Maple 2024 Questions and Posts

These are Posts and Questions associated with the product, Maple 2024

As shown in the paper, and in many similar ones, the authors use a particular method that I believe is related to the long wave limit. I’m familiar with other approaches, but the traditional methods haven’t been successful in this case. This author, along with a few others, has tried applying this long wave limit approach, though many papers don’t explicitly mention the substitutions they use to arrive at the lump solution.

I’ve been able to separately find the lump series, but for some of the other solutions, we first need to figure out how to derive this key result. Once that part is clear, the rest should be easier to handle. I've been working through everything step by step and have managed to reproduce many of the solutions from the paper.

Also i don't know how finding (eq17) in paper, which they found by apply long wave limit to (eq7) in paper

additionaly How finding line which i think they found by finding velocity?

Please, if you have any information or insight into how we can obtain this more difficult result, I would really appreciate your help.

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

_local(gamma)

NULL

declare(u(x, y, z, t))

u(x, y, z, t)*`will now be displayed as`*u

(1)

declare(f(x, y, z, t))

f(x, y, z, t)*`will now be displayed as`*f

(2)

alpha := 1; beta := 1; delta := 1; lambda := 1

1

 

1

 

1

 

1

(3)

pde := diff(diff(u(x, y, z, t), t)+6*u(x, y, z, t)*(diff(u(x, y, z, t), x))+diff(u(x, y, z, t), `$`(x, 3)), x)-lambda*(diff(u(x, y, z, t), `$`(y, 2)))+diff(alpha*(diff(u(x, y, z, t), x))+beta*(diff(u(x, y, z, t), y))+delta*(diff(u(x, y, z, t), z)), x)

diff(diff(u(x, y, z, t), t), x)+6*(diff(u(x, y, z, t), x))^2+6*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x))+diff(diff(diff(diff(u(x, y, z, t), x), x), x), x)-(diff(diff(u(x, y, z, t), y), y))+diff(diff(u(x, y, z, t), x), x)+diff(diff(u(x, y, z, t), x), y)+diff(diff(u(x, y, z, t), x), z)

(4)

thetai := t*w[i]+x*k[i]+y*l[i]+z*r[i]+eta[i]

eq15 := w[i] = -(k[i]^4+k[i]^2+k[i]*l[i]+k[i]*r[i]-l[i]^2)/k[i]

eq17 := u(x, y, z, t) = 2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2

A[sj] := (3*k[i]^4*k[j]^2-6*k[i]^3*k[j]^3+(3*k[j]^4+l[j]^2)*k[i]^2-2*k[i]*k[j]*l[i]*l[j]+k[j]^2*l[i]^2)/(3*k[i]^4*k[j]^2+6*k[i]^3*k[j]^3+(3*k[j]^4+l[j]^2)*k[i]^2-2*k[i]*k[j]*l[i]*l[j]+k[j]^2*l[i]^2)

F2 := 1+exp(eta[1])+b[1, 2]*exp(eta[1]+eta[2])+exp(eta[2])

1+exp(eta[1])+b[1, 2]*exp(eta[1]+eta[2])+exp(eta[2])

(5)

F22 := 1+exp(eta[1])+(3*k[1]^4*k[2]^2-6*k[1]^3*k[2]^3+(3*k[2]^4+l[2]^2)*k[1]^2-2*k[1]*k[2]*l[1]*l[2]+k[2]^2*l[1]^2)*exp(eta[1]+eta[2])/(3*k[1]^4*k[2]^2+6*k[1]^3*k[2]^3+(3*k[2]^4+l[2]^2)*k[1]^2-2*k[1]*k[2]*l[1]*l[2]+k[2]^2*l[1]^2)+exp(eta[2])

1+exp(eta[1])+(3*k[1]^4*k[2]^2-6*k[1]^3*k[2]^3+(3*k[2]^4+l[2]^2)*k[1]^2-2*k[1]*k[2]*l[1]*l[2]+k[2]^2*l[1]^2)*exp(eta[1]+eta[2])/(3*k[1]^4*k[2]^2+6*k[1]^3*k[2]^3+(3*k[2]^4+l[2]^2)*k[1]^2-2*k[1]*k[2]*l[1]*l[2]+k[2]^2*l[1]^2)+exp(eta[2])

(6)

NULL

NULL

F222 := exp(-(t*k[1]^4+t*k[1]^2+t*k[1]*l[1]+t*k[1]*r[1]-t*l[1]^2-x*k[1]^2-y*k[1]*l[1]-eta[1]*k[1])/k[1])+(3*k[1]^4*k[2]^2-6*k[1]^3*k[2]^3+(3*k[2]^4+l[2]^2)*k[1]^2-2*k[1]*k[2]*l[1]*l[2]+k[2]^2*l[1]^2)*exp(-(t*k[1]^4+t*k[1]^2+t*k[1]*l[1]+t*k[1]*r[1]-t*l[1]^2-x*k[1]^2-y*k[1]*l[1]-eta[1]*k[1])/k[1]-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]-eta[2]*k[2])/k[2])/(3*k[1]^4*k[2]^2+6*k[1]^3*k[2]^3+(3*k[2]^4+l[2]^2)*k[1]^2-2*k[1]*k[2]*l[1]*l[2]+k[2]^2*l[1]^2)+exp(-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]-eta[2]*k[2])/k[2])

exp(-(t*k[1]^4+t*k[1]^2+t*k[1]*l[1]+t*k[1]*r[1]-t*l[1]^2-x*k[1]^2-y*k[1]*l[1]-eta[1]*k[1])/k[1])+(3*k[1]^4*k[2]^2-6*k[1]^3*k[2]^3+(3*k[2]^4+l[2]^2)*k[1]^2-2*k[1]*k[2]*l[1]*l[2]+k[2]^2*l[1]^2)*exp(-(t*k[1]^4+t*k[1]^2+t*k[1]*l[1]+t*k[1]*r[1]-t*l[1]^2-x*k[1]^2-y*k[1]*l[1]-eta[1]*k[1])/k[1]-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]-eta[2]*k[2])/k[2])/(3*k[1]^4*k[2]^2+6*k[1]^3*k[2]^3+(3*k[2]^4+l[2]^2)*k[1]^2-2*k[1]*k[2]*l[1]*l[2]+k[2]^2*l[1]^2)+exp(-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]-eta[2]*k[2])/k[2])

(7)

indets(F222)

{t, x, y, eta[1], eta[2], k[1], k[2], l[1], l[2], r[1], r[2], exp(-(t*k[1]^4+t*k[1]^2+t*k[1]*l[1]+t*k[1]*r[1]-t*l[1]^2-x*k[1]^2-y*k[1]*l[1]-eta[1]*k[1])/k[1]), exp(-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]-eta[2]*k[2])/k[2]), exp(-(t*k[1]^4+t*k[1]^2+t*k[1]*l[1]+t*k[1]*r[1]-t*l[1]^2-x*k[1]^2-y*k[1]*l[1]-eta[1]*k[1])/k[1]-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]-eta[2]*k[2])/k[2])}

(8)

eq1 := eval(F222, {eta[1] = -1, eta[2] = -1, k[1] = K[1]*epsilon, l[1] = L[1]*epsilon, r[1] = R[1]*epsilon})

exp(-(epsilon^4*t*K[1]^4+epsilon^2*t*K[1]^2+epsilon^2*t*K[1]*L[1]+epsilon^2*t*K[1]*R[1]-epsilon^2*t*L[1]^2-epsilon^2*x*K[1]^2-epsilon^2*y*K[1]*L[1]+epsilon*K[1])/(K[1]*epsilon))+(3*K[1]^4*epsilon^4*k[2]^2-6*K[1]^3*epsilon^3*k[2]^3+(3*k[2]^4+l[2]^2)*K[1]^2*epsilon^2-2*K[1]*epsilon^2*k[2]*L[1]*l[2]+k[2]^2*L[1]^2*epsilon^2)*exp(-(epsilon^4*t*K[1]^4+epsilon^2*t*K[1]^2+epsilon^2*t*K[1]*L[1]+epsilon^2*t*K[1]*R[1]-epsilon^2*t*L[1]^2-epsilon^2*x*K[1]^2-epsilon^2*y*K[1]*L[1]+epsilon*K[1])/(K[1]*epsilon)-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]+k[2])/k[2])/(3*K[1]^4*epsilon^4*k[2]^2+6*K[1]^3*epsilon^3*k[2]^3+(3*k[2]^4+l[2]^2)*K[1]^2*epsilon^2-2*K[1]*epsilon^2*k[2]*L[1]*l[2]+k[2]^2*L[1]^2*epsilon^2)+exp(-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]+k[2])/k[2])

(9)

G := limit(eq1, epsilon = 0)

exp(-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]+2*k[2])/k[2])+exp(-1)+exp(-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]+k[2])/k[2])

(10)

Download LWL.mw

Hi,

I'm experimenting with building random series on different topics, inspired by several of your comments, using a table-style layout. For this example, I'm testing systems of linear equations with two unknowns, but I can't manage to generate the systems with curly braces. I hope the purpose of my question is clear. Any ideas? Thanks

Systmes_Idea.mw

This is first type of solving parameter but  i solved some semilar but the shape of them are so different and solving them different too i did my trail but i can't reach out solution also the author solve by another way which i did too but i have to solve in this way too thanks  for any help !

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

``

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, y, z, t))

u(x, y, z, t)*`will now be displayed as`*u

(2)

declare(f(x, y, z, t))

f(x, y, z, t)*`will now be displayed as`*f

(3)

pde := 9*(diff(u(x, y, z, t), t, x))+diff(u(x, y, z, t), `$`(x, 6))-5*(diff(u(x, y, z, t), `$`(x, 3), y)+diff(u(x, y, z, t), `$`(y, 2)))+15*((diff(u(x, y, z, t), `$`(x, 2)))*(diff(u(x, y, z, t), `$`(x, 3)))+(diff(u(x, y, z, t), x))*(diff(u(x, y, z, t), `$`(x, 4)))-(diff(u(x, y, z, t), x))*(diff(u(x, y, z, t), x, y))-(diff(u(x, y, z, t), `$`(x, 2)))*(diff(u(x, y, z, t), y)))+45*(diff(u(x, y, z, t), x))^2*(diff(u(x, y, z, t), `$`(x, 2)))+alpha*(diff(u(x, y, z, t), `$`(x, 2)))+beta*(diff(u(x, y, z, t), x, y))+delta*(diff(u(x, y, z, t), x, z))

9*(diff(diff(u(x, y, z, t), t), x))+diff(diff(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x), x), x)-5*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), y))-5*(diff(diff(u(x, y, z, t), y), y))+15*(diff(diff(u(x, y, z, t), x), x))*(diff(diff(diff(u(x, y, z, t), x), x), x))+15*(diff(u(x, y, z, t), x))*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))-15*(diff(u(x, y, z, t), x))*(diff(diff(u(x, y, z, t), x), y))-15*(diff(diff(u(x, y, z, t), x), x))*(diff(u(x, y, z, t), y))+45*(diff(u(x, y, z, t), x))^2*(diff(diff(u(x, y, z, t), x), x))+alpha*(diff(diff(u(x, y, z, t), x), x))+beta*(diff(diff(u(x, y, z, t), x), y))+delta*(diff(diff(u(x, y, z, t), x), z))

(4)

``

oppde := [op(expand(pde))]; u_occurrences := map(proc (i) options operator, arrow; numelems(select(has, [op([op(i)])], u)) end proc, oppde); linear_op_indices := ListTools:-SearchAll(1, u_occurrences); pde_linear := add(oppde[[linear_op_indices]]); pde_nonlinear := expand(simplify(expand(pde)-pde_linear))

9*(diff(diff(u(x, y, z, t), t), x))+diff(diff(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x), x), x)-5*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), y))-5*(diff(diff(u(x, y, z, t), y), y))+alpha*(diff(diff(u(x, y, z, t), x), x))+beta*(diff(diff(u(x, y, z, t), x), y))+delta*(diff(diff(u(x, y, z, t), x), z))

 

15*(diff(diff(u(x, y, z, t), x), x))*(diff(diff(diff(u(x, y, z, t), x), x), x))+15*(diff(u(x, y, z, t), x))*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))-15*(diff(u(x, y, z, t), x))*(diff(diff(u(x, y, z, t), x), y))-15*(diff(diff(u(x, y, z, t), x), x))*(diff(u(x, y, z, t), y))+45*(diff(u(x, y, z, t), x))^2*(diff(diff(u(x, y, z, t), x), x))

(5)

H := u(x, y, z, t) = 2*(diff(ln(f(x, y, z, t)), x))

u(x, y, z, t) = 2*(diff(f(x, y, z, t), x))/f(x, y, z, t)

(6)

L := eval(pde_linear, H) = 0

2*(diff(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), y))/f(x, y, z, t)-10*(diff(diff(diff(f(x, y, z, t), x), y), y))/f(x, y, z, t)+alpha*(2*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)-6*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^3)+beta*(2*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3)+delta*(2*(diff(diff(diff(f(x, y, z, t), x), x), z))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), z))/f(x, y, z, t)^3)+280*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*(diff(f(x, y, z, t), x))/f(x, y, z, t)^3-5040*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^5/f(x, y, z, t)^6+5040*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^5-1260*(diff(diff(f(x, y, z, t), x), x))^3*(diff(f(x, y, z, t), x))/f(x, y, z, t)^4-80*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+360*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4-240*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3-20*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^3+84*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3+1680*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5-2520*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^4+420*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), x))^2/f(x, y, z, t)^3+36*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), t))/f(x, y, z, t)^3-36*(diff(diff(f(x, y, z, t), t), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-18*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-14*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-42*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2-70*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)^2+1440*(diff(f(x, y, z, t), x))^7/f(x, y, z, t)^7+10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+40*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+40*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-120*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3+60*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)^2-60*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+240*(diff(f(x, y, z, t), x))^3*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^4-240*(diff(f(x, y, z, t), x))^4*(diff(f(x, y, z, t), y))/f(x, y, z, t)^5+20*(diff(diff(f(x, y, z, t), x), y))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+10*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)^2+18*(diff(diff(diff(f(x, y, z, t), t), x), x))/f(x, y, z, t) = 0

(7)

numer(lhs(-80*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+360*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4-240*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-2520*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^4+alpha*(2*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)-6*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^3)+beta*(2*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3)+delta*(2*(diff(diff(diff(f(x, y, z, t), x), x), z))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), z))/f(x, y, z, t)^3)+2*(diff(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), y))/f(x, y, z, t)-10*(diff(diff(diff(f(x, y, z, t), x), y), y))/f(x, y, z, t)+1440*(diff(f(x, y, z, t), x))^7/f(x, y, z, t)^7+18*(diff(diff(diff(f(x, y, z, t), t), x), x))/f(x, y, z, t)+280*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*(diff(f(x, y, z, t), x))/f(x, y, z, t)^3-5040*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^5/f(x, y, z, t)^6+5040*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^5-1260*(diff(diff(f(x, y, z, t), x), x))^3*(diff(f(x, y, z, t), x))/f(x, y, z, t)^4-20*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^3+84*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+1680*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5+420*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), x))^2/f(x, y, z, t)^3+36*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), t))/f(x, y, z, t)^3-36*(diff(diff(f(x, y, z, t), t), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-18*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-14*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-42*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2-70*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+40*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+40*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-120*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3+60*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)^2-60*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+240*(diff(f(x, y, z, t), x))^3*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^4-240*(diff(f(x, y, z, t), x))^4*(diff(f(x, y, z, t), y))/f(x, y, z, t)^5+20*(diff(diff(f(x, y, z, t), x), y))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+10*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)^2 = 0))*denom(rhs(-80*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+360*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4-240*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-2520*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^4+alpha*(2*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)-6*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^3)+beta*(2*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3)+delta*(2*(diff(diff(diff(f(x, y, z, t), x), x), z))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), z))/f(x, y, z, t)^3)+2*(diff(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), y))/f(x, y, z, t)-10*(diff(diff(diff(f(x, y, z, t), x), y), y))/f(x, y, z, t)+1440*(diff(f(x, y, z, t), x))^7/f(x, y, z, t)^7+18*(diff(diff(diff(f(x, y, z, t), t), x), x))/f(x, y, z, t)+280*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*(diff(f(x, y, z, t), x))/f(x, y, z, t)^3-5040*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^5/f(x, y, z, t)^6+5040*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^5-1260*(diff(diff(f(x, y, z, t), x), x))^3*(diff(f(x, y, z, t), x))/f(x, y, z, t)^4-20*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^3+84*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+1680*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5+420*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), x))^2/f(x, y, z, t)^3+36*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), t))/f(x, y, z, t)^3-36*(diff(diff(f(x, y, z, t), t), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-18*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-14*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-42*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2-70*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+40*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+40*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-120*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3+60*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)^2-60*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+240*(diff(f(x, y, z, t), x))^3*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^4-240*(diff(f(x, y, z, t), x))^4*(diff(f(x, y, z, t), y))/f(x, y, z, t)^5+20*(diff(diff(f(x, y, z, t), x), y))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+10*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)^2 = 0)) = numer(rhs(-80*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+360*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4-240*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-2520*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^4+alpha*(2*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)-6*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^3)+beta*(2*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3)+delta*(2*(diff(diff(diff(f(x, y, z, t), x), x), z))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), z))/f(x, y, z, t)^3)+2*(diff(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), y))/f(x, y, z, t)-10*(diff(diff(diff(f(x, y, z, t), x), y), y))/f(x, y, z, t)+1440*(diff(f(x, y, z, t), x))^7/f(x, y, z, t)^7+18*(diff(diff(diff(f(x, y, z, t), t), x), x))/f(x, y, z, t)+280*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*(diff(f(x, y, z, t), x))/f(x, y, z, t)^3-5040*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^5/f(x, y, z, t)^6+5040*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^5-1260*(diff(diff(f(x, y, z, t), x), x))^3*(diff(f(x, y, z, t), x))/f(x, y, z, t)^4-20*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^3+84*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+1680*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5+420*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), x))^2/f(x, y, z, t)^3+36*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), t))/f(x, y, z, t)^3-36*(diff(diff(f(x, y, z, t), t), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-18*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-14*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-42*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2-70*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+40*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+40*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-120*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3+60*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)^2-60*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+240*(diff(f(x, y, z, t), x))^3*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^4-240*(diff(f(x, y, z, t), x))^4*(diff(f(x, y, z, t), y))/f(x, y, z, t)^5+20*(diff(diff(f(x, y, z, t), x), y))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+10*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)^2 = 0))*denom(lhs(-80*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+360*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4-240*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-2520*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^4+alpha*(2*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)-6*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^3)+beta*(2*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3)+delta*(2*(diff(diff(diff(f(x, y, z, t), x), x), z))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), z))/f(x, y, z, t)^3)+2*(diff(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), y))/f(x, y, z, t)-10*(diff(diff(diff(f(x, y, z, t), x), y), y))/f(x, y, z, t)+1440*(diff(f(x, y, z, t), x))^7/f(x, y, z, t)^7+18*(diff(diff(diff(f(x, y, z, t), t), x), x))/f(x, y, z, t)+280*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*(diff(f(x, y, z, t), x))/f(x, y, z, t)^3-5040*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^5/f(x, y, z, t)^6+5040*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^5-1260*(diff(diff(f(x, y, z, t), x), x))^3*(diff(f(x, y, z, t), x))/f(x, y, z, t)^4-20*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^3+84*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+1680*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5+420*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), x))^2/f(x, y, z, t)^3+36*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), t))/f(x, y, z, t)^3-36*(diff(diff(f(x, y, z, t), t), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-18*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-14*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-42*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2-70*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+40*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+40*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-120*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3+60*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)^2-60*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+240*(diff(f(x, y, z, t), x))^3*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^4-240*(diff(f(x, y, z, t), x))^4*(diff(f(x, y, z, t), y))/f(x, y, z, t)^5+20*(diff(diff(f(x, y, z, t), x), y))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+10*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)^2 = 0))

420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^4-2520*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^3-6*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*alpha-2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), y))*beta-4*f(x, y, z, t)^5*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))*beta+4*f(x, y, z, t)^4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))*beta-2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), z))*delta-4*f(x, y, z, t)^5*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), z))*delta+4*f(x, y, z, t)^4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), z))*delta-80*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^4+360*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))*f(x, y, z, t)^3-240*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^4+2*(diff(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x), x))*f(x, y, z, t)^6-10*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), y))*f(x, y, z, t)^6-10*(diff(diff(diff(f(x, y, z, t), x), y), y))*f(x, y, z, t)^6+18*(diff(diff(diff(f(x, y, z, t), t), x), x))*f(x, y, z, t)^6-14*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^5-42*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^5-70*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), x))*f(x, y, z, t)^5+10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^5+40*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^5+40*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^5-120*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^4+60*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), y))*f(x, y, z, t)^5-60*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), y))*f(x, y, z, t)^4+240*(diff(f(x, y, z, t), x))^3*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^4*(diff(f(x, y, z, t), y))*f(x, y, z, t)^2+20*(diff(diff(f(x, y, z, t), x), y))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^5+10*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), y), y))*f(x, y, z, t)^5+280*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4-5040*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^5*f(x, y, z, t)+5040*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^2-1260*(diff(diff(f(x, y, z, t), x), x))^3*(diff(f(x, y, z, t), x))*f(x, y, z, t)^3-20*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))^2*f(x, y, z, t)^4+84*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^4-420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^3+1680*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)^2+420*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), x))^2*f(x, y, z, t)^4+36*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), t))*f(x, y, z, t)^4-36*(diff(diff(f(x, y, z, t), t), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^5-18*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), t))*f(x, y, z, t)^5+2*f(x, y, z, t)^6*(diff(diff(diff(f(x, y, z, t), x), x), x))*alpha+4*f(x, y, z, t)^4*(diff(f(x, y, z, t), x))^3*alpha+2*f(x, y, z, t)^6*(diff(diff(diff(f(x, y, z, t), x), x), y))*beta+2*f(x, y, z, t)^6*(diff(diff(diff(f(x, y, z, t), x), x), z))*delta+1440*(diff(f(x, y, z, t), x))^7 = 0

(8)

F1 := %

420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^4-2520*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^3-6*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*alpha-2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), y))*beta-4*f(x, y, z, t)^5*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))*beta+4*f(x, y, z, t)^4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))*beta-2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), z))*delta-4*f(x, y, z, t)^5*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), z))*delta+4*f(x, y, z, t)^4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), z))*delta-80*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^4+360*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))*f(x, y, z, t)^3-240*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^4+2*(diff(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x), x))*f(x, y, z, t)^6-10*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), y))*f(x, y, z, t)^6-10*(diff(diff(diff(f(x, y, z, t), x), y), y))*f(x, y, z, t)^6+18*(diff(diff(diff(f(x, y, z, t), t), x), x))*f(x, y, z, t)^6-14*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^5-42*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^5-70*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), x))*f(x, y, z, t)^5+10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^5+40*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^5+40*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^5-120*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^4+60*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), y))*f(x, y, z, t)^5-60*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), y))*f(x, y, z, t)^4+240*(diff(f(x, y, z, t), x))^3*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^4*(diff(f(x, y, z, t), y))*f(x, y, z, t)^2+20*(diff(diff(f(x, y, z, t), x), y))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^5+10*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), y), y))*f(x, y, z, t)^5+280*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4-5040*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^5*f(x, y, z, t)+5040*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^2-1260*(diff(diff(f(x, y, z, t), x), x))^3*(diff(f(x, y, z, t), x))*f(x, y, z, t)^3-20*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))^2*f(x, y, z, t)^4+84*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^4-420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^3+1680*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)^2+420*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), x))^2*f(x, y, z, t)^4+36*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), t))*f(x, y, z, t)^4-36*(diff(diff(f(x, y, z, t), t), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^5-18*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), t))*f(x, y, z, t)^5+2*f(x, y, z, t)^6*(diff(diff(diff(f(x, y, z, t), x), x), x))*alpha+4*f(x, y, z, t)^4*(diff(f(x, y, z, t), x))^3*alpha+2*f(x, y, z, t)^6*(diff(diff(diff(f(x, y, z, t), x), x), y))*beta+2*f(x, y, z, t)^6*(diff(diff(diff(f(x, y, z, t), x), x), z))*delta+1440*(diff(f(x, y, z, t), x))^7 = 0

(9)

NULL

S := f(x, y, z, t) = a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])

f(x, y, z, t) = a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])

(10)

A := eval(F1, S)

600*a[1]^4*k[1]^4*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*p[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3+1204*a[1]^3*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4-4200*a[1]^4*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3-500*a[1]^3*k[1]^4*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*p[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4+30*a[1]^2*k[1]*p[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5-54*a[1]^2*w[1]*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5-6*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*a[1]^2*k[1]^3*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*alpha-6*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*a[1]^2*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*p[1]*beta+4*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*a[1]^3*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*p[1]*beta-6*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*a[1]^2*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*r[1]*delta+4*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*a[1]^3*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*r[1]*delta+18*a[1]*w[1]*k[1]^2*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6-10*a[1]*k[1]*p[1]^2*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6+2*a[1]*k[1]^7*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6-10*a[1]*k[1]^4*p[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6+2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6*a[1]*k[1]^2*p[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*beta+2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6*a[1]*k[1]^2*r[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*delta+1440*a[1]^7*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^7-5040*a[1]^6*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))+6720*a[1]^5*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2-20*a[1]^3*k[1]*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*p[1]^2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4+36*a[1]^3*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*w[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4+2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6*a[1]*k[1]^3*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*alpha+4*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*a[1]^3*k[1]^3*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*alpha-126*a[1]^2*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5+150*a[1]^2*k[1]^4*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*p[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5-240*a[1]^5*k[1]^4*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*p[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2 = 0

(11)

simplify(1440*a[1]^7*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^7+6720*a[1]^5*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2-126*a[1]^2*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5+1204*a[1]^3*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4-4200*a[1]^4*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3+2*a[1]*k[1]^7*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6-5040*a[1]^6*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))+600*a[1]^4*k[1]^4*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*p[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3-500*a[1]^3*k[1]^4*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*p[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4+30*a[1]^2*k[1]*p[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5-54*a[1]^2*w[1]*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5-6*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*a[1]^2*k[1]^3*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*alpha+18*a[1]*w[1]*k[1]^2*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6-10*a[1]*k[1]*p[1]^2*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6-10*a[1]*k[1]^4*p[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6-20*a[1]^3*k[1]*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*p[1]^2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4+36*a[1]^3*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*w[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4+2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6*a[1]*k[1]^3*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*alpha+4*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*a[1]^3*k[1]^3*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*alpha+150*a[1]^2*k[1]^4*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*p[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5-240*a[1]^5*k[1]^4*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*p[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2-6*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*a[1]^2*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*p[1]*beta+4*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*a[1]^3*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*p[1]*beta-6*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*a[1]^2*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*r[1]*delta+4*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*a[1]^3*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*r[1]*delta+2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6*a[1]*k[1]^2*p[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*beta+2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6*a[1]*k[1]^2*r[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*delta = 0)

2*a[0]*k[1]*(-57*a[0]^4*(k[1]^6-(15/19)*k[1]^3*p[1]-(1/19)*k[1]^2*alpha+(1/19)*(-beta*p[1]-delta*r[1]-9*w[1])*k[1]+(5/19)*p[1]^2)*a[1]*exp(2*t*w[1]+2*x*k[1]+2*y*p[1]+2*z*r[1])+302*a[0]^3*(k[1]^6+(25/151)*k[1]^3*p[1]+(1/151)*k[1]^2*alpha+(1/151)*(beta*p[1]+delta*r[1]+9*w[1])*k[1]-(5/151)*p[1]^2)*a[1]^2*exp(3*t*w[1]+3*x*k[1]+3*y*p[1]+3*z*r[1])-302*a[0]^2*(k[1]^6+(25/151)*k[1]^3*p[1]+(1/151)*k[1]^2*alpha+(1/151)*(beta*p[1]+delta*r[1]+9*w[1])*k[1]-(5/151)*p[1]^2)*a[1]^3*exp(4*t*w[1]+4*x*k[1]+4*y*p[1]+4*z*r[1])+57*a[0]*(k[1]^6-(15/19)*k[1]^3*p[1]-(1/19)*k[1]^2*alpha+(1/19)*(-beta*p[1]-delta*r[1]-9*w[1])*k[1]+(5/19)*p[1]^2)*a[1]^4*exp(5*t*w[1]+5*x*k[1]+5*y*p[1]+5*z*r[1])+(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*a[0]^5-exp(6*t*w[1]+6*x*k[1]+6*y*p[1]+6*z*r[1])*a[1]^5)*(k[1]^6-5*k[1]^3*p[1]+k[1]^2*alpha+(beta*p[1]+delta*r[1]+9*w[1])*k[1]-5*p[1]^2))*a[1] = 0

(12)

E := %

2*a[0]*k[1]*(-57*a[0]^4*(k[1]^6-(15/19)*k[1]^3*p[1]-(1/19)*k[1]^2*alpha+(1/19)*(-beta*p[1]-delta*r[1]-9*w[1])*k[1]+(5/19)*p[1]^2)*a[1]*exp(2*t*w[1]+2*x*k[1]+2*y*p[1]+2*z*r[1])+302*a[0]^3*(k[1]^6+(25/151)*k[1]^3*p[1]+(1/151)*k[1]^2*alpha+(1/151)*(beta*p[1]+delta*r[1]+9*w[1])*k[1]-(5/151)*p[1]^2)*a[1]^2*exp(3*t*w[1]+3*x*k[1]+3*y*p[1]+3*z*r[1])-302*a[0]^2*(k[1]^6+(25/151)*k[1]^3*p[1]+(1/151)*k[1]^2*alpha+(1/151)*(beta*p[1]+delta*r[1]+9*w[1])*k[1]-(5/151)*p[1]^2)*a[1]^3*exp(4*t*w[1]+4*x*k[1]+4*y*p[1]+4*z*r[1])+57*a[0]*(k[1]^6-(15/19)*k[1]^3*p[1]-(1/19)*k[1]^2*alpha+(1/19)*(-beta*p[1]-delta*r[1]-9*w[1])*k[1]+(5/19)*p[1]^2)*a[1]^4*exp(5*t*w[1]+5*x*k[1]+5*y*p[1]+5*z*r[1])+(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*a[0]^5-exp(6*t*w[1]+6*x*k[1]+6*y*p[1]+6*z*r[1])*a[1]^5)*(k[1]^6-5*k[1]^3*p[1]+k[1]^2*alpha+(beta*p[1]+delta*r[1]+9*w[1])*k[1]-5*p[1]^2))*a[1] = 0

(13)

indets(E)

{alpha, beta, delta, t, x, y, z, a[0], a[1], k[1], p[1], r[1], w[1], exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]), exp(2*t*w[1]+2*x*k[1]+2*y*p[1]+2*z*r[1]), exp(3*t*w[1]+3*x*k[1]+3*y*p[1]+3*z*r[1]), exp(4*t*w[1]+4*x*k[1]+4*y*p[1]+4*z*r[1]), exp(5*t*w[1]+5*x*k[1]+5*y*p[1]+5*z*r[1]), exp(6*t*w[1]+6*x*k[1]+6*y*p[1]+6*z*r[1])}

(14)

E1 := subs({exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]) = eX, exp(2*t*w[1]+2*x*k[1]+2*y*p[1]+2*z*r[1]) = eY, exp(3*t*w[1]+3*x*k[1]+3*y*p[1]+3*z*r[1]) = eZ, exp(4*t*w[1]+4*x*k[1]+4*y*p[1]+4*z*r[1]) = eW, exp(5*t*w[1]+5*x*k[1]+5*y*p[1]+5*z*r[1]) = eV, exp(6*t*w[1]+6*x*k[1]+6*y*p[1]+6*z*r[1]) = eB}, E)

2*a[0]*k[1]*(-57*a[0]^4*(k[1]^6-(15/19)*k[1]^3*p[1]-(1/19)*k[1]^2*alpha+(1/19)*(-beta*p[1]-delta*r[1]-9*w[1])*k[1]+(5/19)*p[1]^2)*a[1]*eY+302*a[0]^3*(k[1]^6+(25/151)*k[1]^3*p[1]+(1/151)*k[1]^2*alpha+(1/151)*(beta*p[1]+delta*r[1]+9*w[1])*k[1]-(5/151)*p[1]^2)*a[1]^2*eZ-302*a[0]^2*(k[1]^6+(25/151)*k[1]^3*p[1]+(1/151)*k[1]^2*alpha+(1/151)*(beta*p[1]+delta*r[1]+9*w[1])*k[1]-(5/151)*p[1]^2)*a[1]^3*eW+57*a[0]*(k[1]^6-(15/19)*k[1]^3*p[1]-(1/19)*k[1]^2*alpha+(1/19)*(-beta*p[1]-delta*r[1]-9*w[1])*k[1]+(5/19)*p[1]^2)*a[1]^4*eV+(-eB*a[1]^5+eX*a[0]^5)*(k[1]^6-5*k[1]^3*p[1]+k[1]^2*alpha+(beta*p[1]+delta*r[1]+9*w[1])*k[1]-5*p[1]^2))*a[1] = 0

(15)

indets(E1)

{alpha, beta, delta, eB, eV, eW, eX, eY, eZ, a[0], a[1], k[1], p[1], r[1], w[1]}

(16)

p2c := normal(E1)

-2*a[0]*k[1]*(eB*a[1]^5*k[1]^6-57*eV*a[0]*a[1]^4*k[1]^6+302*eW*a[0]^2*a[1]^3*k[1]^6-eX*a[0]^5*k[1]^6+57*eY*a[0]^4*a[1]*k[1]^6-302*eZ*a[0]^3*a[1]^2*k[1]^6-5*eB*a[1]^5*k[1]^3*p[1]+45*eV*a[0]*a[1]^4*k[1]^3*p[1]+50*eW*a[0]^2*a[1]^3*k[1]^3*p[1]+5*eX*a[0]^5*k[1]^3*p[1]-45*eY*a[0]^4*a[1]*k[1]^3*p[1]-50*eZ*a[0]^3*a[1]^2*k[1]^3*p[1]+alpha*eB*a[1]^5*k[1]^2+3*alpha*eV*a[0]*a[1]^4*k[1]^2+2*alpha*eW*a[0]^2*a[1]^3*k[1]^2-alpha*eX*a[0]^5*k[1]^2-3*alpha*eY*a[0]^4*a[1]*k[1]^2-2*alpha*eZ*a[0]^3*a[1]^2*k[1]^2+beta*eB*a[1]^5*k[1]*p[1]+3*beta*eV*a[0]*a[1]^4*k[1]*p[1]+2*beta*eW*a[0]^2*a[1]^3*k[1]*p[1]-beta*eX*a[0]^5*k[1]*p[1]-3*beta*eY*a[0]^4*a[1]*k[1]*p[1]-2*beta*eZ*a[0]^3*a[1]^2*k[1]*p[1]+delta*eB*a[1]^5*k[1]*r[1]+3*delta*eV*a[0]*a[1]^4*k[1]*r[1]+2*delta*eW*a[0]^2*a[1]^3*k[1]*r[1]-delta*eX*a[0]^5*k[1]*r[1]-3*delta*eY*a[0]^4*a[1]*k[1]*r[1]-2*delta*eZ*a[0]^3*a[1]^2*k[1]*r[1]+9*eB*a[1]^5*k[1]*w[1]-5*eB*a[1]^5*p[1]^2+27*eV*a[0]*a[1]^4*k[1]*w[1]-15*eV*a[0]*a[1]^4*p[1]^2+18*eW*a[0]^2*a[1]^3*k[1]*w[1]-10*eW*a[0]^2*a[1]^3*p[1]^2-9*eX*a[0]^5*k[1]*w[1]+5*eX*a[0]^5*p[1]^2-27*eY*a[0]^4*a[1]*k[1]*w[1]+15*eY*a[0]^4*a[1]*p[1]^2-18*eZ*a[0]^3*a[1]^2*k[1]*w[1]+10*eZ*a[0]^3*a[1]^2*p[1]^2)*a[1] = 0

(17)

indets(p2c)

{alpha, beta, delta, eB, eV, eW, eX, eY, eZ, a[0], a[1], k[1], p[1], r[1], w[1]}

(18)

eqns := {coeffs(collect(p2c, {eB, eV, eW, eX, eY, eZ}, distributed), {eB, eV, eW, eX, eY, eZ})}; nops(%)

Error, invalid arguments to coeffs

 

1

(19)

NULL

Co := solve(E1, {a[0], a[1], k[1], n[1], p[1], r[1], w[1]}, explicit)

{a[0] = a[0], a[1] = a[1], k[1] = 0, n[1] = n[1], p[1] = p[1], r[1] = r[1], w[1] = w[1]}, {a[0] = a[0], a[1] = 0, k[1] = k[1], n[1] = n[1], p[1] = p[1], r[1] = r[1], w[1] = w[1]}, {a[0] = 0, a[1] = a[1], k[1] = k[1], n[1] = n[1], p[1] = p[1], r[1] = r[1], w[1] = w[1]}, {a[0] = a[0], a[1] = a[1], k[1] = k[1], n[1] = n[1], p[1] = p[1], r[1] = -(eB*a[1]^5*k[1]^6-57*eV*a[0]*a[1]^4*k[1]^6+302*eW*a[0]^2*a[1]^3*k[1]^6-eX*a[0]^5*k[1]^6+57*eY*a[0]^4*a[1]*k[1]^6-302*eZ*a[0]^3*a[1]^2*k[1]^6-5*eB*a[1]^5*k[1]^3*p[1]+45*eV*a[0]*a[1]^4*k[1]^3*p[1]+50*eW*a[0]^2*a[1]^3*k[1]^3*p[1]+5*eX*a[0]^5*k[1]^3*p[1]-45*eY*a[0]^4*a[1]*k[1]^3*p[1]-50*eZ*a[0]^3*a[1]^2*k[1]^3*p[1]+alpha*eB*a[1]^5*k[1]^2+3*alpha*eV*a[0]*a[1]^4*k[1]^2+2*alpha*eW*a[0]^2*a[1]^3*k[1]^2-alpha*eX*a[0]^5*k[1]^2-3*alpha*eY*a[0]^4*a[1]*k[1]^2-2*alpha*eZ*a[0]^3*a[1]^2*k[1]^2+beta*eB*a[1]^5*k[1]*p[1]+3*beta*eV*a[0]*a[1]^4*k[1]*p[1]+2*beta*eW*a[0]^2*a[1]^3*k[1]*p[1]-beta*eX*a[0]^5*k[1]*p[1]-3*beta*eY*a[0]^4*a[1]*k[1]*p[1]-2*beta*eZ*a[0]^3*a[1]^2*k[1]*p[1]+9*eB*a[1]^5*k[1]*w[1]-5*eB*a[1]^5*p[1]^2+27*eV*a[0]*a[1]^4*k[1]*w[1]-15*eV*a[0]*a[1]^4*p[1]^2+18*eW*a[0]^2*a[1]^3*k[1]*w[1]-10*eW*a[0]^2*a[1]^3*p[1]^2-9*eX*a[0]^5*k[1]*w[1]+5*eX*a[0]^5*p[1]^2-27*eY*a[0]^4*a[1]*k[1]*w[1]+15*eY*a[0]^4*a[1]*p[1]^2-18*eZ*a[0]^3*a[1]^2*k[1]*w[1]+10*eZ*a[0]^3*a[1]^2*p[1]^2)/(delta*k[1]*(eB*a[1]^5+3*eV*a[0]*a[1]^4+2*eW*a[0]^2*a[1]^3-eX*a[0]^5-3*eY*a[0]^4*a[1]-2*eZ*a[0]^3*a[1]^2)), w[1] = w[1]}

(20)

NULL

case1 := Co[1]

{a[0] = a[0], a[1] = a[1], k[1] = 0, n[1] = n[1], p[1] = p[1], r[1] = r[1], w[1] = w[1]}

(21)

F := subs(case1, S)

f(x, y, z, t) = a[0]+a[1]*exp(t*w[1]+y*p[1]+z*r[1])

(22)

F1 := eval(H, F)

u(x, y, z, t) = 0

(23)

NULL

pdetest(F1, pde)

0

(24)

Download F-P-O-W.mw

sometime this code i use make a problem for me and sometime they work very good how i can get something general for use in all equation 

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

``

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, y, z, w, t))

u(x, y, z, w, t)*`will now be displayed as`*u

(2)

declare(f(x, y, z, w, t))

f(x, y, z, w, t)*`will now be displayed as`*f

(3)

pde := 4*(diff(u(x, y, z, w, t), x, t))-(diff(u(x, y, z, w, t), `$`(x, 3), y))+diff(u(x, y, z, w, t), x, `$`(y, 3))+12*(diff(u(x, y, z, w, t), x))*(diff(u(x, y, z, w, t), y))+12*u(x, y, z, w, t)*(diff(u(x, y, z, w, t), x, y))-6*(diff(u(x, y, z, w, t), z, w)) = 0

4*(diff(diff(u(x, y, z, w, t), t), x))-(diff(diff(diff(diff(u(x, y, z, w, t), x), x), x), y))+diff(diff(diff(diff(u(x, y, z, w, t), x), y), y), y)+12*(diff(u(x, y, z, w, t), x))*(diff(u(x, y, z, w, t), y))+12*u(x, y, z, w, t)*(diff(diff(u(x, y, z, w, t), x), y))-6*(diff(diff(u(x, y, z, w, t), w), z)) = 0

(4)

oppde := [op(expand(pde))]; u_occurrences := map(proc (i) options operator, arrow; numelems(select(has, [op([op(i)])], u)) end proc, oppde); linear_op_indices := ListTools:-SearchAll(1, u_occurrences); pde_linear := add(oppde[[linear_op_indices]]); pde_nonlinear := expand(simplify(expand(pde)-pde_linear))

0

 

4*(diff(diff(u(x, y, z, w, t), t), x))-(diff(diff(diff(diff(u(x, y, z, w, t), x), x), x), y))+diff(diff(diff(diff(u(x, y, z, w, t), x), y), y), y)+12*(diff(u(x, y, z, w, t), x))*(diff(u(x, y, z, w, t), y))+12*u(x, y, z, w, t)*(diff(diff(u(x, y, z, w, t), x), y))-6*(diff(diff(u(x, y, z, w, t), w), z)) = 0

(5)

pde_linear, pde_nonlinear := selectremove(proc (term) options operator, arrow; not has((eval(term, u(x, y, z, w, t) = a*u(x, y, z, w, t)))/a, a) end proc, expand(pde))

() = 0, 4*(diff(diff(u(x, y, z, w, t), t), x))-(diff(diff(diff(diff(u(x, y, z, w, t), x), x), x), y))+diff(diff(diff(diff(u(x, y, z, w, t), x), y), y), y)+12*(diff(u(x, y, z, w, t), x))*(diff(u(x, y, z, w, t), y))+12*u(x, y, z, w, t)*(diff(diff(u(x, y, z, w, t), x), y))-6*(diff(diff(u(x, y, z, w, t), w), z)) = ()

(6)
 

NULL

Download seperate_L-NL.mw

my answer is so different but  and i want remove this lambert in my test? can we do something for giving question exactly solve the question by model i have a book of ode which a lot of time i do some trail but have a problem? how i can remove this issue specially for bernoli and  other type?

restart

with(DEtools, odeadvisor)

ode := diff(y(x), x)+x/y(x)+2 = 0

diff(y(x), x)+x/y(x)+2 = 0

(1)

Student:-ODEs:-Type(ode)

{}

(2)

odeadvisor(ode)

[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]

(3)

Student:-ODEs:-Type(ode); W := dsolve(ode); odetest(W, ode)

{}

 

y(x) = -x*(LambertW(-c__1*x)+1)/LambertW(-c__1*x)

 

0

(4)

Download test.mw

A lot of time i finded but i have a dubt about this why this is happen each time number of equation for finding parameter a_12 is 4 but this time is 28 which i thoght some thing must be mistake also the author of paper use  u=2(ln(f))_xx which is wronge and not satisfy but i try to find R which is strange again is not number contain parameter but is satisfy also in equation 14 i don't know each i is 2 or 1 or it can be i remain itself?

thanks for any help ?

t1.mw

In this example by applying the substitution i can get half of paicewise function but how get another  half ? i am looking for B_rs as Piecewise function ?

restart

eij := ((-3*k[i]*(k[i]-k[j])*l[j]+beta)*l[i]^2-(2*(-3*k[j]*(k[i]-k[j])*l[j]*(1/2)+beta))*l[j]*l[i]+beta*l[j]^2)/((-3*k[i]*(k[i]+k[j])*l[j]+beta)*l[i]^2-(2*(3*k[j]*(k[i]+k[j])*l[j]*(1/2)+beta))*l[j]*l[i]+beta*l[j]^2)

((-3*k[i]*(k[i]-k[j])*l[j]+beta)*l[i]^2-2*(-(3/2)*k[j]*(k[i]-k[j])*l[j]+beta)*l[j]*l[i]+beta*l[j]^2)/((-3*k[i]*(k[i]+k[j])*l[j]+beta)*l[i]^2-2*((3/2)*k[j]*(k[i]+k[j])*l[j]+beta)*l[j]*l[i]+beta*l[j]^2)

(1)

eval(eij, k[j] = b*k[i]); series(%, k[i], 3); convert(%, polynom); eval(%, b = k[j]/k[i]); Bij := (%-1)/(k[i]*k[j])

((-3*k[i]*(-b*k[i]+k[i])*l[j]+beta)*l[i]^2-2*(-(3/2)*b*k[i]*(-b*k[i]+k[i])*l[j]+beta)*l[j]*l[i]+beta*l[j]^2)/((-3*k[i]*(b*k[i]+k[i])*l[j]+beta)*l[i]^2-2*((3/2)*b*k[i]*(b*k[i]+k[i])*l[j]+beta)*l[j]*l[i]+beta*l[j]^2)

 

series(1+((-3*(-b+1)*l[j]*l[i]^2+3*b*(-b+1)*l[j]^2*l[i]+3*(b+1)*l[j]*l[i]^2+3*b*(b+1)*l[j]^2*l[i])/(beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2))*k[i]^2+O(k[i]^4),k[i],4)

 

1+(-3*(-b+1)*l[j]*l[i]^2+3*b*(-b+1)*l[j]^2*l[i]+3*(b+1)*l[j]*l[i]^2+3*b*(b+1)*l[j]^2*l[i])*k[i]^2/(beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2)

 

1+(-3*(-k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(-k[j]/k[i]+1)*l[j]^2*l[i]/k[i]+3*(k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(k[j]/k[i]+1)*l[j]^2*l[i]/k[i])*k[i]^2/(beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2)

 

(-3*(-k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(-k[j]/k[i]+1)*l[j]^2*l[i]/k[i]+3*(k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(k[j]/k[i]+1)*l[j]^2*l[i]/k[i])*k[i]/((beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2)*k[j])

(2)

simplify((-3*(-k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(-k[j]/k[i]+1)*l[j]^2*l[i]/k[i]+3*(k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(k[j]/k[i]+1)*l[j]^2*l[i]/k[i])*k[i]/((beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2)*k[j]))

6*l[j]*l[i]*(l[i]+l[j])/((l[i]-l[j])^2*beta)

(3)


Download Lim.mw

why i get error in end and how i can fix this error?

restart

with(PDEtools)

undeclare(prime, quiet); declare(u(x, y, t), quiet); declare(f(x, y, t), quiet)

theta := i -> t*w[i]+y*l[i]+x:

eqf := f(x, y, t) = theta(1)*theta(2)+Bij(1, 2):

eqfcomplex := eval(eqf, l[2] = conjugate(l[1])):

eq17 := u(x, y, t) =2*diff(f(x, y, t), x)/f(x, y, t):

equ := eval(eq17, eqfcomplex):

sys := map(normal, {diff(rhs(equ), x), diff(rhs(equ), y)}):

nsys  := map(numer, sys):
nroot := solve(nsys, {x, y}, explicit):

dsys  := map(denom, sys):
droot := solve(dsys, {x, y}, explicit):

{nroot} intersect {droot}

{}

(1)

compact_ans1 := nroot[1]:

__w := seq(w[i] = (-beta*l[i]^2 - b*l[i] - a), i=1..2):

__Bij := (i,j) -> 12*alpha/(beta*(l[i] - l[j])^2):

eval(eval(compact_ans1, {__w, Bij(1, 2) = __Bij(1, 2)}), l[1]=lambda[1]+I*lambda[2])
assuming lambda[1]::real, lambda[2]::real:
 

ans1 := map(simplify, %, size): # it's up to you to use another simplification strategy

eqp1 := eval(eval(ans1, l[2] = conjugate(l[1])), l[1] = lambda[1]+I*lambda[2])

NULL

# Do the same for the other nroot solutions

eqp := {x = xp+((1/2)*beta*lambda[2]^3+I*(-beta*lambda[1]-b)*lambda[2]^2*(1/2)-((1/2)*beta*conjugate(lambda[1]+I*lambda[2])^2-(1/2)*beta*lambda[1]^2+(1/2)*b*conjugate(lambda[1]+I*lambda[2])+a)*lambda[2]+I*lambda[1]*(conjugate(lambda[1]+I*lambda[2])-lambda[1])*(beta*conjugate(lambda[1]+I*lambda[2])+beta*lambda[1]+b)*(1/2))*t/lambda[2], y = yp-(I*beta*lambda[2]^2+(2*beta*lambda[1]+b)*lambda[2]+I*((conjugate(lambda[1]+I*lambda[2])+lambda[1])*beta+b)*(conjugate(lambda[1]+I*lambda[2])-lambda[1]))*t/(2*lambda[2])}

NULL

vx, vy := diff(eval(x, eqp), t), diff(eval(y, eqp), t); dydx := simplify(vy/vx)

eqfp := dchange(eqp, eqfcomplex, [xp, yp], params = [a, b, alpha, beta, `λ__1`, `λ__2`], simplify); eq17p := dchange(eqp, eq17, [xp, yp], params = [a, b, alpha, beta, `λ__1`, `λ__2`], simplify); eqt := simplify(eval(eq17p, eqfp))

eqt1 := eval(subs({xp = x, yp = y}, eqt), l[1] = lambda[1]+I*lambda[2])

with(plots); lambda[1] := .14; lambda[2] := .68; alpha := -.46; beta := 1.83; a := 1.56; b := -.19; eq := y = (-beta*conjugate(lambda[1]+I*lambda[2])^2-b*conjugate(lambda[1]+I*lambda[2])-beta*lambda[2]^2+I*(2*beta*lambda[1]+b)*lambda[2]+lambda[1]*(beta*lambda[1]+b))*(x+(2*I)*sqrt(3)*lambda[1]*sqrt(alpha/(beta*(lambda[1]+I*lambda[2]-conjugate(lambda[1]+I*lambda[2]))^2))/lambda[2])/((lambda[1]+I*lambda[2])*beta*conjugate(lambda[1]+I*lambda[2])^2+(lambda[1]+I*lambda[2])*b*conjugate(lambda[1]+I*lambda[2])-I*beta*lambda[2]^3+(-beta*lambda[1]-b)*lambda[2]^2+I*(-beta*lambda[1]^2+2*a)*lambda[2]-beta*lambda[1]^3-b*lambda[1]^2); U := proc (x, y, a, b, alpha, beta, `λ__1`, `λ__2`) options operator, arrow; rhs(eqt1) end proc; contour1 := contourplot(eval(U(x, y, a, b, alpha, beta, `λ__1`, `λ__2`), t = -50), x = -200 .. 200, y = -100 .. 100, contours = 30, color = red, grid = [100, 100], transparency = .1); contour2 := contourplot(eval(U(x, y, a, b, alpha, beta, `λ__1`, `λ__2`), t = 0), x = -200 .. 200, y = -100 .. 100, contours = 30, color = green, grid = [100, 100], transparency = .1); contour3 := contourplot(eval(U(x, y, a, b, alpha, beta, `λ__1`, `λ__2`), t = 50), x = -200 .. 200, y = -100 .. 100, contours = 30, color = blue, grid = [100, 100], transparency = .1); trajectory_plot := implicitplot(eq, x = -200 .. 200, y = -200 .. 200, color = black, thickness = 1); T := textplot([[100, 45, "t=50", color = blue], [45, -10, "t=0", color = green], [-100, -45, "t=-50", color = red]], font = [Times, Roman, 16]); display(contour1, contour2, contour3, trajectory_plot, T, labels = ["x", "y"], scaling = constrained, size = [1200, 800])

.14

 

.68

 

-.46

 

1.83

 

1.56

 

-.19

 

y = (.4755583090+0.*I)*(x+(-0.+.1517971372*I)*3^(1/2))

 

proc (x, y, a, b, alpha, beta, lambda__1, lambda__2) options operator, arrow; rhs(eqt1) end proc

 

Error, (in plot/iplot2d) invalid input: Plot:-ColorBar expects its 2nd argument, ymin, to be of type numeric, but received infinity

 

Error, (in plot/iplot2d) invalid input: Plot:-ColorBar expects its 2nd argument, ymin, to be of type numeric, but received infinity

 

Error, (in plot/iplot2d) invalid input: Plot:-ColorBar expects its 2nd argument, ymin, to be of type numeric, but received infinity

 

Error, (in plots:-display) expecting plot structure but received: contour1

 
8

Download line-plot.mw

How do I change the legend position so it doesn't cover the plot label?

Before entertaining non-standard solutions to this problem such as building my own from scratch, is the a standard method for changing the position of the default legend generated along with a standard plot? I couldn't find anything about custom legend positions in the help sheets.

I can't help but wonder why this observed behaviour occurs by default? In what kind of plot would I prefer the plot labels to be obscured by the plot legend?



legend_covers_plot_labels.mw

Can I open Maple 2025 files in Maple 2024? Further, what if the files don't use Maple 2025 features/packages? Does that change the outcome?

Using inttrans package fourier (Dirac(t-T),t,w) gives the correct answer

exp(-I*T*w).

Taking immediatel the inverse transform I get only

invfourier(exp(-I*T*w), w, t),

but the the expression remains unevaluated and cannot be brought to evaluate by any means that I know. Funny thing: Taking just plain Fourier Transform and Inverse in the usual integral form "int" it works flawlessly. Apparently Maple knows how to deal with distributions in this context. What am I doing wrong?

in a lot of my function i have a interval which is make my function singular and i don't know how remove this singularity even when i am change a lot of parameter with explore which explore option for plot is a little bit heavy for more than  7 or 8 parameter for running , and i know the shape of the graph is 2-soliton and 1-breather(zig-zag) but i have to see the shape and make my plot have a best shape  there is any idea for fixing this issue?

singular-interval.mw

I tried the following procedure in a worksheet; Maple did not like it and claimed there was an error. However, I cannot even copy this to a Maple prompt; it jumps to another type of region. Any ideas? If I retype the command there is no problem with an error.

It reminds me of Maple 2 and the letter t which sometimes had to be retyped to get Maple to respond-a very strange bug which was eliminated years ago.

Hey guys, 

 

I try to solve big systems of polynomial equations and inequalities. Therefore I use the command SemiAlgebraic. In the moment I take those result and want to go on calculating with them. Sadly it turns out, that solve has some problems with RootOf expressions. It doesnt find a solution (althoug the graph shows that there is one) and gives the warning solution may have been lost. So now I though I might just aks SemiAlgebraic to give me solutions without RootOf expressions. For example you can write {x = RootOf(_Z^2 - y)+1, 1 < y, y < 2} as {x=t+1, y=t^2,1<t<2^0.5 . This might be easier to work with for solve. 

So my question is: Is there any way I can tell SemiAlgebraic precisely in what form the solution should be? 
Since the websites are down Im not able to do a first own research on this problem. So thank you in advance. 

Regards

Felix

in some equation i don't have problem but in a lot of them this problem is come up for me and i don't know how fix this issue?

restart

with(PDEtools)

undeclare(prime, quiet); declare(u(x, y, t), quiet); declare(f(x, y, t), quiet)

``

(1)

thetai := t*w[i]+y*l[i]+x

eqw := w[i] = (-1+sqrt(-4*b*beta*l[i]-4*a*beta+1))/(2*beta)

Bij := proc (i, j) options operator, arrow; -24*alpha*beta/(sqrt(1+(-4*b*l[j]-4*a)*beta)*sqrt(1+(-4*b*l[i]-4*a)*beta)-1+((2*l[i]+2*l[j])*b+4*a)*beta) end proc

NULL

theta1 := normal(eval(eval(thetai, eqw), i = 1)); theta2 := normal(eval(eval(thetai, eqw), i = 2))

eqf := f(x, y, t) = theta1*theta2+Bij(1, 2)

eqfcomplex := eval(eval(eval(eqf, l[2] = conjugate(l[1])), l[1] = lambda[1]+I*lambda[2]))

eq17 := u(x, y, t) = 2*(diff(f(x, y, t), x))/f(x, y, t); equ := simplify(eval(eq17, eqfcomplex))

u(x, y, t) = 8*(-(1/2)*(-4*b*beta*conjugate(lambda[1]+I*lambda[2])-4*a*beta+1)^(1/2)*(1+((-(4*I)*lambda[2]-4*lambda[1])*b-4*a)*beta)^(1/2)-b*beta*conjugate(lambda[1]+I*lambda[2])+1/2-(b*(lambda[1]+I*lambda[2])+2*a)*beta)*((1/2)*t*(1+((-(4*I)*lambda[2]-4*lambda[1])*b-4*a)*beta)^(1/2)+(1/2)*t*(-4*b*beta*conjugate(lambda[1]+I*lambda[2])-4*a*beta+1)^(1/2)+conjugate(lambda[1]+I*lambda[2])*y*beta+((lambda[1]+I*lambda[2])*y+2*x)*beta-t)/((1+((-(4*I)*lambda[2]-4*lambda[1])*b-4*a)*beta)^(1/2)*(-(-4*b*beta*conjugate(lambda[1]+I*lambda[2])-4*a*beta+1)^(1/2)*((2*y*((lambda[1]+I*lambda[2])*y+x)*beta+t*(b*t-y))*conjugate(lambda[1]+I*lambda[2])+2*x*((lambda[1]+I*lambda[2])*y+x)*beta+((b*(lambda[1]+I*lambda[2])+2*a)*t-(lambda[1]+I*lambda[2])*y-2*x)*t)+4*(I*lambda[2]-conjugate(lambda[1]+I*lambda[2])+lambda[1])*((1/2)*conjugate(lambda[1]+I*lambda[2])*b*y*beta+(a*y-(1/2)*b*x)*beta+(1/4)*b*t-(1/4)*y)*t)-4*t*(-4*b*beta*conjugate(lambda[1]+I*lambda[2])-4*a*beta+1)^(1/2)*(conjugate(lambda[1]+I*lambda[2])*(beta*(-y*((1/2)*b*(lambda[1]+I*lambda[2])+a)+(1/2)*b*x)-(1/4)*b*t+(1/4)*y)+(((I*lambda[1]*lambda[2]+(1/2)*lambda[1]^2-(1/2)*lambda[2]^2)*b+a*(lambda[1]+I*lambda[2]))*y-(1/2)*(lambda[1]+I*lambda[2])*b*x)*beta+(1/4)*(b*t-y)*(lambda[1]+I*lambda[2]))+4*y*beta*b*conjugate(lambda[1]+I*lambda[2])^2*(-((lambda[1]+I*lambda[2])*y+x)*beta+(1/2)*t)+conjugate(lambda[1]+I*lambda[2])*(-4*beta^2*(y^2*(b*(lambda[1]^2-lambda[2]^2+(2*I)*lambda[1]*lambda[2])+2*a*(lambda[1]+I*lambda[2]))+2*x*(b*(lambda[1]+I*lambda[2])+a)*y+b*x^2)+2*beta*(-4*b*(b*(lambda[1]+I*lambda[2])+a)*t^2+2*t*(y*(b*(lambda[1]+I*lambda[2])+a)+b*x)+y*((lambda[1]+I*lambda[2])*y+x))+b*t^2-t*y)+4*(-2*((I*lambda[1]*lambda[2]+(1/2)*lambda[1]^2-(1/2)*lambda[2]^2)*b+a*(lambda[1]+I*lambda[2]))*x*y-(lambda[1]+I*lambda[2])*x^2*b-2*a*x^2+12*alpha)*beta^2+2*beta*(-4*a*(b*(lambda[1]+I*lambda[2])+a)*t^2+t*(y*(b*(lambda[1]^2-lambda[2]^2+(2*I)*lambda[1]*lambda[2])+2*a*(lambda[1]+I*lambda[2]))+2*(b*(lambda[1]+I*lambda[2])+2*a)*x)+x*((lambda[1]+I*lambda[2])*y+x))+((b*(lambda[1]+I*lambda[2])+2*a)*t-(lambda[1]+I*lambda[2])*y-2*x)*t)

(2)

ans := solve({diff(rhs(equ), x), diff(rhs(equ), y)}, {x, y}, explicit)

 

``

Download critical-point.mw

1 2 3 4 5 6 7 Last Page 1 of 38