MaplePrimes Posts

MaplePrimes Posts are for sharing your experiences, techniques and opinions about Maple, MapleSim and related products, as well as general interests in math and computing.

Latest Post
  • Latest Posts Feed
  • Probability is a field of mathematics that sees extensive use outside of academics.  Whether one’s checking the likelihood of rain on a weather app or the odds of winning the lottery, probability is everywhere.  My favorite application of probability is dice games like Dungeons and Dragons.  The game can be played very simply (choose to attack a monster, roll a 20-sided-die, try to exceed a certain number) or with a complexity that rivals high school math courses.  There are spells and abilities that modify one’s dice rolls, such as adding additional rolls to the total or rerolling the die and using the higher result.  A good player regularly asks themself when to activate certain buffs and how likely they are to succeed with or without them.

    All of these questions boil down to the basics of probability.  Things that one learns in an introductory statistics course extend into countless applications.  Currently, I’m adding some of that knowledge to the Maple Learn document gallery, and I’m here to give a sneak peek.

    First, I’ve built tree diagrams in Maple Learn.  Tree diagrams are a way to map probability across multiple events occurring in sequence.  Each branching path represents a series of events that have a specified probability of occurring.

    Here’s an example: one morning I flip a coin to decide if I buy a lottery ticket.  If it’s heads, I do.  If I buy the ticket, I have a one in a million chance of winning the cash prize.  Drawn as a tree diagram…

    I drew this using Maple Learn line, point, and label operations.

    My new D&D-themed documents are a bit more exciting.  In the first, we explore a tree diagram with variable probabilities.  A brave hero makes their way into a dungeon, attacking any random monster they see.  How likely are they to land an attack?  Adjust the details of the question and watch the diagram change.


    In the second, I used Maple program scripting to add a live randomized dice roller.  Many probability techniques are at play to analyze which of two buffs will do more good for a dice-rolling adventurer.

    I plan on making more documents like these; keep your eyes on the Document Gallery probability collection for updates.

    Les probabilités sont  un domaine des mathématiques largement utilisé en dehors des universités. Que l'on vérifie la probabilité de l’apparition de la pluie sur une application météo ou les chances de gagner à la loterie, les probabilités sont partout. Mon application des probabilités préférée est les jeux de dés comme Donjons et Dragons. Le jeu peut se jouer très simplement (choisir d'attaquer un monstre, lancer un dé à 20 faces, essayer de dépasser un certain nombre) ou avec une complexité qui rivalise avec les cours de mathématiques du lycée. Il existe des sorts et des capacités qui modifient les lancés de dés, comme ajouter des lancés supplémentaires au total ou relancer le dé et utiliser le résultat le plus élevé. Un bon joueur se demande régulièrement quand activer certains « buffs » et quelle est la probabilité qu'ils réussissent avec ou sans eux.

    Toutes ces questions se résument aux bases des probabilités. Les choses que l'on apprend dans un cours d'introduction aux statistiques s'étendent à d'innombrables applications. Actuellement, j'ajoute certaines de ces connaissances à la galerie de documents Maple Learn je voulais vous en donner un aperçu.

    Tout d'abord, j'ai construit des arbres de probabilité avec Maple Learn. Ceux-ci permettent de représenter graphiquement la probabilité de plusieurs événements se produisant en séquence. Chaque chemin de branchement représente une série d'événements qui ont une probabilité de se produire spécifique.

    Voici un exemple : un matin, je lance une pièce pour décider si j'achète un billet de loterie. Si c'est face, je le fais. Si j'achète le billet, j'ai une chance sur un million de gagner l’argent. Dessiné sous forme d'arbre de probabilité…

    J'ai dessiné ceci en utilisant les fonctionnalités ligne, point et étiquette de Maple Learn.

    Mes nouveaux documents sur le thème de D&D sont un peu plus intéressants. Dans le premier, nous explorons un arbre de probabilités variables. Un héros courageux se rend dans un donjon, attaquant n'importe quel monstre aléatoire qu'il voit. Quelle est la probabilité qu'ils lancent une attaque ? Ajustez les détails de la question et regardez le diagramme changer.

    Dans le second, j'ai utilisé la fonction script de Maple pour ajouter un lanceur de dés aléatoire en direct. De nombreuses techniques de probabilité sont en jeu pour analyser lequel des deux « buffs » fera le plus de bien à un aventurier qui lance les dés.

    Je prévois de faire plus de documents comme ceux-ci; gardez un œil sur la catégorie de probabilités dans la galerie de documents Maple Learn pour les mises à jour.

    A user wondered why an example of integration by parts from the Calculus Study Guide was immediately showing the final answer instead of the parts steps shown in the Guide. 

    We suggest users pay special attention to the "Initialize" rows of the Guide example(s) where converting the integral to inert form is discussed. 

    Using an inert form of the integral ensures that Maple does not evaluate the integral unexpectedly. 

    restart

    Int(exp(a*x)*cos(b*x), x)
    "(->)"Q

    with(IntegrationTools)

    Parts(Q, exp(a*x)) = sin(b*x)*exp(a*x)/b-(Int(sin(b*x)*a*exp(a*x)/b, x))

     

    Download CSGG-6-1-4.mw

    Applications to develop exercises on systems of equations using the technique of determinants, Gauss and Crammer. For science and engineering students. In spanish.

    Determinantes_Gauss_Crammer.mw

    Lenin Araujo

    Ambassador of Maple

    Récemment, j’ai assisté à une présentation sur comment utiliser Maple Learn pour créer des documents artistiques et aujourd’hui  je vous écris pour vous donner mes conseils sur ce sujet. Maple Learn a beaucoup de fonctionnalités permettant de créer des documents visuels tout en étant un outil parfait pour faire vos devoirs.

    Caractéristique 1 : Les formes

     Le premier document artistique de cette collection, le « Pi Pie » a été créé en utilisant la palette géométrie de Maple Learn. Elle fournit des modèles pour tracer des formes géométriques de façon plus simple. Le plus important dans ce document est l’utilisation de « Polygon() » pour créer le symbole pi. Insérez le nombre de points que vous voulez entre les parenthèses et le graphique connectera les points dans l’ordre entre eux. J’ai dessiné le symbole de pi sur un papier graphique et j’ai copié les points dans Maple Learn. C’est beaucoup d’effort, mais je pense que l’effet créé en vaut la peine.

     

    Caractéristique 2 : Les fonctions

    Ce personnage se nomme Milo je l’ai créé au lycée. Avec Maple Learn je l’ai reproduit en utilisant avec uniquement des fonctions. Voyons cela plus en détails :

    • La tête et les cheveux sont des fonctions paramétriques. Les personnes  se souvenant de leur cours de maths savent que (x, y) = (cos(t), sin(t)) est la formule d’ un cercle unitaire. Nous pouvons modifier l ‘étendue de t, les coefficients avant sin(t) et cos(t) et additionner ou soustraire les constantes pour créer des cercles partielles ou des ellipses.
    • Les yeux grisés sont fait avec des inégalités. Maple Learn permet de griser des régions d’inégalités automatiquement.
    • Le sourire de Milo est l’équation d’un cercle limité par “| y < -0.5”. L’opérateur barre  « such that » vous permet de limiter le domaine et l’étendue d’une fonction.
    • Le cœur vient d’une formule trouvée en ligne. Les mathématiciens ont découvert beaucoup d’équations incrédules de ce type !

    Caractéristique 3 : L’animation

    Mon document artistique final permet de voir germer une jolie fleur lorsque l’on utilise le curseur de la barre de défilement.  Après avoir défini une variable dans Maple Learn, la barre de défilement apparait et permet l’ajustement de la valeur de la variable. Par exemple :

    • Associez les coordonnées d’un point avec une variable. Évaluez une fonction à un point correspondant à cette variable et voyez comment lorsque la variable change, le point se déplace.
    • Associez l’étendue  d’une fonction paramétrique à une variable. Quand la variable change la fonction s’étend ou se contracte.
    • Utilisez une variable avec une fonction par morceaux. Quand la variable est dans la gamme lui correspondant vous pouvez la visualiser.

    Les mathématiques sont une belle langue et chaque type d’expression peut ajouter un plus à votre toile. Mes techniques ne sont que le début de belles pièces d’arts dans Maple Learn. Montrez-nous vos documents artistiques ou vos techniques dans les commentaires !

     

    It’s been a few months since the previous blog post on Maple Learn art, and the possibilities keep on growing.  I recently took part in a presentation on art in Maple Learn, and am here to pass on some tips and tricks to you, dear blog reader.  Maple Learn has a huge capacity for both creativity and ingenuity, and is the perfect program for doing your homework or exploring the world of mathematical art.  Check out the art I made here, and soon even more will be added to the Maple Learn Example Gallery!

     

    Feature 1: Shapes

    The first drawing in the batch, the “Pi Pie” (happy Pi Day!) was created using Maple Learn’s geometry palette.  The palette provides templates for plotting geometric shapes easily.  Most notably in this art is the use of Polygon() to create the pi symbol.  Insert as many points as you want between the brackets, and the plot will connect each one in order.  I drew pi on graph paper and copied down all the coordinates into Maple Learn.  A lot of work, but the effect was worth it.

     

    Feature 2: Functions

    This is Milo, a character I made in high school.  In Maple Learn, he is built entirely out of functions.  Let’s take a deep dive into what’s going on:

    • The head and hair are parametric functions.  Folks who’ve taken a math class that includes parametrics know that (x, y) = (cos(t), sin(t)) is the formula for a unit circle.  We can modify the range of t, coefficients in front of sin(t) and cos(t), and add or subtract constants to create partial circles and ellipses.

    • The shaded eyes are done with inequalities; Maple Learn shades inequality areas automatically.

    • Milo’s big smile is the equation of a circle with the added detail “| y < -0.5”.  The bar is the “such that” operator, which allows users to limit the domain and range of the function.

    • The body is a piecewise function: positive slope for x-values on the left side, negative slope for x-values on the right, and nothing in between.

    • The heart shape came from a formula found online.  Mathematicians have discovered some incredible equations!

     

    Feature 3: Animation

    By final piece sprouts into a beautiful flower as one moves a slider.  After defining a variable in Maple Learn, a slider appears to adjust it.  This can be used for interactive explorations of graphs and animations.  For example:

    • Associate the coordinates of a point with the variable or a function evaluated at the variable.  As the variable changes, the point will move.

    • Associate the range of a parametric function with the variable.  As the variable changes, more or less of the function will appear.

    • Use the variable in the conditions of piecewise functions.  When the variable is in the correct range, the shapes or functions you defined in the piecewise will appear.

     

    Mathematics is a beautiful language, and every type of expression can add more to your canvas.  These techniques are just the beginning of beautiful Maple Learn art.  Feel free to share your own art or your favorite tips in the comments! 

    In computer science, the Towers of Hanoi (Wiki) are considered a prime example of a problem that can only be solved recursively (or iteratively). The time for calculating a certain position n thus grows exponentially with O(2n). In this article an explicit solution is presented with which one can compute any position n with the same computing time O(1). This explicit solution is used in all animations.

    Explicit solution

           The Standard Model of Particle Physics in Maple 2022

     

    One of the most important mathematical formulations in human history is that of the Standard Model in particle physics. It describes all the elementary particles (leptons like the electron, quarks, bosons as the Higgs or the photon), which in different arrangements, form all the observable particles in nature. The formulation is not just a tremendous theoretical achievement that rendered Nobel prizes but also a practical one. Basically, all the measurements performed in the particle accelerators at CERN and the Fermilab take this mathematical, abstract formulation as the starting point. However, for computer algebra systems, the complexity of the model is somewhat extreme: is not only the number of terms in the corresponding Lagrangian impressively large but also the mathematical properties of each of these objects that represented a challenge for a long time. With hacks of different kinds, the computer algebra representation of only some aspects of the Standard Model was possible, with restricted computational capabilities.

    Hidden among the novelties of Maple 2022, a breakthrough in computer algebra is the introduction of a new, fully computable representation of the Standard Model. This representation includes the accessory commands to calculate related scattering amplitudes  (the essence of the computations behind particle collision experiments) and related Feynman integrals . This is a remarkable achievement in computational physics. And from the educational point of view, it brings one more brick of knowledge from "the dark side" of the moon into "the bright side." Making the Standard Model computations be at the tip of one's fingers completely transforms the possible experience we can have with the underlying knowledge.
     

    The illustration below of this new Maple 2022 StandardModel package is advanced in time with regards to the release of Maple 2022 days ago, and introduces a new command, Lagrangian, that increases one level the usability of the package. The so updated StandardModel is distributed as usual, within the Maplesoft Physics Updates for Maple 2022.
     

    Edgardo S. Cheb-Terrab
    Physics, Differential Equations and Mathematical Functions, Maplesoft

     

    Download: StandardModel.mw

    Edgardo S. Cheb-Terrab
    Physics, Differential Equations and Mathematical Functions, Maplesoft

    Si vous aimez les mathématiques, vous connaissez le symbole mathématique pi. Vous devriez aussi savoir que le jour de pi est le 14 mars ou 3/14. Le jour de Pi était donc ce lundi donc vous vous demandez peut-être pourquoi je publie ce post aujourd’hui ? Et bien pour ce poste, j’ai pensée que je pourrai vous donner plus d’information au sujet de pi, l’histoire de pi et l’histoire de la célébration du jour de pi.

    Commençons avec une vue d’ensemble de pi. Il est le symbole mathématique qui représente la proportion entre la circonférence d’un cercle et son diamètre. Comme il a une connexion avec les cercles, pi est utilisé pour calculer les volumes des solides, l’aire et le périmètre d’un cercle et bien plus.

    Comment a t’il été découvert ?

    Le premier calcul de pi a été effectué par Archimède qui a fait une approximation de l’aire d’un cercle en utilisant le théorème de Pythagore. Il trouve l’aire de deux polygones réguliers : Celui qui s’inscrit dans le cercle et celui que le cercle circonscrit. Avec cette méthode, il a pu trouver une approximation de l’aire entre les deux polygones et ainsi une approximation de l’aire du cercle.

     Le symbole de Pi a été introduit et popularisé au 16e siècle. Avec cela, George Buffon a trouvé une méthode de calcul de pi basée sur des probabilités au même siècle.

    Tout mène à une de mes plus grandes interrogations : Comment le jour de pi a été créé ? Je sais que la date est symbolique, mais pourquoi nous célébrons pi ?

    Le jour de pi a été introduit en 1988 par un physicien nommé Larry Shaw.  Le 14 mars est aussi la date d’anniversaire d’Albert Einstein et ce qui ajoute quelque chose de plus a célébré supplémentaire pour les physiciens. Le premier jour de pi fut célébré avec une parade circulaire et des tartes aux fruits.  À Maplesoft, nous l’avons célébrer avec des tartes ainsi qu’en faisant de l’art avec Maple Learn.

    Peut-être que qu’un jour d’autres jours célébrants des concepts mathématiques ajouterons à notre calendrier, mais en attendant, commencez planifier le jour de pi pour l’année prochaine ! Peut-être que vous pouriez créer quelque chose de plus grand que la première célébration en 1988. J’espère que votre jour de pi c’est bien passé !

    If you know math, you’re aware of the mathematical sign of pi. If you’re really into math, you know of Pi Day, occurring on March 14, or 3/14. Pi day this year occurred on Monday, so you may be wondering why we’re posting today as well! Well, I thought I’d give a bit more information about pi, the history of it, and the history of celebrating Pi Day.

    Let’s start with a brief overview of pi. Pi is a mathematical sign representing the ratio of a circle’s circumference to its diameter, typically approximated to 3.14. Because of its connection to circles, pi is used to calculate the volumes of solids, area and perimeter of circles, and many other applications.

    So how did we come up with this?

    The first calculation of pi is attributed to Archimedes, who approximated the area of a circle using the Pythagorean Theorem. He found the area of two regular polygons: the one inscribed into the circle, and the one which the circle is circumscribed. This way he could find an approximation between the areas of those two polygons, and therefore an approximation of the area of the circle.

    In the 1700s, the symbol for Pi was introduced and popularized. Along with that, Georges Buffon found a way to calculate Pi based on probability in the same century.

    This leads to what was my biggest question: How did Pi Day come about? I know the digits of the date are significant, but why do we celebrate pi?

    Pi Day was founded in 1988 by a physicist named Larry Shaw. March 14 is also Albert Einstein’s birthday, adding a bit of extra celebration to the date by physicists. The first Pi Day featured a circular parade and fruit pies. Here at Maplesoft, we celebrated with pie, and learning how to make art with Maple Learn.

    Maybe someday we’ll have more days celebrating mathematical concepts, but for now, start planning for next year’s Pi Day! Perhaps you can make it bigger and better than the first celebration in 1988. I hope your Pi Day this year went well, and happy Friday!

    Background pattern

     

    Today is one of my favorite days of the year. After months and months of hard work by a lot of people, it’s finally arrived:

     

    It's Maple launch day!

     

    Yes, I am very pleased to announce that Maple 2022 is here.

     

    As we’ve done in years past, Samir and I started this release by spending many hours reviewing feedback from Maple Primes posts, support emails, sessions with staff who regularly talk with customers and who use Maple themselves, and our own direct conversations with customers. Of course a year is never enough to implement every good idea, but our goal was to identity a feature set that would appeal to, delight, and hopefully excite our customers.

     

    Ultimately, you will be the judge, but I can tell that there are some things in Maple 2022 that I am personally very excited about. These are “quality of life” improvements that have been requested by customs and make some things in Maple that were frankly kind of annoying a lot better. The rest of this post will discuss my favorite improvements in more detail (or you can watch this video), and of course, you can get much more information about these and all the other improvements in What’s New in Maple 2022.

     

    #1 – Did you ever find yourself jumping back and forth between your Maple document and Print Preview, again and again, as you prepare your worksheet for printing or export to PDF? It can be a pain, especially with long documents that include plots, tables, and sections. So I'm happy to announce that Maple 2022 includes a new Print Layout mode. This new layout mode lets you see the page boundaries as you edit the document, so you can adjust your content as you go. In Maple 2022, what you see on the page is what you get when you print or export to PDF. Hurray!

     

     

     

     

    #2 – Are you tired of explaining to your students why the graph of tan(x) doesn’t look right in Maple?  Good news!  With Maple 2022, you won’t have to have that conversation ever again. Maple 2022's new adaptive plotting algorithm means that when you plot tan(x), 1/(1-x), floor and ceiling functions, and most other curves with discontinuities, you’ll get what you expect by default – no more vertical lines, no need to specify the discont option, and it’s still fast.

    Diagram

Description automatically generated

     

    #3 – Did you ever run into a situation where zooming, panning, or resizing your plot didn’t actually give you the better view of the plot you were looking for? Now Maple recomputes and redraws when needed to give you what you wanted – a good look at your plot.

       

     

    #4 – Are you a fan of the Plot Builder? If you are, I'm delighted to let you know that the Plot Builder in Maple 2022 now supports plotting multiple expressions together on the same axes. So don't hold back - use the Plot Builder to customize plots and animations of any number of 2-D and 3-D expressions plots and animations. (We also got rid of that annoying empty plot when you first open it, too.)

     

     

    #5 - And, by popular demand, Maple 2022 now magnifies the text in the table of contents/search results when you magnify a help page. No more squinting to find the topic of interest. My eyes are much happier.

     

    Those are my favorites, but there is a lot more in the release. To learn more about all the improvements in Maple 2022, visit What’s New in Maple 2022

    Hi, just some ideas for improvement!

    - since MapleFlow uses Maple as its engine, more integration of MapleFlow and Maple would be nice. Some commands that work very well in Maple not always work the same in MapleFlow. For example, BodePlot plots magnitude and phase in Maple but plots only magnitude in MapleFlow

    - a better Help documentation would also help. ?command/function works in Maple but not in MapleFlow. It's a bit anoying to have to open Maple just to get help documentation

    - a lot of palettes are not enabled in MapleFlow. Again, it is a little anoying to have to open Maple to get some of the palettes copied and pasted into MapleFlow

    La pandémie de COVID 19 nous a forcé à nous lancés dans l'apprentissage en ligne - mais après deux ans, il est clair que l'apprentissage en ligne est là pour rester. La bonne nouvelle est que de plus en plus de recherches sont disponibles et nous donnant plus d'informations sur les avantages et inconvénients des différentes méthodes d'enseignement ainsi que leur impact sur l'apprentissage de l’élèves. Tout cela conduit à une question : comment l'enseignement peut-il être plus efficace en ces temps difficiles ? Nous discuterons des recherches effectués et leur lien avec Maple Learn. Cependant, je tiens à préciser que je ne prétends pas être un spécialiste du sujet. Je suis simplement un étudiant qui veut améliorer l'apprentissage en ligne pour moi-même et mes pairs.

    Dans ce contexte il existe trois principaux styles d'apprentissage, convenus par les psychologues : apprentissage passif, actif et interactif. Cependant, aujourd'hui, nous allons nous concentrer uniquement sur l'apprentissage interactif. L'apprentissage interactif est l'endroit où l'élève agit comme «un sujet d'activité éducative» (Kutbiddinova, Eromasova et Romanova, 2016). Dans la pratique, cela signifie généralement que l'étudiant collabore avec ses pairs. Cette pièce est plus difficile lorsque les cours sont en ligne et/ou asynchrones. Personnellement, j'ai eu du mal à établir des liens avec mes pairs pendant mes études en ligne, car notre principale forme de communication était les messages sur les forums de discussion. Nous discuterons des avantages de l'apprentissage interactif, puis discutons de la façon dont Maple Learn peut être utilisé dans le modèle d'apprentissage interactif.

    Le principal avantage de l'apprentissage interactif est qu'il encourage la participation active de toutes les personnes concernées. Lorsqu'ils sont encouragés à interagir avec leurs pairs dans des groupes plus petits, cela permet une plus grande participation des membres du groupe, par rapport au fait de poser des questions à toute la classe et de leur demander de lever la main pour répondre. Dans la même façon, l'apprentissage interactif crée plus d'engagement avec le matériel éducatif, ainsi que plus d'initiative de la part de l’étudiant (Ibid).

    Dans un exemple discuté par Anderson en 2014, les étudiants se sont mis par paires et ils ont discuté de leur réponse à une question. Les étudiants, lors de l'exercice, devaient choisir sur une réponse, puis discuter de leur raisonnement qui a mené à ce choix,, dans le but de faire changer d'avis l'autre étudiant. Cela a créé une compréhension du matériel, ainsi qu'un investissement émotionnel dans le sujet.

    Alors, comment Maple Learn peut-il aider à faciliter l'apprentissage interactif dans un environnement en ligne ? Commençons par recréer l'exemple d'Anderson, mais en ligne et avec une légère variation pour un cours de mathématiques.

    À l'aide de Maple Learn, l'élève peut suivre toutes ses étapes, copier ses notes papier ou résoudre l'équation au fur et à mesure qu'il tape. Il peut également utiliser du texte pour expliquer son raisonnement pour chaque étape ou pour placer des formules à côté des mathématiques qu'il a utilisées.

    À partir de là, l'élève peut utiliser la fonction de partage instantané pour échanger des documents avec quelqu'un d'autre dans la classe. Cela permet aux deux étudiants de voir le travail et le raisonnement de l'autre, sans avoir à lire des notes manuscrites numérisées. Cela signifie également que l'examen peut se produire de manière asynchrone, permettant aux étudiants de différents endroits et/ou fuseaux horaires de discuter. Contrairement à l'exemple original, puisque nous parlons de mathématiques, l'élève n'essaie pas nécessairement de convaincre l'autre élève. Les commentaires sur les mathématiques sont davantage utilisés pour donner des commentaires ciblés et soit comprendre soit d'autres façons de résoudre le problème, soit la bonne façon si elle a été mal résolue à l'origine.

    S'éloignant de l'exemple, cette méthode peut également être utilisée pour l’annotation par les pairs. Maple Learn propose de nombreuses couleurs de police de texte différentes, permettant aux étudiants de laisser des commentaires sur le document, puis de générer un nouveau lien de partage instantané à renvoyer à l'étudiant d'origine.

    Il existe bien d’autres façons d'utiliser Maple Learn pour l'apprentissage interactif, mais nous aimerions également connaître vos idées ! Veuillez nous faire savoir dans les commentaires si vous avez utilisé Maple Learn d'autres manières interactives, ou si vous avez des questions ou des suggestions à ce sujet.

    The COVID 19 pandemic threw us for a spin with Online Learning – but after two years, it’s clear that Online Learning is here to stay. The good news is that more and more research is making its way to the classroom, giving us more information on the pros and cons of different teaching methods and how it impacts student learning. This all leads to one question: How can teaching be more effective during these tough times? Let’s discuss the research done and how it relates to Maple Learn. As a note, I do not claim to be an expert on this topic. I am simply a student attempting to improve online learning for myself and my peers.

    There are three main styles of learning, in this context, agreed upon by psychologists: Passive, Active, and Interactive Learning. However, today we’re only going to focus on Interactive Learning. Interactive Learning is where the student acts as “a subject of educational activity” (Kutbiddinova, Eromasova, and Romanova, 2016). What this typically means in practice is the student collaborates with peers. This piece is much more difficult when classes are online and/or asynchronous. I know I struggled to make connections with my peers while in school online, as our main form of communication was discussion board posts. Let’s talk about the advantages of Interactive Learning first, and then discuss how Maple Learn can be used within the Interactive Learning model.

    The main advantage of Interactive Learning is that it encourages the active participation of all involved. When encouraged to interact with peers in smaller groups, this allows more participation of the members of the group, compared to asking questions to the entire class and asking for them to raise their hands for answering. At the same time, Interactive Learning creates more engagement in the material, along with more student initiative (Ibid).

    In one example discussed by Anderson in 2014, the students got into pairs and discussed their answer to a question. The students, in the exercise, had to commit to one answer and then discuss their reasoning behind the answer, in an attempt to change the other student’s mind. This created understanding of the material, along with emotional investment in the topic.

    So, how can Maple Learn help to facilitate Interactive Learning in an online environment? Let’s start with recreating Anderson’s example, but online and with a slight twist to accommodate a math class.

    Using Maple Learn, the student can go through all their steps, copying from their paper notes, or solving the equation as they type. They can also use text to explain their reasoning behind taking each step, or to place formulas beside the math they’ve used.

    From there, the student can use the snapshot share feature to swap documents with someone else in the class. This allows both students to see the other’s work, and reasoning, without having to read scanned handwritten notes. This also means the review can happen asynchronously, allowing students from different places and/or time zones to discuss. In contrast to the original example, since we’re discussing Math, the student is not necessarily trying to convince the other student. The comments on the math are used more for giving targeted feedback, and understanding either other ways of solving the problem, or the correct way if originally solved wrong.

    Taking a step away from the example, this method can also be used for peer marking. Maple Learn offers many different text font colors, allowing students to leave comments on the document, then generate a new snapshot to send back to the original student.

    There are many other ways Maple Learn could be used for Interactive Learning, but we’d like to hear your ideas too! Please let us know in the comments if you’ve used Maple Learn in other Interactive ways, or if you have any questions or suggestions for us.

     

    Works cited:

    Anderson, Jill. “The Benefit of Interactive Learning.” Harvard Graduate School of Education, 2014, https://www.gse.harvard.edu/news/14/11/benefit-interactive-learning.

    Kutbiddinova, Rimma, et al. “The Use of Interactive Methods in the Educational Process of the Higher Education Institution.” INTERNATIONAL JOURNAL OF ENVIRONMENTAL & SCIENCE EDUCATION, 2016, Accessed 2022.

    One way to show all solutions of a polynomial in one variable.
    The root is the intersection of curves representing the imaginary part of the equation (red) and the real part (blue). These equations are obtained after representing the variable as the sum of its imaginary and real parts. The circle limits the area where all the roots are located (according to theory).
    Example      -15*x^7+x^2+I*x+2=0;
    polynomial_roots_graph.mw

    First 22 23 24 25 26 27 28 Last Page 24 of 306