Maple 2018 Questions and Posts

These are Posts and Questions associated with the product, Maple 2018

Hi

 

I've just upgraded from v2017.3 to 2018. It worked OK until I installed latest service pack 2018.2.1 (server license provided by my University). Ever since I cannot use Maple. Anything I type I get Typesetting:-mparsed(...) error and the text/command I typed.

 

I’ve contacted our software tech support and they told me to change the typesetting level from advanced to standard and it did fix the problem.

 

But why does it happen in the first place? I’m running Windows 8.1 64bit. Out tech support told me to has something to do with 3D display issue on my machine and told me to bring my laptop on Monday to see if they can resolve the issue.

 

Anyone else have this problem? Why didn’t it happen with older Maple versions? What am I missing by using standard typesetting instead of the default advanced?

Thanks

 

 

 

 

 

 

What's going wrong here?

The Matrix is created by using the Matrix Palette. 

It seems that in a matix it is not possible to use division by a noninteger. Is that right?

(I use Maple 2018.2 and this is tested on both Windows and MacOS.)

Kind regards,

Mikkel

Fract := proc (P::posint, Q::posint) local p, q; for p to P-1 do for q to Q-1 do if is((P-p)*q-p*(Q-q) = 1) then return p/q, P/Q, (P-p)/(Q-q) end if end do end do end proc:#this procedure works Fract1 := proc (P::posint, Q::posint) local p, q; `~`[`~`[`/`@op]](select(type, map2(eval, [[p, q], [P-p, Q-q]], [isolve((P-p)*q-P*(Q-q) = 1)]), [[posint$2]$2]))[] end proc:#this procedure don't work Fract(7, 81);Fract1(7,81); Fract(39, 97);Fract1(39,97); Fract(101, 143);Fract1(101,143); Fract(11, 80);Fract1(11,80); Fract(15, 37);Fract1(15,37); Fract(22, 39);Fract1(22,39); Fract(25, 37);Fract1(25,37); Fract(21, 91);Fract1(21,91); Fract(13, 19);Fract1(13,91);

is possible to solvethis equation via maple?

hank you

EQUATION2.mw
 

restartNULL

alpha := 1.2*10^(-4); Betaa := 4.0*log(2); J := 13.4; delta := 15.3*10^(-9); tp := 10^(-13); tq := 8.5*10^(-12); tu := 90.0*10^(-12); kapa := 315; r0 := 2.0*10^(-7); Lx := 5.0*10^(-7); Ly := 5.0*10^(-7); Lz := 1.0*10^(-7); a := 0.7e-1*(Betaa/Pi)^.5*J/(15.3*10^(-22)); bb := exp(-((10^(-7)*x-(1/2)*Lx)^2+(10^(-7)*y-(1/2)*Ly)^2)/(2*r0^2)); print(aa = a); Q := a*exp(-z*10^(-7)/delta)*exp(-1.88*abs(t-2*tp)/tp)*bb

0.1200000000e-3

 

4.0*ln(2)

 

13.4

 

0.1530000000e-7

 

1/10000000000000

 

0.8500000000e-11

 

0.9000000000e-10

 

315

 

0.2000000000e-6

 

0.5000000000e-6

 

0.5000000000e-6

 

0.1000000000e-6

 

0.6917775548e21*ln(2)^.5

 

exp(-0.1250000000e14*((1/10000000)*x-0.2500000000e-6)^2-0.1250000000e14*((1/10000000)*y-0.2500000000e-6)^2)

 

aa = 0.6917775548e21*ln(2)^.5

 

0.6917775548e21*ln(2)^.5*exp(-6.535947712*z)*exp(-0.1880000000e14*abs(t-1/5000000000000))*exp(-0.1250000000e14*((1/10000000)*x-0.2500000000e-6)^2-0.1250000000e14*((1/10000000)*y-0.2500000000e-6)^2)

(1)

(diff(U(x, y, z, t), t)+tq*(diff(U(x, y, z, t), t, t)))/alpha = diff(U(x, y, z, t), x, x)+diff(U(x, y, z, t), y, y)+tu*(diff(U(x, y, z, t), x, x, t)+diff(U(x, y, z, t), y, y, t))+tu*(diff(U(x, y, z, t), z, z, t))+(Q+tq*(diff(Q, t)))/kapa

8333.333333*(diff(U(x, y, z, t), t))+0.7083333333e-7*(diff(diff(U(x, y, z, t), t), t)) = diff(diff(U(x, y, z, t), x), x)+diff(diff(U(x, y, z, t), y), y)+0.9000000000e-10*(diff(diff(diff(U(x, y, z, t), t), x), x))+0.9000000000e-10*(diff(diff(diff(U(x, y, z, t), t), y), y))+0.9000000000e-10*(diff(diff(diff(U(x, y, z, t), t), z), z))+0.2196119222e19*ln(2)^.5*exp(-6.535947712*z)*exp(-0.1880000000e14*abs(t-1/5000000000000))*exp(-0.1250000000e14*((1/10000000)*x-0.2500000000e-6)^2-0.1250000000e14*((1/10000000)*y-0.2500000000e-6)^2)-0.3509398517e21*ln(2)^.5*exp(-6.535947712*z)*abs(1, t-1/5000000000000)*exp(-0.1880000000e14*abs(t-1/5000000000000))*exp(-0.1250000000e14*((1/10000000)*x-0.2500000000e-6)^2-0.1250000000e14*((1/10000000)*y-0.2500000000e-6)^2)

(2)

``

 

Boundary condition:

U(0, y, z, t) = 300; U(Lx, y, z, t) = 300; U(x, 0, z, t) = 300; U(x, Ly, z, t) = 300; U(x, y, 0, t) = 300; U(x, y, Lz, t) = 300

#####################################

INITIAL CONDITIONS:

 

U(x, y, z, 0) = 300; (D[1](U))(x, y, z, 0) = 0

(D[1](U))(x, y, z, 0) = 0

(3)

NULL

 

``


 

Download EQUATION2.mw

 

 

restart;
A002487 := proc (m) local a, b, n; option remember; a := 1; b := 0; n := m; while 0 < n do if type(n, odd) then b := a+b else a := a+b end if; n := floor((1/2)*n) end do; b end proc; listeinverse := proc (L::list) local i; [seq(op(nops(L)-i, L), i = 0 .. nops(L)-1)] end proc; Brocot := proc (n) local c, i, L, M, r; L := NULL; r := 2^n; L := [seq(A002487(i), i = 0 .. r)]; M := listeinverse(L); c[0] := 0, 1/cat(0); for i to r do c[i] := L[i]/M[i] end do; c[r+1] := 1/cat(0); return [seq(c[i], i = 1 .. r+1)], r+1 end proc; for i from 0 to 4 do B || i := Brocot(i) end do;
                              [   1]   
                        B0 := [0, -], 2
                              [   0]   
                             [      1]   
                       B1 := [0, 1, -], 3
                             [      0]   
                          [   1        1]   
                    B2 := [0, -, 1, 2, -], 5
                          [   2        0]   
                    [   1  1  2     3        1]   
              B3 := [0, -, -, -, 1, -, 2, 3, -], 9
                    [   3  2  3     2        0]   
       [   1  1  2  1  3  2  3     4  3  5     5        1]    
 B4 := [0, -, -, -, -, -, -, -, 1, -, -, -, 2, -, 3, 4, -], 17
       [   4  3  5  2  5  3  4     3  2  3     2        0]    
              rang := proc(M::list, a)  ...  end;;
                    /       1\ 
                rang|B2[1], -|;
                    \       2/ 
                / d        \        
                |--- don(x)| t work;
                \ dx       /        

F := proc (N) local a, b, L; L := NULL; L := sort([op({seq(seq(a/b, a = 0 .. b), b = 1 .. N)})]); return L, nops(L) end proc; F(1); F(2); F(3); F(4);
                           [0, 1], 2
                          [   1   ]   
                          [0, -, 1], 3
                          [   2   ]   
                       [   1  1  2   ]   
                       [0, -, -, -, 1], 5
                       [   3  2  3   ]   
                    [   1  1  1  2  3   ]   
                    [0, -, -, -, -, -, 1], 7
                    [   4  3  2  3  4   ]   
rang(F(3)[1], 2/3);
                        /[   1  1  2   ]  2\
                    rang|[0, -, -, -, 1], -|
                        \[   3  2  3   ]  3/

I want to compute a limit via maple and that it will show me the way how to compute the limit.

 

The limit is:

\lim_{epsilon ->0, t\in [0,1]} 1/(exp((-1+(1-4*epsilon)^(0.5))/(2*epsilon))-exp((-1-(1-4*epsilon)^(0.5))/(2*epsilon)))*[exp((-1+(1-4*epsilon)^(0.5))/(2*epsilon)*t)-exp((-1-(1-4*epsilon)^(0.5))/(2*epsilon)*t)]/(exp(1-t)-exp(1-t/(epsilon)))

 

According to my book it should converge to 1.

I tried manually but got stuck.

 

Hi there. Thank you all in advanced.

The general question is how to pass a pair of values to a list of functions that expect that pair of values as input.
I already know this solution for passing a list of values to a list of functions that expect one value as input.

map(eval~,[f(x),g(x)],x=~[p,q,t])

Well f(x) and g(x) take every element of the list, but what if f(x) and g(x) expect two values. The concrete case is to pass p and q to iquo and irem. The following were my tries:

  • map(eval~,[iquo(x),irem(x)],x=[p,q])
  • map(eval~,[iquo(x),irem(x)],x=(p,q))
  • map(eval~,[iquo(op(x)),irem(op(x))],x=[p,q])

I searched and found some partial related topics in the site but not quite with this approach.

 

how I can remove this error in dsolve?

Error, (in dsolve/numeric/bvp) singularity encountered
dsolv.mw

Given these functions identify their symmetries:

a) f(x)=4x^2-1/2

b)s(t)=t^3-4t

c) g(k)=-|2k-7|

d) x-y^2=3

e) h(a)=1/a-1

Dear Experts,

I am new user. I need your help!

I have numerical values of omega (w) and a2F(w) (500 rows). I need to do cumulative summation to get lambda(w) using   lambd=2 int (a2F(w)/w  dw). Please help me how can I do it?

Best Wishes,

Enamul Haque

How can I use Maple to solve a difference quotient problem? How do I enter the basic difference quotient formula and the quadratic equation to be used in the problem?

Hi,
I face a problem using Tolerances:-NominalValue and Tolerances:-ToleranceValue on a quantity constructed from add.

Example

restart:
with(Tolerances):
x := 10 &+-1:
y := 20 &+- 2:
z := 3*x+2*y;
NominalValue(z);     
# returns 70 as expected
ToleranceValue(z);   # returns 7 as expected


Now I define another quantity Z this way:

Z := add([3, 2] *~ [x, y]);
(or equivalently add(ListOfCoeffs[k]*ListOfVars[k], k=1..K) where ListOfCoeffs and ListOfVars are previously defined adhoc lists)

Both NominalValue(Z) and ToleranceValue(Z) return an error.
PS: already (and this probably explains that) Z does not appear as 70 +/- 7 but as 3*Interval(...)+2*Interval(...) (lprint confirmed)

How can I obtain NominalValue(Z) and ToleranceValue(Z) when Z comes from 'add' constructor?

         Fract := proc(P::posint, Q::posint)  
         local p,q:
         for p from 1 to P-1 do
            for q from 1 to Q-1 do
              if (P-p)*q-P*(Q-q)=1 the return (p/q,(P-p)/(Q-q): fi:
          od:od:  
       end;
        debug(Fract);
        Fract(5, 13);
        Fract(77, 200);

 

Is possible to solve this differential equation by maple?

thaks...

Hi,

I'm using the eBookTools package to convert a .mw file as a chapter into a PDF file. However, a problem arises when I convert a document with a few repeated plotting commands (such as plot(x^2)). The issue is that in the final PDF the images of the various plots overlap, and that the individual plots can't be clearly seen. Is there a resolution to this?

Thanks,
Bart

4 5 6 7 8 9 10 Last Page 6 of 34