toandhsp

3 years, 146 days


These are questions asked by toandhsp

When I use fsolve with equation 

-x^2 + 2*x + 5 + (x^2 + 2*x - 1)* sqrt(2 - x^2)=0

I got only one solution.

fsolve(-x^2 + 2*x + 5 + (x^2 + 2*x - 1)* sqrt(2 - x^2)=0,x);

In fact, it have two reals solutions.  

I posted at here

http://mathematica.stackexchange.com/questions/83985/does-the-equation-have-two-roots/83991#83991

 

I have a list L:={1,2,3,4,5,6,7,8}. I choose three elements from list L. How many different combinations of three numbers can be selected from L so that the numbers could represent the side lengths of a triangle?

I tried

nops({x, y, z,1+x, 2+y, -3+z,-2+x, 3+y, -1+z });

and Maple out 9.

If x = 1, y = 2, z = 3, we have

nops({1, 2, 3, 2, 4, 0, -1, 5, 2});

equal to 7.

Edit.

I edited my question. The word "list" into "set".

My question means, there is a triple (x, y, z) = (1, 2, 3) so that the number of element of the set {x, y, z,1+x, 2+y, -3+z,-2+x, 3+y, -1+z } is 7, not 9. Why we can confirm the number of elements of the set {x, y, z, 1+x, 2+y, -3+z,-2+x, 3+y, -1+z } is 9? And, how must select the integer numbers x, y, z (0 < x <10, 0< y <10, 0< z < 10) so that the number of elements of the set {x, y, z, 1+x, 2+y, -3+z,-2+x, 3+y, -1+z } is 9?

I tried

restart:

ListTools[Categorize]:

L:=[]:

for x from -2 to 5  do

for y from -2 to 5  do

for z from -2 to 5  do

a:=[x,y,z]:

b:=[1+x,2+y,-3+z]:

c:=[-2+x,3+y,-1+z]:

if op(1,a)*op(2,a)*op(3,a)*op(1,b)*op(2,b)*op(3,b)*op(1,c)*op(2,c)*op(3,c)<> 0

and op(1,a)<>op(2,a) and  op(1,a)<>op(3,a) and  op(1,a)<>op(2,b) and  op(1,a)<>op(3,b) and  op(1,a)<>op(2,c) and  op(1,a)<>op(3,c) and op(2,a)<>op(3,a) and op(2,a)<>op(1,b) and

op(2,a)<>op(3,b) and

op(2,a)<>op(1,c) and

op(2,a)<>op(3,c) and

op(3,a)<>op(1,b) and

op(3,a)<>op(2,b) and 

op(3,a)<>op(1,c) and

op(3,a)<>op(2,c) and

op(1,b)<>op(2,b) and

op(1,b)<>op(3,b) and

op(1,b)<>op(2,c) and

op(1,b)<>op(3,c) and

op(2,b)<>op(3,b) and

op(2,b)<>op(1,c) and

op(2,b)<>op(3,c) and

op(3,b)<>op(1,c) and

op(3,b)<>op(2,c) and

op(1,c)<>op(2,c) and

op(1,c)<>op(3,c) and op(2,c)<>op(3,c) then L:=[op(L), {a,b,c}] fi; od: od: od:

nops(L); 

L;

 

 

 

 

I have some triangles ABC with vertices

1) A(-13,-5,5), B(-5,11,-11), C(-3,-9,15) has centre of out circle is (3, 3, 3), orthocentre (-27, -9, 3) and centroid (-7, -1, -3). 

2) A(-6,6,-1), B(-5,-1,-3), C(2,10,7) has centre of out circle is (1, 2, 3), orthocentre (-11, 11, -3) and centroid (-3, 5, 1). 

How can I write a program to find a triangle with integer coordinates of vertices, centroid, orthocenter and center of the triangle in geometry 3D? 

How about this equation

restart:
solve(x^2 - 2*(m+1)*x+m^2 - 2*m + m^2=0,{x},parametric=full);
allvalues(%);?

1 2 3 4 5 6 7 Last Page 1 of 26