-x^(-2*a)+a*x^(-a-1) = 0, y(1) = 1], {y(x)}, skipimplicit = false, skippparticularsolforlinearODEs = true, solution = {}, usesolutions = general
 #(\`dsolve/IC\`,277): zz := map(op,{\`dsolve/IC/_C\`({ANS[i]},funcs,x,ics)});

 \`dsolve/IC/_C\` called with arguments: {y(x) = -exp(2*x^(-a+1)/(a-1))/(_C[1]-2*2^(2*(a+1)/(a-1))*(1/(-a+1))^((a+1)/(a-1))*(2^(-(5*a-3)/(a-1))*(1/(-a+1))^(-(a+1)/(a-1))*x^(2*a)*(-a+1)^2*(x^(-a+1)/(-a+1))^(1/(a-1))*(-4*x^(-a+1)*a^2/(-a+1)+8*a*x^(-a+1)/(-a+1)-4*x^(-a+1)/(-a+1)+2*a-2)*WhittakerM(-(a+1)/(a-1)+1/(a-1), -1/(a-1)+1/2, 4*x^(-a+1)/(-a+1))*exp(-2*x^(-a+1)/(-a+1))/((a+1)*(-3+a))-2^(-(3*a-1)/(a-1))*(1/(-a+1))^(-(a+1)/(a-1))*x^(2*a)*WhittakerM(-(a+1)/(a-1)+1/(a-1)+1, -1/(a-1)+1/2, 4*x^(-a+1)/(-a+1))*(-a+1)^2*(x^(-a+1)/(-a+1))^(1/(a-1))*exp(-2*x^(-a+1)/(-a+1))/((a+1)*(-3+a)))/(-a+1))^(1/2)+x^(-a)}, {y(x)}, x, [y(1) = 1]
 #(\`dsolve/IC/_C\`,1): ans := \`dsolve/IC/_C/do\`(solns,depvars,t,inits,'evaluated_ans', "default",':-giveup = giveup');

 \`dsolve/IC/_C/do\` called with arguments: {y(x) = -exp(2*x^(-a+1)/(a-1))/(_C[1]-2*2^(2*(a+1)/(a-1))*(1/(-a+1))^((a+1)/(a-1))*(2^(-(5*a-3)/(a-1))*(1/(-a+1))^(-(a+1)/(a-1))*x^(2*a)*(-a+1)^2*(x^(-a+1)/(-a+1))^(1/(a-1))*(-4*x^(-a+1)*a^2/(-a+1)+8*a*x^(-a+1)/(-a+1)-4*x^(-a+1)/(-a+1)+2*a-2)*WhittakerM(-(a+1)/(a-1)+1/(a-1), -1/(a-1)+1/2, 4*x^(-a+1)/(-a+1))*exp(-2*x^(-a+1)/(-a+1))/((a+1)*(-3+a))-2^(-(3*a-1)/(a-1))*(1/(-a+1))^(-(a+1)/(a-1))*x^(2*a)*WhittakerM(-(a+1)/(a-1)+1/(a-1)+1, -1/(a-1)+1/2, 4*x^(-a+1)/(-a+1))*(-a+1)^2*(x^(-a+1)/(-a+1))^(1/(a-1))*exp(-2*x^(-a+1)/(-a+1))/((a+1)*(-3+a)))/(-a+1))^(1/2)+x^(-a)}, {y(x)}, x, [y(1) = 1], evaluated_ans, default, giveup = giveup, usecansolve = false
 #(\`dsolve/IC/_C/do\`,133): Solns := map((u, S) -> map(limit,S,op(u)),csol,Solns);

 limit called with arguments: y(x) = -exp(2*x^(-a+1)/(a-1))/(_C[1]-2*2^(2*(a+1)/(a-1))*(1/(-a+1))^((a+1)/(a-1))*(2^(-(5*a-3)/(a-1))*(1/(-a+1))^(-(a+1)/(a-1))*x^(2*a)*(-a+1)^2*(x^(-a+1)/(-a+1))^(1/(a-1))*(-4*x^(-a+1)*a^2/(-a+1)+8*a*x^(-a+1)/(-a+1)-4*x^(-a+1)/(-a+1)+2*a-2)*WhittakerM(-(a+1)/(a-1)+1/(a-1), -1/(a-1)+1/2, 4*x^(-a+1)/(-a+1))*exp(-2*x^(-a+1)/(-a+1))/((a+1)*(-3+a))-2^(-(3*a-1)/(a-1))*(1/(-a+1))^(-(a+1)/(a-1))*x^(2*a)*WhittakerM(-(a+1)/(a-1)+1/(a-1)+1, -1/(a-1)+1/2, 4*x^(-a+1)/(-a+1))*(-a+1)^2*(x^(-a+1)/(-a+1))^(1/(a-1))*exp(-2*x^(-a+1)/(-a+1))/((a+1)*(-3+a)))/(-a+1))^(1/2)+x^(-a), _C[1] = exp((4*I)*Im(1/(a-1)))*infinity, parametric = false
 #(limit,2): return map(thisproc,_passed)

 limit called with arguments: y(x), _C[1] = exp((4*I)*Im(1/(a-1)))*infinity, parametric = false
 #(limit,33): error "invalid limiting point"

Error, (in dsolve) invalid limiting point

 locals defined as: ddir = ddir, dexpr = y(x), fexpr = fexpr, r = r, x = _C[1], fL = fL, L = exp((4*I)*Im(1/(a-1)))*infinity, efloat = efloat, lfloat = lfloat, ind_dexpr = ind_dexpr, ind_L = ind_L, lexpr = lexpr, t = t, limr = limr, liml = liml, pt = (_C[1] = exp((4*I)*Im(1/(a-1)))*infinity), inertfunctions = {}, limitX = limitX, parameters = parameters, Y = Y, limc = limc, cexpr = cexpr, texpr = texpr, bexpr = bexpr, limt = limt, limb = limb, param = param, c = c, N = N, Z = Z, P = P, o = o, e = e, uneval = uneval, i = i, A = A, cond = cond, ll = ll, rr = rr

 


 

Download internal_error_instead_of_no_solution.mw

First 8 9 10 11 12 13 14 Last Page 10 of 200