ssllys

35 Reputation

4 Badges

7 years, 78 days

MaplePrimes Activity


These are questions asked by ssllys

I try to calculate the alpha1,alpha2…which were showed in the reference paper.  Actually, the parameter of A and B is identical to the reference result, but the parameter alpha1,alpha2…… do not as same as shown in the reference paper. The attachment is my Maple code about this problem. Please tell me why this does not work.  By the way, I can not get the integration result in which the integral function contains the differential, such as  alpha3 and alpha4.
 

 

Download feijisuan.mwfeijisuan.mw

 

 

 


 

I*mu*A(t[2])*omega[0]*(1/2)-A(t[2])*omega[0]*(diff(B(t[2]), t[2]))+I*(diff(A(t[2]), t[2]))*omega[0]-(1/4)*A(t[2])^5*beta[2]*omega[0]^2-(1/4)*A(t[2])^3*beta[1]*omega[0]^2-(1/2)*F[0]*exp(I*sigma*t[2]-I*B(t[2]))+5*alpha[2]*A(t[2])^5*(1/16)+3*alpha[1]*A(t[2])^3*(1/8);

((1/2)*I)*mu*A(t[2])*omega[0]-A(t[2])*omega[0]*(diff(B(t[2]), t[2]))+I*(diff(A(t[2]), t[2]))*omega[0]-(1/4)*A(t[2])^5*beta[2]*omega[0]^2-(1/4)*A(t[2])^3*beta[1]*omega[0]^2-(1/2)*F[0]*exp(I*sigma*t[2]-I*B(t[2]))+(5/16)*alpha[2]*A(t[2])^5+(3/8)*alpha[1]*A(t[2])^3

(1)

simplify(%);

-(1/2)*F[0]*exp(-I*(-sigma*t[2]+B(t[2])))+I*(diff(A(t[2]), t[2]))*omega[0]+(1/2)*(-2*(diff(B(t[2]), t[2]))*omega[0]+(-(1/2)*beta[2]*omega[0]^2+(5/8)*alpha[2])*A(t[2])^4+(-(1/2)*beta[1]*omega[0]^2+(3/4)*alpha[1])*A(t[2])^2+I*mu*omega[0])*A(t[2])

(2)

subs(C(t2)=-sigma*t2+B(t2),%);

-(1/2)*F[0]*exp(-I*(-sigma*t[2]+B(t[2])))+I*(diff(A(t[2]), t[2]))*omega[0]+(1/2)*(-2*(diff(B(t[2]), t[2]))*omega[0]+(-(1/2)*beta[2]*omega[0]^2+(5/8)*alpha[2])*A(t[2])^4+(-(1/2)*beta[1]*omega[0]^2+(3/4)*alpha[1])*A(t[2])^2+I*mu*omega[0])*A(t[2])

(3)

 


Download no_change.mw


 

 

C_t := -A(t)*omega[0]*(sigma-(diff(C(t), t)))-(1/4)*A(t)^5*beta[2]*omega[0]^2-(1/4)*A(t)^3*beta[1]*omega[0]^2-(1/2)*F[0]*cos(C(t))+5*alpha[2]*A(t)^5*(1/16)+3*alpha[1]*A(t)^3*(1/8) = 0;

-A(t)*omega[0]*(sigma-(diff(C(t), t)))-0.3297500000e-1*A(t)^5*omega[0]^2-0.8345000000e-1*A(t)^3*omega[0]^2-cos(C(t))+0.4059375000e-1*A(t)^5+.1249125000*A(t)^3 = 0

(1)

 

A_t := (1/2)*mu*A(t)*omega[0]+(diff(A(t), t))*omega[0]-(1/2)*F[0]*sin(C(t)) = 0;

0.5000000000e-2*A(t)*omega[0]+(diff(A(t), t))*omega[0]-sin(C(t)) = 0

(2)

 

F[0] :=2: w0 := 1: alpha[1]:=0.3331:alpha[2]:=0.1299:beta[1]:=0.3338:beta[2]:=0.1319:mu:=0.01:sigma=0:

sigma = `0:`

(3)

 

C_t;A_t;

-A(t)*omega[0]*(sigma-(diff(C(t), t)))-0.3297500000e-1*A(t)^5*omega[0]^2-0.8345000000e-1*A(t)^3*omega[0]^2-cos(C(t))+0.4059375000e-1*A(t)^5+.1249125000*A(t)^3 = 0

 

0.5000000000e-2*A(t)*omega[0]+(diff(A(t), t))*omega[0]-sin(C(t)) = 0

(4)

ICS:=[C(0)=0,D(C)=0,A(0)=1,D(A)=0]:

sol:=dsolve({C_t,A_t,ICS},[C(t2),D(C),A(t2),D(A)],type=numeric):

Error, (in dsolve/numeric/process_input) system must be entered as a set/list of expressions/equations

 

pRange:=0..20:

 Atime:=odeplot( sol, [t, A],t=pRange, numpoints=10000 ):

Atime;

odeplot(sol, [t, A], t = 0 .. 20, numpoints = 10000)

(5)

 


 

Download phase_plot.mw

Just like the title described, I have encountered an error when I use the command "expand". Actually, I just follow the example, but it doesn't work. Please help me or tell me how can I solve it in other commands.


restart;
alias(epsilon = e, omega = w, omega[0] = w0, t[1] = t1, t[2] = t2); e := proc (t1, t2) options operator, arrow; e end proc; w0 := proc (t1, t2) options operator, arrow; w0 end proc; a := proc (t1, t2) options operator, arrow; a end proc; f := proc (t1, t2) options operator, arrow; f end proc; mu := proc (t1, t2) options operator, arrow; mu end proc;
ode := (D@@2)(u)+2*mu*e*D(u)+w0^2*u+e*w0^2*u^3-e*f*cos(omega*t) = 0;
                                               2  
     @@(D, 2)(u) + 2 mu epsilon D(u) + omega[0]  u

                          2  3                             
        + epsilon omega[0]  u  - epsilon f cos(omega t) = 0
e_oredr := 1;
ode := simplify(subs(D = sum('e^(i-1)*D[i]', 'i' = 1 .. e_oredr+1), ode), {e^(e_oredr+1) = 0});
 / 3         2                                                 
 \u  omega[0]  + 2 (epsilon D[2] + D[1])(u) mu - cos(omega t) f

                  \                   2                   
    + 2 D[1, 2](u)/ epsilon + omega[0]  u + D[1, 1](u) = 0
simplify(collect(%, e), {e^(e_oredr+1) = 0});

u := sum('v[i]*e^i', 'i' = 0 .. e_oredr);
                      epsilon v[1] + v[0]
ode := simplify(collect(ode, e), {e^2 = 0});
for i from 0 to e_oredr do eq[i] := coeff(lhs(ode), e, i) = 0 end do;
                       2                         
               omega[0]  v[0] + D[1, 1](v[0]) = 0
       3         2           2                       
   v[0]  omega[0]  + omega[0]  v[1] + 2 D[1](v[0]) mu

      - cos(omega t) f + 2 D[1, 2](v[0]) + D[1, 1](v[1]) = 0
remove(has, lhs(eq[1]), cos); convert(%(t1, t2), diff);
eq[1] := %-convert(f*cos(sigma*t2+t1*w0), 'exp');

v[0] := A(t2)*cos(w0*t1+B(t2)); convert(%, 'exp'); v[0] := unapply(%, t1, t2);
                         /1                             
       (t1, t2) -> A(t2) |- exp(I (omega[0] t1 + B(t2)))
                         \2                             

            1                              \
          + - exp(-I (omega[0] t1 + B(t2)))|
            2                              /

expand(eq[1]);
Error, (in property/ConvertProperty) invalid input: PropRange uses a 2nd argument, b, which is missing
collect(%, exp(I*w0*t1));
Error, (in collect) invalid 1st argument proc (t1, t2) options operator, arrow; A(t2)*((1/2)*exp(I*(w0*t1+B(t2)))+(1/2)*exp(-I*(w0*t1+B(t2)))) end proc
coeff(%, exp(I*w0*t1));
map(proc (x) options operator, arrow; x*exp(-I*B(t2)) end proc, %);
combine(%, 'exp');
subs(I*B(t2) = I*sigma*t2-I*C(t2), B(t2) = sigma*t2-C(t2), %);
conds := combine(%, 'exp');
                               0

 

1 2 Page 2 of 2