Maple 18 Questions and Posts

These are Posts and Questions associated with the product, Maple 18

hallo  every body 
please i have a simple question 
how do i calculate this sum in maple 18 
thank you 

hi every body 

please How to write these solutions in fraction form

sol := {S[0] = 0., U[0] = 0., V[0] = 0., W[0] = 0., Z[0] = 0., r[0] = 84.85281372}, {S[0] = 13.43136878, U[0] = -1.505103614, V[0] = 3.811200525, W[0] = 25.03669048, Z[0] = -66.61776811, r[0] = 45.45242389}, {S[0] = 19.84202712, U[0] = -182.3505467, V[0] = 0., W[0] = 19.66995891, Z[0] = 0., r[0] = 40.87682398}, {S[0] = -19.84202712, U[0] = 0., V[0] = 19.66995891, W[0] = 0., Z[0] = 182.3505467, r[0] = 40.87682398}, {S[0] = 0., U[0] = 7.778720282, V[0] = 22.80551297, W[0] = 22.80551297, Z[0] = -7.778720282, r[0] = 26.37225141}, {S[0] = 0., U[0] = -7.778720282, V[0] = 22.80551297, W[0] = -22.80551297, Z[0] = -7.778720282, r[0] = 26.37225141}

{S[0] = 0., U[0] = 0., V[0] = 0., W[0] = 0., Z[0] = 0., r[0] = 84.85281372}, {S[0] = 13.43136878, U[0] = -1.505103614, V[0] = 3.811200525, W[0] = 25.03669048, Z[0] = -66.61776811, r[0] = 45.45242389}, {S[0] = 19.84202712, U[0] = -182.3505467, V[0] = 0., W[0] = 19.66995891, Z[0] = 0., r[0] = 40.87682398}, {S[0] = -19.84202712, U[0] = 0., V[0] = 19.66995891, W[0] = 0., Z[0] = 182.3505467, r[0] = 40.87682398}, {S[0] = 0., U[0] = 7.778720282, V[0] = 22.80551297, W[0] = 22.80551297, Z[0] = -7.778720282, r[0] = 26.37225141}, {S[0] = 0., U[0] = -7.778720282, V[0] = 22.80551297, W[0] = -22.80551297, Z[0] = -7.778720282, r[0] = 26.37225141}

(1)

``

Download problem1.mw

How to get the series and plot.I got this error.

TL.mw

How to solve this RLC Electric Circuit  with this initial conditions,I couldn't plot this equation.Help me to do this problem.

EC-2.mw

i want to plot form 15 to 0 and 5 to 1.....but my plot shows only increasing order..how can i change it?

Download plot.mw

How to rectify this Error,in RK Method.Error, (in dsolve/numeric/bvp/convertsys) too few boundary conditions: expected 3, got 2.

I cound't plot p5,p6,p7.

If RK Method is suitable for this or not please tell the suitable numerical method code for this.Help me

IP-TEMP.mw

Hallo every body 

i have a question How can be written this system of eqautions without the variable "t"

thanks 

restart

``

eq10 := epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))-Y(t)*alpha

epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))-Y(t)*alpha

(1)

eq11 := alpha*X(t)

alpha*X(t)

(2)

eq12 := epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))-beta*U(t)

epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))-beta*U(t)

(3)

eq13 := beta*Z(t)

beta*Z(t)

(4)

eq14 := epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))-W(t)

epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))-W(t)

(5)

eq15 := V(t)

V(t)

(6)

eq16 := epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))

epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))

(7)

``

Download problem.mw

how can be solved this system in maple 18

restart

fa[1] := -(1/4608)*V[0]^2+(1/4608)*W[0]^2+(1/2304)*U[0]*W[0]+(1/2304)*V[0]*Z[0]``

-(1/4608)*V[0]^2+(1/4608)*W[0]^2+(1/2304)*U[0]*W[0]+(1/2304)*V[0]*Z[0]

(1)

fa[2] := (1/153600)*(45*U[0]^2*V[0]-50*U[0]*V[0]*W[0]-50*U[0]*W[0]*Z[0]-5*V[0]*Z[0]^2-16*Z[0]*r[0]^2)/r[0]

(1/153600)*(45*U[0]^2*V[0]-50*U[0]*V[0]*W[0]-50*U[0]*W[0]*Z[0]-5*V[0]*Z[0]^2-16*Z[0]*r[0]^2)/r[0]

(2)

fa[3] := -(1/153600)*(5*U[0]^2*W[0]+50*U[0]*V[0]*Z[0]-16*U[0]*r[0]^2-50*V[0]*W[0]*Z[0]-45*W[0]*Z[0]^2)/r[0]

-(1/153600)*(5*U[0]^2*W[0]+50*U[0]*V[0]*Z[0]-16*U[0]*r[0]^2-50*V[0]*W[0]*Z[0]-45*W[0]*Z[0]^2)/r[0]

(3)

fa[4] := (1/115200)*(25*U[0]*V[0]*W[0]-25*V[0]*W[0]^2-160*V[0]*r[0]^2-25*W[0]^2*Z[0]-64*Z[0]*r[0]^2)/r[0]

(1/115200)*(25*U[0]*V[0]*W[0]-25*V[0]*W[0]^2-160*V[0]*r[0]^2-25*W[0]^2*Z[0]-64*Z[0]*r[0]^2)/r[0]

(4)

fa[5] := -(1/115200)*(25*U[0]*V[0]^2+64*U[0]*r[0]^2-25*V[0]^2*W[0]-25*V[0]*W[0]*Z[0]-160*W[0]*r[0]^2)/r[0]

-(1/115200)*(25*U[0]*V[0]^2+64*U[0]*r[0]^2-25*V[0]^2*W[0]-25*V[0]*W[0]*Z[0]-160*W[0]*r[0]^2)/r[0]

(5)

``

fa[6] := (11/57600)*U[0]^2+(1/768)*V[0]^2+(1/768)*W[0]^2+(11/57600)*Z[0]^2+(1/600)*r[0]^2

(11/57600)*U[0]^2+(1/768)*V[0]^2+(1/768)*W[0]^2+(11/57600)*Z[0]^2+(1/600)*r[0]^2

(6)

``

``

Download system.mw

eq1 := diff(f(x), x, x, x)+(1/2)*cos(alpha)*x*(diff(f(x), x, x))+(1/2)*sin(alpha)*f(x)*(diff(f(x), x, x)) = 0;

eq2 := diff(g(x), x, x)+diff(g(x), x)+(diff(g(x), x))*(diff(h(x), x))+cos(alpha)*x*(diff(g(x), x))+sin(alpha)*f(x)*g(x) = 0;

eq3 := diff(g(x), x, x)+diff(h(x), x, x)+1/2*(cos(alpha)*x+sin(alpha)*f(x)) = 0

ics := f(0) = 0, (D(f))(0) = 1, ((D@@2)(f))(0) = a[1], g(0) = 1, (D(g))(0) = a[2], h(0) = 1, (D(h))(0) = a[3];

if i solved two integral seperately..it solved.. but i can't solve together..what's wrong...please help

restart

"al_eq:=`D__11`*(∫)[0]^(a)((ⅆ)^2)/((ⅆ)^( )x^2) A*((ⅆ)^2)/((ⅆ)^( )x^2) A ⅆx (∫)[0]^(b)B*B ⅆy;"

Error, invalid product/quotient

"al_eq:=`D__11`*(∫)[0]^a((ⅆ)^2)/((ⅆx)^2) A*((ⅆ)^2)/((ⅆx)^2) A ⅆx (∫)[0]^bB*B ⅆy;"

 

``

B^2*b

(1)

``

Download 2.mw

i want to sovle this problem ..but i dont' know how to start..please help me.how to solve this eqution?

how to solve for lamda and r in this equtaions...please help

restart

with(LinearAlgebra):

solve(cos(lambda[i])*cosh(lambda[i]) = 1);

Warning, solutions may have been lost

 

0

(1)

evalf(%);

0.

(2)

lambda[i];

lambda[i]

(3)

r[i] := (cos(lambda[i])-cosh(lambda[i]))/(sin(lambda[i])-sinh(lambda[i]));

(cos(lambda[i])-cosh(lambda[i]))/(sin(lambda[i])-sinh(lambda[i]))

(4)

``

Download 1.mw

guys..i need help ...how to find the answer for this equation..for all value of in and b in (a and b)...for all combination of a and b

problem.mw

what is wrong..in the past ..this equations was solved..now it doesnt' solved anymore...integral equations

total_PE.mw

hello sir..i'm new..and i want to know how to put command prompt ..between two command line .i read but i didn't find..

1 2 3 4 5 6 7 Last Page 1 of 82