Maple 2019 Questions and Posts

These are Posts and Questions associated with the product, Maple 2019

How I can plot3d function s. in the domain x ,y from -1300 to 200.

Thanks

if.mw
 

"restart;   #`    x__A`=-1300..200,      `y__A`=-1300..200    u1:=(((`x__A`-200)^(2)+(`y__A`^())^(2))*0.001)/(960000);   if  u1<=0.001  then w(u1):=-0.5772-ln(u1);  else if u1>0.001  then w(u1):=-0.5772-ln(u1)+u1-((u1)^(2))/(2*2!)+((u1)^(3))/(3*3!)-((u1)^(4))/(4*4!)+((u1)^(5))/(5*5!)-((u1)^(6))/(6*6!)+((u1)^(7))/(7*7!)-((u1)^(8))/(8*8!)+((u1)^(9))/(9*9!)-((u1)^(10))/(10*10!)+((u1)^(11))/(11*11!)-((u1)^(12))/(12*12!);     end if"

Error, invalid 'if' statement

"restart;      u1:=(((`x__A`-200)^2+(`y__A`)^2)*0.001)/960000;   if u1<=0.001  then w:=(u1)->-0.5772-ln(u1);  elseif u1>0.001  then w(u1):=-0.5772-ln(u1)+u1-((u1)^2)/(2*2!)+((u1)^3)/(3*3!)-((u1)^4)/(4*4!)+((u1)^5)/(5*5!)-((u1)^6)/(6*6!)+((u1)^7)/(7*7!)-((u1)^8)/(8*8!)+((u1)^9)/(9*9!)-((u1)^10)/(10*10!)+((u1)^11)/(11*11!)-((u1)^12)/(12*12!);     end if"

 

s := 6.87*10^(-3)*w(u1); plot3d(s, x__A = -1300 .. 200, y__A = -1300 .. 200)


 

Download if.mw

 

Hello. I want to use the command verify but with two variables. For example:

verify(x^2 + y^2, 0, {'greater_equal'});

but I get FAIL as an answer. I tried adding before the verify command assume(x, 'real'); assume(y, 'real');

but notihng changed.

 

Thanks for any help.

Can anyone help me to find the correct solution up to 5 decimal points and how to implement the newton method on the same expression rather than applying fsolve command.pls find mt attachment.
 

restart

A := -5.032477447*10^(-28)*(-(1/4)*(25*(530.0*lambda+177.7750000))*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^6+(15*(443.3333333*lambda+156.1916667))*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^5+(12789.75000+62100.00*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)+(-12572.66875-60942.50000*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^4+(10265.27500+25610.00*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^3+(-41326.63125-233677.5000*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^2+7.137546188*10^26*(530.0*lambda-858.7250000)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^6-1.713011085*10^27*(443.3333333*lambda-725.3083333)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^5+1.142007390*10^26*(-41261.20625-13307.50000*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^4+1.142007390*10^26*(36986.22500-16610.00*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^3+1.142007390*10^26*(-110668.7437-111922.5000*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^2+1.142007390*10^26*(37205.25000+20700.00*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)+(-(1/4)*(25*(-20*lambda+29.45))*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^8+(25*(-20*lambda+29.45))*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^7+(1/4)*(15*(876.6666667*lambda-1551.891667))*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^6-(5*(1310.0*lambda-2537.975000))*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^5+(-52156.91875-11742.50000*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^4+(56847.77500-24190.00*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^3+(-166742.1312-59477.50000*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^2+(67964.75000-57500.00*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)-167158.4438-52.50000*lambda)*exp(20.00000000*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^2+100.0000000)+((1/4)*(25*(-20*lambda-3.55))*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^8-(25*(-20*lambda-3.55))*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^7-(1/4)*(15*(876.6666667*lambda+434.6083333))*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^6+(5*(1310.0*lambda+883.5250000))*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^5+(-25071.70625-58007.50000*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^4+(33060.72500+15190.00*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^3+(-105784.9938-170922.5000*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^2+(48240.25000-25300.00*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)-122566.1813-83197.50000*lambda)*exp(20.00000000*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^2+40.00000000)+(-(1/4)*(25*(-20*lambda+29.45))*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^8+(25*(-20*lambda+29.45))*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^7-(1/4)*(15*(-856.6666667*lambda+2435.941667))*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^6+(5*(-1290.0*lambda+3683.025000))*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^5+(-88661.23125+54982.50000*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^4+(67794.77500-15790.00*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^3+(-257173.4437+170197.5000*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^2+(68632.50000+19800.00*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)-230977.6313+102622.5000*lambda)*exp(5.000000000*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^2+1.141301418*10^17*lambda^9-9.737052860*10^16*lambda^8+3.682582968*10^16*lambda^7-8.102838405*10^15*lambda^6+1.142983789*10^15*lambda^5-1.071802621*10^14*lambda^4+6.680654660*10^12*lambda^3-2.668788927*10^11*lambda^2+6.199499765*10^9*lambda-6.379670430*10^7)+((1/4)*(25*(-20*lambda-3.55))*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^8-(25*(-20*lambda-3.55))*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^7+(1/4)*(15*(-856.6666667*lambda-1407.558333))*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^6-(5*(-1290.0*lambda-2135.475000))*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^5+(-65071.14375+14767.50000*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^4+(44343.72500+24790.00*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^3+(-203674.9312+76402.50000*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^2+(47557.50000+59400.00*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)-190158.2437+25627.50000*lambda)*exp(5.000000000*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^2+1.141301418*10^17*lambda^9-9.737052860*10^16*lambda^8+3.682582968*10^16*lambda^7-8.102838405*10^15*lambda^6+1.142983789*10^15*lambda^5-1.071802621*10^14*lambda^4+6.680654660*10^12*lambda^3-2.668788927*10^11*lambda^2+6.199499765*10^9*lambda-6.379676430*10^7)-7.137546188*10^26*(-20*lambda+29.45)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^8+2.855018475*10^27*(-20*lambda+29.45)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^7+(-(1/4)*(25*(-20*lambda+29.45))*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^8+(25*(-20*lambda+29.45))*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^7-(1/4)*(25*(-510.0*lambda+1533.975000))*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^6+(15*(-423.3333333*lambda+1348.358333))*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^5+(-98411.89375+56567.50000*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^4+(85366.22500-23410.00*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^3+(-301081.9312+207202.5000*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^2+(94907.50000-55000.00*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)-281127.6187+253177.5000*lambda)*exp(25.00000000*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^2+1.141301418*10^17*lambda^9-9.737052860*10^16*lambda^8+3.682582968*10^16*lambda^7-8.102838405*10^15*lambda^6+1.142983789*10^15*lambda^5-1.071802621*10^14*lambda^4+6.680654660*10^12*lambda^3-2.668788927*10^11*lambda^2+6.199499765*10^9*lambda-6.379666430*10^7)+(1/4)*(25*(-20*lambda-3.55))*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^8-(25*(-20*lambda-3.55))*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^7+((1/4)*(25*(-20*lambda-3.55))*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^8-(25*(-20*lambda-3.55))*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^7+(1/4)*(25*(-510.0*lambda-927.5250000))*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^6-(15*(-423.3333333*lambda-850.1416667))*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^5+(-76318.23125+17682.50000*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^4+(64635.27500+14410.00*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^3+(-254822.1938+122197.5000*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^2+(78102.50000-24200.00*lambda)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)-249171.5063+194572.5000*lambda)*exp(25.00000000*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^2+1.141301418*10^17*lambda^9-9.737052860*10^16*lambda^8+3.682582968*10^16*lambda^7-8.102838405*10^15*lambda^6+1.142983789*10^15*lambda^5-1.071802621*10^14*lambda^4+6.680654660*10^12*lambda^3-2.668788927*10^11*lambda^2+6.199499765*10^9*lambda-6.379672430*10^7)-2.212610768*10^31*lambda-1.114528480*10^31)*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379681930*10^6)/(((5*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^2+9.5)*exp(20.00000000*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^2+40.00000000)+5*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^2+10.5)*((-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^2+2.282602836*10^16*lambda^9-1.947410572*10^16*lambda^8+7.365165936*10^15*lambda^7-1.620567681*10^15*lambda^6+2.285967578*10^14*lambda^5-2.143605242*10^13*lambda^4+1.336130932*10^12*lambda^3-5.337577854*10^10*lambda^2+1.239899953*10^9*lambda-1.275935286*10^7)*((-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^2+2)*((5*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^2*(1/4)+2.853253545*10^16*lambda^9-2.434263216*10^16*lambda^8+9.206457420*10^15*lambda^7-2.025709601*10^15*lambda^6+2.857459472*10^14*lambda^5-2.679506552*10^13*lambda^4+1.670163666*10^12*lambda^3-6.671972318*10^10*lambda^2+1.549874942*10^9*lambda-1.594919157*10^7)*exp(5.000000000*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^2+1.141301418*10^17*lambda^9-9.737052860*10^16*lambda^8+3.682582968*10^16*lambda^7-8.102838405*10^15*lambda^6+1.142983789*10^15*lambda^5-1.071802621*10^14*lambda^4+6.680654660*10^12*lambda^3-2.668788927*10^11*lambda^2+6.199499765*10^9*lambda-6.379676430*10^7)+5*(-1.141301418*10^16*lambda^9+9.737052862*10^15*lambda^8-3.682582968*10^15*lambda^7+8.102838405*10^14*lambda^6-1.142983789*10^14*lambda^5+1.071802621*10^13*lambda^4-6.680654662*10^11*lambda^3+2.668788927*10^10*lambda^2-6.199499766*10^8*lambda+6.379680930*10^6)^2*(1/4)+2.853253545*10^16*lambda^9-2.434263216*10^16*lambda^8+9.206457420*10^15*lambda^7-2.025709601*10^15*lambda^6+2.857459472*10^14*lambda^5-2.679506552*10^13*lambda^4+1.670163666*10^12*lambda^3-6.671972318*10^10*lambda^2+1.549874942*10^9*lambda-1.594919057*10^7))

-0.5032477447e-27*(-(25/4)*(530.0*lambda+177.7750000)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^6+15*(443.3333333*lambda+156.1916667)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^5+(12789.75000+62100.00*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)+(-12572.66875-60942.50000*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^4+(10265.27500+25610.00*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^3+(-41326.63125-233677.5000*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^2+0.7137546188e27*(530.0*lambda-858.7250000)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^6-0.1713011085e28*(443.3333333*lambda-725.3083333)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^5+0.1142007390e27*(-41261.20625-13307.50000*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^4+0.1142007390e27*(36986.22500-16610.00*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^3+0.1142007390e27*(-110668.7437-111922.5000*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^2+0.1142007390e27*(37205.25000+20700.00*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)+(-(25/4)*(-20*lambda+29.45)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^8+25*(-20*lambda+29.45)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^7+(15/4)*(876.6666667*lambda-1551.891667)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^6-5*(1310.0*lambda-2537.975000)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^5+(-52156.91875-11742.50000*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^4+(56847.77500-24190.00*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^3+(-166742.1312-59477.50000*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^2+(67964.75000-57500.00*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)-167158.4438-52.50000*lambda)*exp(20.00000000*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^2+100.0000000)+((25/4)*(-20*lambda-3.55)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^8-25*(-20*lambda-3.55)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^7-(15/4)*(876.6666667*lambda+434.6083333)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^6+5*(1310.0*lambda+883.5250000)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^5+(-25071.70625-58007.50000*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^4+(33060.72500+15190.00*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^3+(-105784.9938-170922.5000*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^2+(48240.25000-25300.00*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)-122566.1813-83197.50000*lambda)*exp(20.00000000*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^2+40.00000000)+(-(25/4)*(-20*lambda+29.45)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^8+25*(-20*lambda+29.45)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^7-(15/4)*(-856.6666667*lambda+2435.941667)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^6+5*(-1290.0*lambda+3683.025000)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^5+(-88661.23125+54982.50000*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^4+(67794.77500-15790.00*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^3+(-257173.4437+170197.5000*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^2+(68632.50000+19800.00*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)-230977.6313+102622.5000*lambda)*exp(5.000000000*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^2+0.1141301418e18*lambda^9-0.9737052860e17*lambda^8+0.3682582968e17*lambda^7-0.8102838405e16*lambda^6+0.1142983789e16*lambda^5-0.1071802621e15*lambda^4+0.6680654660e13*lambda^3-0.2668788927e12*lambda^2+6199499765.*lambda-63796704.30)+((25/4)*(-20*lambda-3.55)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^8-25*(-20*lambda-3.55)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^7+(15/4)*(-856.6666667*lambda-1407.558333)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^6-5*(-1290.0*lambda-2135.475000)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^5+(-65071.14375+14767.50000*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^4+(44343.72500+24790.00*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^3+(-203674.9312+76402.50000*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^2+(47557.50000+59400.00*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)-190158.2437+25627.50000*lambda)*exp(5.000000000*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^2+0.1141301418e18*lambda^9-0.9737052860e17*lambda^8+0.3682582968e17*lambda^7-0.8102838405e16*lambda^6+0.1142983789e16*lambda^5-0.1071802621e15*lambda^4+0.6680654660e13*lambda^3-0.2668788927e12*lambda^2+6199499765.*lambda-63796764.30)-0.7137546188e27*(-20*lambda+29.45)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^8+0.2855018475e28*(-20*lambda+29.45)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^7+(-(25/4)*(-20*lambda+29.45)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^8+25*(-20*lambda+29.45)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^7-(25/4)*(-510.0*lambda+1533.975000)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^6+15*(-423.3333333*lambda+1348.358333)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^5+(-98411.89375+56567.50000*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^4+(85366.22500-23410.00*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^3+(-301081.9312+207202.5000*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^2+(94907.50000-55000.00*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)-281127.6187+253177.5000*lambda)*exp(25.00000000*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^2+0.1141301418e18*lambda^9-0.9737052860e17*lambda^8+0.3682582968e17*lambda^7-0.8102838405e16*lambda^6+0.1142983789e16*lambda^5-0.1071802621e15*lambda^4+0.6680654660e13*lambda^3-0.2668788927e12*lambda^2+6199499765.*lambda-63796664.30)+(25/4)*(-20*lambda-3.55)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^8-25*(-20*lambda-3.55)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^7+((25/4)*(-20*lambda-3.55)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^8-25*(-20*lambda-3.55)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^7+(25/4)*(-510.0*lambda-927.5250000)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^6-15*(-423.3333333*lambda-850.1416667)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^5+(-76318.23125+17682.50000*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^4+(64635.27500+14410.00*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^3+(-254822.1938+122197.5000*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^2+(78102.50000-24200.00*lambda)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)-249171.5063+194572.5000*lambda)*exp(25.00000000*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^2+0.1141301418e18*lambda^9-0.9737052860e17*lambda^8+0.3682582968e17*lambda^7-0.8102838405e16*lambda^6+0.1142983789e16*lambda^5-0.1071802621e15*lambda^4+0.6680654660e13*lambda^3-0.2668788927e12*lambda^2+6199499765.*lambda-63796724.30)-0.2212610768e32*lambda-0.1114528480e32)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379681.930)/(((5*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^2+9.5)*exp(20.00000000*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^2+40.00000000)+5*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^2+10.5)*((-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^2+0.2282602836e17*lambda^9-0.1947410572e17*lambda^8+0.7365165936e16*lambda^7-0.1620567681e16*lambda^6+0.2285967578e15*lambda^5-0.2143605242e14*lambda^4+0.1336130932e13*lambda^3-0.5337577854e11*lambda^2+1239899953.*lambda-12759352.86)*((-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^2+2)*(((5/4)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^2+0.2853253545e17*lambda^9-0.2434263216e17*lambda^8+0.9206457420e16*lambda^7-0.2025709601e16*lambda^6+0.2857459472e15*lambda^5-0.2679506552e14*lambda^4+0.1670163666e13*lambda^3-0.6671972318e11*lambda^2+1549874942.*lambda-15949191.57)*exp(5.000000000*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^2+0.1141301418e18*lambda^9-0.9737052860e17*lambda^8+0.3682582968e17*lambda^7-0.8102838405e16*lambda^6+0.1142983789e16*lambda^5-0.1071802621e15*lambda^4+0.6680654660e13*lambda^3-0.2668788927e12*lambda^2+6199499765.*lambda-63796764.30)+(5/4)*(-0.1141301418e17*lambda^9+0.9737052862e16*lambda^8-0.3682582968e16*lambda^7+0.8102838405e15*lambda^6-0.1142983789e15*lambda^5+0.1071802621e14*lambda^4-0.6680654662e12*lambda^3+0.2668788927e11*lambda^2-619949976.6*lambda+6379680.930)^2+0.2853253545e17*lambda^9-0.2434263216e17*lambda^8+0.9206457420e16*lambda^7-0.2025709601e16*lambda^6+0.2857459472e15*lambda^5-0.2679506552e14*lambda^4+0.1670163666e13*lambda^3-0.6671972318e11*lambda^2+1549874942.*lambda-15949190.57))

(1)

sols := fsolve(A, lambda = -.1 .. 1, maxsols = 4)

0.7016568203e-1, 0.7350618818e-1, .1121166384, -.1, -0.7138204362e-1, -0.7072932196e-1, -0.7072074821e-1

(2)

evalf(eval(A, lambda = -0.707231e-1))

Float(undefined)

(3)

``


 

Download help_solution.mw

Dear people in mapleprims,

I haven't used maple for a long time.
By the way, I tried to modify a denominator part in an fractional expression, but I couldn't.

Original expression is 

a:=-(I__22-X__2)/(I__11*I__22-I__11*X__2-I__12*I__21-I__22*X__1+X__1*X__2);

#And, I want to change this to the form

b:=(X__2-I__22)/((x__1-I__11)*(X__2-I__22)-I__12*I__21);

How can I do this?

Thank you in advance.

taro yamada

 

Hi,

I have managed to create the following plot.  It won't plot on the site's plotter:

fieldplot([1, y^2 + x], x = -10 .. 10, y = -6 .. 6, fieldstrength = fixed, color = abs(y^2 + x + 1))

I am trying to assign a colour gradient to the different vectors based on vector magnitude.  In the color option, I entered color= expresssion for the magnitude of the vectors

 

This only half worked.  It currently scales the colours such that the largest and smallest vectors are the same colour.  How do I assign a gradient such that the small magnitude vectors are one colour, and they then transition to another colour as their magnitude gets larger?

 

 

Hello. I am trying to solve this system of equations but I can't get Maple to show all solutions.

I have solve the system by hand and there are two more solutions (x=x, y=1) and (x=x, y=-1).

 

Thanks for any help !

 

Hello. I want to solve a 2X2 system using Maple. I have written this code but I do not get expected results.

restart;
with(DEtools);
with(plottools);
with(plots);
with(Algebraic);

F := -1 - y - exp(x);
G := x^2 + y*(exp(x) - 1);

sol1 := eliminate({F, G}, {x, y});

sol1 := [{x = RootOf(-exp(_Z)^2 + _Z^2 + 1), y = -exp(RootOf(-exp(_Z)^2 + _Z^2 + 1)) - 1}, {}]

But, the solutions are x=0 and y=-2 (I have solved the system by hand).

 

Any help?!

I have a parametric polynomial which is defined based on the multiplication of different variables and I want to rearrange the polynomial based on specific variables. For example, suppose the polynomial is defined as follows:

a:= (1+x+y)(2x-yx+z)(y^2-zy)

and I want to have a based on first, and second orders of x, or even other variables. Thanks

Hi so ive been working on a few codes making Eulers method and RungeKutta and Taylor Series (second order) and I cant figure out why my code is giving me a weird output? I will attach my maple files here, I can post more information if you'd like. Also have no idea how to start for taylor series so any help with code on that would be appreciated!

 


 

euler1 := proc (f, a, b, alpha, h, N) local i, t, w; i := 1; t := a; w := alpha; while i <= N do w := w+h*f(t, w); t := a+i*h; i := i+1 end do; [w] end proc

proc (f, a, b, alpha, h, N) local i, t, w; i := 1; t := a; w := alpha; while i <= N do w := w+h*f(t, w); t := a+i*h; i := i+1 end do; [w] end proc

(1)

euler1(e^(5*3-y), 0, 3, .5, .2, 2)

[.5+.2*e(0, .5)^(15-y(0, .5))+.2*e(.2, .5+.2*e(0, .5)^(15-y(0, .5)))^(15-y(.2, .5+.2*e(0, .5)^(15-y(0, .5))))]

(2)

NULL

NULL

NULL


 

Download p5one.mw
 

RK4 := proc (f, a, b, alpha, h, N) local t, w, i, k1, k2, k3, k4; i := 1; t := a; w := alpha; while i <= N do k1 := h*f(t, w); k2 := h*f(t+(1/2)*h, w+(1/2)*k1); k3 := h*f(t+(1/2)*h, w+(1/2)*k2); k4 := h*f(t+h, w+k3); w := w+(1/6)*k1+(1/3)*k2+(1/3)*k3+(1/6)*k4; t := a+i*h; i := i+1 end do; [w] end proc

proc (f, a, b, alpha, h, N) local t, w, i, k1, k2, k3, k4; i := 1; t := a; w := alpha; while i <= N do k1 := h*f(t, w); k2 := h*f(t+(1/2)*h, w+(1/2)*k1); k3 := h*f(t+(1/2)*h, w+(1/2)*k2); k4 := h*f(t+h, w+k3); w := w+(1/6)*k1+(1/3)*k2+(1/3)*k3+(1/6)*k4; t := a+i*h; i := i+1 end do; [w] end proc

(1)

RK4(exp(5*3-y), 0, 3, .5, .2, 1)

[.5+0.3333333333e-1*(exp(15-y))(0, .5)+0.6666666667e-1*(exp(15-y))(.1000000000, .5+.1000000000*(exp(15-y))(0, .5))+0.6666666667e-1*(exp(15-y))(.1000000000, .5+.1000000000*(exp(15-y))(.1000000000, .5+.1000000000*(exp(15-y))(0, .5)))+0.3333333333e-1*(exp(15-y))(.2, .5+.2*(exp(15-y))(.1000000000, .5+.1000000000*(exp(15-y))(.1000000000, .5+.1000000000*(exp(15-y))(0, .5))))]

(2)

``


 

Download rk4new.mw

 

I have an assignment for Q that after subsequent other assignments and substitutions  results in 

-XC1*R1^2/((R1^2 + XC1^2)*(R1*XC1^2/(R1^2 + XC1^2) + 12960.54302))

 

when I type Q.

 

I would like to solve this for XC1, for values of Q that make  XC1 is real. 

How do I do this?  Can I rearrange this assignment?   

I guess I could do something like this:

eq1:= -XC1*R1^2/((R1^2 + XC1^2)*(R1*XC1^2/(R1^2 + XC1^2) + 12960.54302))

solve(eq1=Q,XC1)

but Q as a function of XC1 is a derived from other relationships.

 

The worksheet probably makes what I'm asking more clear.    I was able to get the result, but I'm sure there is a better, more elegant  way to do what I needed to do...

 

Thanks
 

``

restart

Series-Parallel Conversion Equations as a function of Q

• 

Q = Xs/Rs = Rp/Xp;

• 

Rp := Rs*(Q^2 + 1);

``

``

Impedance Transpormation Equations

Rp := proc (Rs, Xs) options operator, arrow; (Rs^2+Xs^2)/Rs end proc

Xp := proc (Rs, Xs) options operator, arrow; (Rs^2+Xs^2)/Xs end proc

Rs := proc (Rp, Xp) options operator, arrow; Rp*Xp^2/(Rp^2+Xp^2) end proc

Xs := proc (Rp, Xp) options operator, arrow; Xp*Rp^2/(Rp^2+Xp^2) end proc

``

zL := 1.343+I*131.925

1.343+131.925*I

(1)

``

XL0p := Xp(Re(zL), Im(zL))

131.9386717

(2)

RLp := Rp(Re(zL), Im(zL))

12960.54302

(3)

QLp := RLp/XLp

12960.54302/XLp

(4)

XC2 := -XL0p

-131.9386717

(5)

Q := XL1/(R1s+RLp)

XL1/(R1s+12960.54302)

(6)

R1s := Rs(R1, XC1)

R1*XC1^2/(R1^2+XC1^2)

(7)

XC1s := Xs(R1, XC1)

XC1*R1^2/(R1^2+XC1^2)

(8)

XL1 := -XC1s

-XC1*R1^2/(R1^2+XC1^2)

(9)

Q

-XC1*R1^2/((R1^2+XC1^2)*(R1*XC1^2/(R1^2+XC1^2)+12960.54302))

(10)

``

tmp1 := solve(-XC1*R1^2/((R1^2+XC1^2)*(R1*XC1^2/(R1^2+XC1^2)+12960.54302)) = Tmp, XC1)

(-25000.*R1+(-0.3240135755e14*R1*Tmp^2+625000000.*R1^2-0.4199391884e18*Tmp^2)^(1/2))*R1/(Tmp*(50000.*R1+648027151.)), -1.*(25000.*R1+(-0.3240135755e14*R1*Tmp^2+625000000.*R1^2-0.4199391884e18*Tmp^2)^(1/2))*R1/(Tmp*(50000.*R1+648027151.))

(11)

"solve(indets(numer(tmp1[1]))"

{R1, Tmp, (-0.3240135755e14*R1*Tmp^2+625000000.*R1^2-0.4199391884e18*Tmp^2)^(1/2)}

(12)

simplify(solve(op(3, indets(numer(tmp1[1])))^2 > 0, Tmp, parametric))

piecewise(R1 <= -8398783768000/648027151, [[Tmp = Tmp]], R1 < 0, [[50*5^(1/2)*R1/(648027151*R1+8398783768000)^(1/2) < Tmp, Tmp < -50*5^(1/2)*R1/(648027151*R1+8398783768000)^(1/2)]], R1 = 0, [], 0 < R1, [[-50*5^(1/2)*R1/(648027151*R1+8398783768000)^(1/2) < Tmp, Tmp < 50*5^(1/2)*R1/(648027151*R1+8398783768000)^(1/2)]])

(13)

``


 

Download pi-filter_anal_copy.mw

 

 

how I can sort differential equation [q] in terms of u(x,y,z,t) and its derivatives.

In other words, we should find three relations including L11(u) ,L12 (v), and L13(w). 

For instance in L13{w) only w(x,y,z,t) and its derivatives would appear...

For example;

sort.mw


 

q := h*(A11*(diff(u(x, y, z, t), x, x)-(diff(w(x, y, z, t), x))/R+(diff(w(x, y, z, t), x))*(diff(w(x, y, z, t), x, x)))+A12*(diff(v(x, y, z, t), x, y)-(diff(w(x, y, z, t), x))/a+(diff(w(x, y, z, t), y))*(diff(w(x, y, z, t), x, y))))+h^2*(-B11*(diff(w(x, y, z, t), x, x, x))+B12*(-(diff(w(x, y, z, t), x, y, y))-(diff(v(x, y, z, t), x, y))/a))+B66*h^2*(-2*(diff(w(x, y, z, t), x, y, y))-(diff(v(x, y, z, t), x, y))/a)+A66*h*(diff(u(x, y, z, t), y, y)+diff(v(x, y, z, t), x, y)+(diff(w(x, y, z, t), y, y))*(diff(w(x, y, z, t), x))+(diff(w(x, y, z, t), y))*(diff(w(x, y, z, t), x, y))) = rho*(diff(u(x, y, z, t), t, t))-e0^2*a^2*(rho*(diff(u(x, y, z, t), t, t, x, x))+rho*(diff(u(x, y, z, t), t, t, y, y)))

h*(A11*(diff(diff(u(x, y, z, t), x), x)-(diff(w(x, y, z, t), x))/R+(diff(w(x, y, z, t), x))*(diff(diff(w(x, y, z, t), x), x)))+A12*(diff(diff(v(x, y, z, t), x), y)-(diff(w(x, y, z, t), x))/a+(diff(w(x, y, z, t), y))*(diff(diff(w(x, y, z, t), x), y))))+h^2*(-B11*(diff(diff(diff(w(x, y, z, t), x), x), x))+B12*(-(diff(diff(diff(w(x, y, z, t), x), y), y))-(diff(diff(v(x, y, z, t), x), y))/a))+B66*h^2*(-2*(diff(diff(diff(w(x, y, z, t), x), y), y))-(diff(diff(v(x, y, z, t), x), y))/a)+A66*h*(diff(diff(u(x, y, z, t), y), y)+diff(diff(v(x, y, z, t), x), y)+(diff(diff(w(x, y, z, t), y), y))*(diff(w(x, y, z, t), x))+(diff(w(x, y, z, t), y))*(diff(diff(w(x, y, z, t), x), y))) = rho*(diff(diff(u(x, y, z, t), t), t))-e0^2*a^2*(rho*(diff(diff(diff(diff(u(x, y, z, t), t), t), x), x))+rho*(diff(diff(diff(diff(u(x, y, z, t), t), t), y), y)))

(1)

``


 

Download sort.mw

 

Why won't Maple solve any of these inequalities for Q?

At first I tried solving the system of equations, but then I tried solving the inequalities individually for Q, and those too could not be solved by Maple.  What am I doing wrong?
 

restart

 

assume(R1, real, R2, real, RL, real, XC1, real, XC2, real, XL1, real)

additionally(R1 > 0, R2 > 0, RL > 0, XC1 > 0, XC2 > 0, XL1 > 0)

 

 

eq3 := R1*(4*Q^2+1)-RL > 0

0 < R1*(4*Q^2+1)-RL

(1)

eq4 := 4*Q^2*R1*RL-(R1-RL)^2 >= 0

0 <= 4*Q^2*R1*RL-(R1-RL)^2

(2)

eq5 := Rs^2*(RL-R1)/Q^2+R1^2*RL > 0

0 < Rs^2*(RL-R1)/Q^2+RL*R1^2

(3)

 

``

sys1 := {eq3, eq4, eq5}

`assuming`([solve(sys1, {Q})], [R1 > RL])

`assuming`([solve(sys1, {Q})], [R1 < RL])

solve(sys1, {Q})

Warning, solutions may have been lost

 

solve(eq3, Q)

Warning, solutions may have been lost

 

solve(eq4, Q)

Warning, solutions may have been lost

 

solve(eq5, Q)

Warning, solutions may have been lost

 

``


 

Download pi-filter_anal_copy.mw

How can I get Maple to simplify expressions into more meaningful forms?

For example, 

xc1 := -(2*Q*R1 + sqrt(4*Q^2*R1*RL - R1^2 + 2*R1*RL - RL^2))*R1/(4*Q^2*R1 + R1 - RL)

 

The numerator, under the radical, is more meaningful as sqrt(4 Q^2 R1 RL-(R1-RL)^2).

 

Similarly, the denominator can be simplified to Rs(4 Q^2+1)-RL.  

 

How do I get Maple to get me there?

I actually want to numerically solve Karhunen-Loeve Decomposition, which is reduced to homogenous Fredholm integral equation second kind when the kernel is the function of correlation of variables, by using any procedures (Galerkin is better if it is availabe). FYI, with "intsolve" I just got f(x)=0. 

I have Maple solve a system of equations.  I then want to assign the result to the different variables for use later in the worksheet.  How do I do this?
 

 

{C1 = .6666666670*Ceq, C2 = 2.000000002*Ceq, L1 = 0.1377592863e-15/Ceq, R1 = 0.8802817643e-8/Ceq}

(24)

c1 := sol3[1]

C1 = .6666666670*Ceq

(25)

l1 := sol3[2]

C2 = 2.000000002*Ceq

(26)

r1 := sol3[3]

L1 = 0.1377592863e-15/Ceq

(27)

Solutions, C2=10pf

Ceqsol := 20*e-12

20*e-12

(28)

C1sol := subs(Ceq = Ceqsol, c1)

C1 = 13.33333334*e-8.000000004

(29)
 

 

 


First, all I want to do is assign the solution value for C1 to C1.  Not being able to do this, I try to assign C1 to "different" variable c1, but the assignment is C1~=.66667* Ceq, instead of just the value of C1.  Later, I then try to substitute the value of Ceq, to get the solution for c1, and instead of just getting the value, I get  that C1= 13.33x10^-8 is assigned to C1sol, again instead of just the value, 13.33x10^-8.  How do I just assign the values to these variables instead of the expressions?

 

Thank you.

Download new_filter_solution.mw

4 5 6 7 8 9 10 Last Page 6 of 40