Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Dear All,

I am going to solve the following systems of ODEs but get the error: Newton iteration is not converging.
Could you please share your idea with me. In the case of AA=-0.2,0,0.2,0.4,...; I could get the solution.
Thank you in advance.


restart;
with(plots);
Pr := 2; Le := 2; nn := 2; Nb := .1; Nt := .1; QQ := .1; SS := .1; BB := .1; CC := .1; Ec := .1; MM := .2;AA:=-0.4;

Eq1 := diff(f(eta), `$`(eta, 3))+f(eta).(diff(f(eta), `$`(eta, 2)))-2.*nn/(nn+1).((diff(f(eta), eta))^2)-MM.(diff(f(eta), eta)) = 0; Eq2 := 1/Pr.(diff(theta(eta), `$`(eta, 2)))+f(eta).(diff(theta(eta), eta))-4.*nn/(nn+1).(diff(f(eta), eta)).theta(eta)+Nb.(diff(theta(eta), eta)).(diff(h(eta), eta))+Nt.((diff(theta(eta), eta))^2)+Ec.((diff(f(eta), `$`(eta, 2)))^2)-QQ.theta(eta) = 0;
Eq3 := diff(h(eta), `$`(eta, 2))+Le.f(eta).(diff(h(eta), eta))+Nt/Nb.(diff(theta(eta), `$`(eta, 2))) = 0;

bcs := f(0) = SS, (D(f))(0) = 1+AA.((D@@2)(f))(0), theta(0) = 1+BB.(D(theta))(0), phi(0) = 1+CC.(D(phi))(0), (D(f))(etainf) = 0, theta(etainf) = 0, phi(etainf) = 0

Error, (in dsolve/numeric/ComputeSolution) Newton iteration is not converging

how to translate python code which use scipy, numpy to maple code

 

 

import numpy as np
from scipy.sparse.linalg import svds
from functools import partial


def emsvd(Y, k=None, tol=1E-3, maxiter=None):
    """
    Approximate SVD on data with missing values via expectation-maximization

    Inputs:
    -----------
    Y:          (nobs, ndim) data matrix, missing values denoted by NaN/Inf
    k:          number of singular values/vectors to find (default: k=ndim)
    tol:        convergence tolerance on change in trace norm
    maxiter:    maximum number of EM steps to perform (default: no limit)

    Returns:
    -----------
    Y_hat:      (nobs, ndim) reconstructed data matrix
    mu_hat:     (ndim,) estimated column means for reconstructed data
    U, s, Vt:   singular values and vectors (see np.linalg.svd and 
                scipy.sparse.linalg.svds for details)
    """

    if k is None:
        svdmethod = partial(np.linalg.svd, full_matrices=False)
    else:
        svdmethod = partial(svds, k=k)
    if maxiter is None:
        maxiter = np.inf

    # initialize the missing values to their respective column means
    mu_hat = np.nanmean(Y, axis=0, keepdims=1)
    valid = np.isfinite(Y)
    Y_hat = np.where(valid, Y, mu_hat)

    halt = False
    ii = 1
    v_prev = 0

    while not halt:

        # SVD on filled-in data
        U, s, Vt = svdmethod(Y_hat - mu_hat)

        # impute missing values
        Y_hat[~valid] = (U.dot(np.diag(s)).dot(Vt) + mu_hat)[~valid]

        # update bias parameter
        mu_hat = Y_hat.mean(axis=0, keepdims=1)

        # test convergence using relative change in trace norm
        v = s.sum()
        if ii >= maxiter or ((v - v_prev) / v_prev) < tol:
            halt = True
        ii += 1
        v_prev = v

    return Y_hat, mu_hat, U, s, Vt

Hi,

I did some hypothesis testing exercises and I cross checked the result with Maple. I just used following vectors for an unpaired test

a := [88, 89, 92, 90, 90];
b := [92, 90, 91, 89, 91];

I ended up with the following solution:

HFloat(1.5225682336585966)
HFloat(-3.122568233658591)
for a 0.95 confidence interval.

 

Using

TwoSampleTTest(a, b, 0, confidence = .95, summarize = embed)

and

TwoSampleTTest(a, b, 0, confidence = .975, summarize = embed)

I get following results:

-2.75177 .. 1.15177

-3.13633 .. 1.53633

respectively. I can not explain the discrepancy.

 

Best regards,

Oliver

 

PS:

Maple Code in case files won´t be attached.

 

 

Unpaired t Test
restart;
Unpaired test-test dataset
a := [88, 89, 92, 90, 90];
b := [92, 90, 91, 89, 91];
The se² estimate is given by:
se²=var(a)+var(b)+2*cov(a*b)=var(a)+var(b)
se²=
sigma[a]^2/Na+sigma[b]^2/Nb;
with Na, Nb being the length of vector a and b respectively.
                             2                              2
  sigma[[88, 89, 92, 90, 90]]    sigma[[92, 90, 91, 89, 91]]
  ---------------------------- + ----------------------------
               Na                             Nb             
sigma[a]^2;
 and
sigma[b]^2;
 are approximated by
S[a]^2;
 and
S[b]^2;
                                             2
                  sigma[[88, 89, 92, 90, 90]]
                                             2
                  sigma[[92, 90, 91, 89, 91]]
                                           2
                    S[[88, 89, 92, 90, 90]]
                                           2
                    S[[92, 90, 91, 89, 91]]
with
S[X]^2;
 defined as
S[X]*`²` = (sum(X[i]-(sum(X[j], j = 1 .. N))/N, i = 1 .. N))^2/N;
                                 2
                             S[X]
                                                 2
                      /      /         N       \\
                      |      |       -----     ||
                      |  N   |        \        ||
                      |----- |         )       ||
                      | \    |        /    X[j]||
                      |  )   |       -----     ||
                      | /    |       j = 1     ||
                      |----- |X[i] - ----------||
                      \i = 1 \           N     //
             S[X] ᅡᄇ = ----------------------------
                                   N              
with(Statistics);
Sa := Variance(a);
                   HFloat(2.1999999999999993)
Sb := Variance(b);
                   HFloat(1.3000000000000003)
Now we are ready to do hypothesis testing (0.95).
We have (with k=min(Na,Nb)=5):
C = mean(a)-mean(b); Deviation := t_(alpha/a, k-1)*se(Sa/k-Sb/k);
c := Mean(a)-Mean(b); deviation := 2.776*sqrt((1/5)*Variance(a)+(1/5)*Variance(b));
                  HFloat(-0.7999999999999972)
                   HFloat(2.3225682336585938)
upperlimit := c+deviation; lowerlimit := c-deviation;
                   HFloat(1.5225682336585966)
                   HFloat(-3.122568233658591)

Execution of built in student test
TwoSampleTTest(a, b, 0, confidence = .95, summarize = embed);

 

 

I am unable to solve the attached optimal control problem,please any one who many help  me in guideing .tnx

restart:
unprotect('gamma');

L:=b[1]*c(t)+b[2]*i(t)+w[1]*(u[1])^2/2+w[2]*(u[2])^2/2+w[3]*(u[3])^2/2;
1 2 1 2 1 2
b[1] c(t) + b[2] i(t) + - w[1] u[1] + - w[2] u[2] + - w[3] u[3]
2 2 2
H:=L+lambda[1](t)*((1-p*Psi)*tau+phi* v + delta *r-lambda*(1-u[3])*s-u[1]*varphi*s -mu*s ) +lambda[2](t)*(p*Psi*tau + u[1]*vartheta*s -gamma*lambda* (1-u[3])*v-(mu+phi)*v ) +lambda[3](t)*( (1-u[3])*rho*lambda* (s +gamma*v)+(1-q)* u[2]*eta*i -(mu +beta +chi)*c ) +lambda[4](t)* ((1-rho)*(1-u[3])*lambda*( s +gamma*v) +chi*c - u[2]*eta*i - (mu +alpha )*i) +lambda[5](t)*( beta*c + u[2]*q*eta*i -(mu +delta)*r);
1 2 1 2 1 2
b[1] c(t) + b[2] i(t) + - w[1] u[1] + - w[2] u[2] + - w[3] u[3] + lambda[1](t
2 2 2

) ((1 - p Psi) tau + phi v + delta r - lambda (1 - u[3]) s - u[1] varphi s

- mu s) + lambda[2](t) (p Psi tau + u[1] vartheta s

- gamma lambda (1 - u[3]) v - (mu + phi) v) + lambda[3](t) ((1 - u[3]) rho

lambda (s + gamma v) + (1 - q) u[2] eta i - (mu + beta + chi) c) + lambda[4](t

) ((1 - rho) (1 - u[3]) lambda (s + gamma v) + chi c - u[2] eta i

- (mu + alpha) i) + lambda[5](t) (beta c + u[2] q eta i - (mu + delta) r)
du1:=diff(H,u[1]);

w[1] u[1] - lambda[1](t) varphi s + lambda[2](t) vartheta s
du2:=diff(H,u[2]);du3:=diff(H,u[3]);
w[2] u[2] + lambda[3](t) (1 - q) eta i - lambda[4](t) eta i

+ lambda[5](t) q eta i
w[3] u[3] + lambda[1](t) lambda s + lambda[2](t) gamma lambda v

- lambda[3](t) rho lambda (s + gamma v)

- lambda[4](t) (1 - rho) lambda (s + gamma v)

ddu1 := -A[1] u[1] + psi[1](t) beta x[1] x[3] - psi[2](t) beta x[1] x[3]

ddu2 := -A[2] u[2] - psi[3](t) k x[2]
sol_u1 := solve(du1, u[1]);
s(t) (lambda[1](t) varphi - lambda[2](t) vartheta)
--------------------------------------------------
w[1]
sol_u2 := solve(du2, u[2]);sol_u3 := solve(du3, u[3]);
eta i (-lambda[3](t) + lambda[3](t) q + lambda[4](t) - lambda[5](t) q)
----------------------------------------------------------------------
w[2]
1
---- (lambda (-lambda[1](t) s - lambda[2](t) gamma v + lambda[3](t) rho s
w[3]

+ lambda[3](t) rho gamma v + lambda[4](t) s + lambda[4](t) gamma v

- lambda[4](t) rho s - lambda[4](t) rho gamma v))
Dx2:=subs(u[1]= s*(lambda[1](t)*varphi-lambda[2](t)*vartheta)/w[1] ,u[2]= eta*i*(-lambda[3](t)+lambda[3](t)*q+lambda[4](t)-lambda[5](t)*q)/w[2], u[3]=-lambda*(lambda[1](t)*s+lambda[2](t)*gamma*v-lambda[3](t)*rho*s-lambda[3](t)*rho*gamma*v-lambda[4](t)*s-lambda[4](t)*gamma*v+lambda[4](t)*rho*s+lambda[4](t)*rho*gamma*v)/w[3] ,H );
2 2
s (lambda[1](t) varphi - lambda[2](t) vartheta)
b[1] c(t) + b[2] i(t) + -------------------------------------------------
2 w[1]

2 2 2
eta i (-lambda[3](t) + lambda[3](t) q + lambda[4](t) - lambda[5](t) q)
+ ------------------------------------------------------------------------- +
2 w[2]

1 / 2
------ \lambda (lambda[1](t) s + lambda[2](t) gamma v - lambda[3](t) rho s
2 w[3]

- lambda[3](t) rho gamma v - lambda[4](t) s - lambda[4](t) gamma v

/
\ |
+ lambda[4](t) rho s + lambda[4](t) rho gamma v)^2/ + lambda[1](t) |(1
\

/ 1
- p Psi) tau + phi v + delta r - lambda |1 + ---- (lambda (lambda[1](t) s
\ w[3]

+ lambda[2](t) gamma v - lambda[3](t) rho s - lambda[3](t) rho gamma v

- lambda[4](t) s - lambda[4](t) gamma v + lambda[4](t) rho s

\
+ lambda[4](t) rho gamma v))| s
/

2 \
s (lambda[1](t) varphi - lambda[2](t) vartheta) varphi |
- ------------------------------------------------------- - mu s| +
w[1] /

/
|
lambda[2](t) |p Psi tau
\

2
s (lambda[1](t) varphi - lambda[2](t) vartheta) vartheta /
+ --------------------------------------------------------- - gamma lambda |1 +
w[1] \

1
---- (lambda (lambda[1](t) s + lambda[2](t) gamma v - lambda[3](t) rho s
w[3]

- lambda[3](t) rho gamma v - lambda[4](t) s - lambda[4](t) gamma v

\
\ |
+ lambda[4](t) rho s + lambda[4](t) rho gamma v))| v - (mu + phi) v| +
/ /

// 1
lambda[3](t) ||1 + ---- (lambda (lambda[1](t) s + lambda[2](t) gamma v
\\ w[3]

- lambda[3](t) rho s - lambda[3](t) rho gamma v - lambda[4](t) s

\
- lambda[4](t) gamma v + lambda[4](t) rho s + lambda[4](t) rho gamma v))|
/

1 / 2 2
rho lambda (s + gamma v) + ---- \(1 - q) eta i (-lambda[3](t)
w[2]

\ \
+ lambda[3](t) q + lambda[4](t) - lambda[5](t) q)/ - (mu + beta + chi) c| +
/

/
| / 1
lambda[4](t) |(1 - rho) |1 + ---- (lambda (lambda[1](t) s
\ \ w[3]

+ lambda[2](t) gamma v - lambda[3](t) rho s - lambda[3](t) rho gamma v

- lambda[4](t) s - lambda[4](t) gamma v + lambda[4](t) rho s

\
+ lambda[4](t) rho gamma v))| lambda (s + gamma v) + chi c
/

2 2
eta i (-lambda[3](t) + lambda[3](t) q + lambda[4](t) - lambda[5](t) q)
- ------------------------------------------------------------------------
w[2]

\ /
| |
- (mu + alpha) i| + lambda[5](t) |beta c
/ \

+

2 2
eta i (-lambda[3](t) + lambda[3](t) q + lambda[4](t) - lambda[5](t) q) q
--------------------------------------------------------------------------
w[2]

\
|
- (mu + delta) r|
/
ode1:=diff(lambda[1](t),t)=-diff(H,s);ode2:=diff(lambda[2](t),t)=-diff(H,v);ode3:=diff(psi[3](t),t)=-diff(H,c);ode4:=diff(lambda[4](t),t)=-diff(H,i);ode5:=diff(lambda[5](t),t)=-diff(H,r);
d
--- lambda[1](t) = -lambda[1](t) (-lambda (1 - u[3]) - u[1] varphi - mu)
dt

- lambda[2](t) u[1] vartheta - lambda[3](t) (1 - u[3]) rho lambda

- lambda[4](t) (1 - rho) (1 - u[3]) lambda
d
--- lambda[2](t) = -lambda[1](t) phi
dt

- lambda[2](t) (-gamma lambda (1 - u[3]) - mu - phi)

- lambda[3](t) (1 - u[3]) rho lambda gamma

- lambda[4](t) (1 - rho) (1 - u[3]) lambda gamma
d
--- psi[3](t) = -lambda[3](t) (-mu - beta - chi) - lambda[4](t) chi
dt

- lambda[5](t) beta
d
--- lambda[4](t) = -lambda[3](t) (1 - q) u[2] eta
dt

- lambda[4](t) (-u[2] eta - mu - alpha) - lambda[5](t) u[2] q eta
d
--- lambda[5](t) = -lambda[1](t) delta - lambda[5](t) (-mu - delta)
dt
restart:
#Digits:=10:


unprotect('gamma');
lambda:=0.51:
mu:=0.002:
beta:=0.0115:
delta:=0.003:
alpha:=0.33:
chi:=0.00274:
k:=6.24:
gamma:=0.4:
rho:=0.338:;tau=1000:;Psi:=0.1:;p:=0.6:;phi:=0.001:;eta:=0.001124:q:=0.6:varphi:=0.9:;vatheta:=0.9:
b[1]:=2:;b[2]:=3:;w[1]:=4:;w[2]:=5:;w[3]:=6:
#u[1]:=s(t)*(lambda[1](t)*varphi-lambda[2](t)*vartheta)/w[1]:
#u[2]:=eta*i*(-lambda[3](t)+lambda[3](t)*q+lambda[4](t)-lambda[5](t)*q)/w[2]:;u[3]:=lambda*(-lambda[1](t)*s-lambda[2](t)*gamma*v+lambda[3](t)*rho*s+lambda[3](t)*rho*gamma*v+lambda[4](t)*s+lambda[4](t)*gamma*v-lambda[4](t)*rho*s-lambda[4](t)*rho*gamma*v)/w[3]:
ics := s(0)=8200, v(0)=2800,c(0)=1100,i(0)=1500,r(0)=200,lambda[1](20)=0,lambda[2](20)=0,lambda[3](20)=0,lambda[4](20)=0,lambda[5](20)=0:
ode1:=diff(s(t),t)=(1-p*Psi)*tau+phi* v(t) + delta *r(t)-lambda*(1-u[3])*s(t)-u[1]*varphi*s(t) -mu*s(t),
diff(v(t), t) =p*Psi*tau + u[1]*vartheta*s(t) -gamma*lambda* (1-u[3])*v(t)-(mu+phi)*v(t) ,
diff(c(t), t) =(1-u[3])*rho*lambda* (s(t) +gamma*v(t))+(1-q)* u[2]*eta*i(t) -(mu +beta +chi)*c(t),
diff(i(t), t) =(1-rho)*(1-u[3])*lambda*( s(t) +gamma*v(t)) +chi*c(t) - u[2]*eta*i(t) - (mu +alpha )*i(t),
diff(r(t), t) = beta*c(t) + u[2]*q*eta*i(t) -(mu +delta)*r(t),
diff(lambda[1](t), t) = -lambda[1](t)*(-lambda*(1-u[3])-u[1]*varphi-mu)-lambda[2](t)*u[1]*vartheta-lambda[3](t)*(1-u[3])*rho*lambda-lambda[4](t)*(1-rho)*(1-u[3])*lambda,diff(lambda[2](t),t)=-lambda[1](t)*phi-lambda[2](t)*(-gamma*lambda*(1-u[3])-mu-phi)-lambda[3](t)*(1-u[3])*rho*lambda*gamma-lambda[4](t)*(1-rho)*(1-u[3])*lambda*gamma,diff(lambda[3](t),t)=-lambda[3](t)*(-mu-beta-chi)-lambda[4](t)*chi-lambda[5](t)*beta,diff(lambda[4](t),t)=-lambda[3](t)*(1-q)*u[2]*eta-lambda[4](t)*(-u[2]*eta-mu-alpha)-lambda[5](t)*u[2]*q*eta,diff(lambda[5](t),t)=-lambda[1](t)*delta-lambda[5](t)*(-mu-delta);
d
--- s(t) = (1 - p Psi) tau + phi v(t) + delta r(t) - lambda (1 - u[3]) s(t)
dt

d
- u[1] varphi s(t) - mu s(t), --- v(t) = p Psi tau + u[1] vartheta s(t)
dt

d
- gamma lambda (1 - u[3]) v(t) - (mu + phi) v(t), --- c(t) = (1 - u[3]) rho lambda
dt

(s(t) + gamma v(t)) + (1 - q) u[2] eta - (mu + beta + chi) c(t), 0 = (1

- rho) (1 - u[3]) lambda (s(t) + gamma v(t)) + chi c(t) - u[2] eta - mu

d d
- alpha, --- r(t) = beta c(t) + u[2] q eta - (mu + delta) r(t), ---
dt dt

lambda[1](t) = -lambda[1](t) (-lambda (1 - u[3]) - u[1] varphi - mu)

- lambda[2](t) u[1] vartheta - lambda[3](t) (1 - u[3]) rho lambda

d
- lambda[4](t) (1 - rho) (1 - u[3]) lambda, --- lambda[2](t) =
dt
-lambda[1](t) phi - lambda[2](t) (-gamma lambda (1 - u[3]) - mu - phi)

- lambda[3](t) (1 - u[3]) rho lambda gamma

d
- lambda[4](t) (1 - rho) (1 - u[3]) lambda gamma, --- lambda[3](t) =
dt
d
-lambda[3](t) (-mu - beta - chi) - lambda[4](t) chi - lambda[5](t) beta, ---
dt

lambda[4](t) = -lambda[3](t) (1 - q) u[2] eta

- lambda[4](t) (-u[2] eta - mu - alpha) - lambda[5](t) u[2] q eta,

d
--- lambda[5](t) = -lambda[1](t) delta - lambda[5](t) (-mu - delta)
dt

sol := dsolve({c(0) = 0, i(0) = 0, r(0) = .1, s(0) = 0, v(0) = 0, diff(c(t), t) = (1-u[3])*rho*lambda*(s(t)+gamma*v(t))+(1-q)*u[2]*eta*i(t)-(mu+beta+chi)*c(t), diff(i(t), t) = (1-rho)*(1-u[3])*lambda*(s(t)+gamma*v(t))+chi*c(t)-u[2]*eta*i(t)-(mu+alpha)*i(t), diff(r(t), t) = beta*c(t)+u[2]*q*eta*i(t)-(mu+delta)*r(t), diff(s(t), t) = (1-p*Psi)*tau+phi*v(t)+delta*r(t)-lambda*(1-u[3])*s(t)-u[1]*varphi*s(t)-mu*s(t), diff(v(t), t) = p*Psi*tau+u[1]*vartheta*s(t)-gamma*lambda*(1-u[3])*v(t)-(mu+phi)*v(t), diff(lambda[1](t), t) = -lambda[1](t)*(-lambda*(1-u[3])-u[1]*varphi-mu)-lambda[2](t)*u[1]*vartheta-lambda[3](t)*(1-u[3])*rho*lambda-lambda[4](t)*(1-rho)*(1-u[3])*lambda, diff(lambda[2](t), t) = -lambda[1](t)*phi-lambda[2](t)*(-gamma*lambda*(1-u[3])-mu-phi)-lambda[3](t)*(1-u[3])*rho*lambda*gamma-lambda[4](t)*(1-rho)*(1-u[3])*lambda*gamma, diff(lambda[3](t), t) = -lambda[3](t)*(-mu-beta-chi)-lambda[4](t)*chi-lambda[5](t)*beta, diff(lambda[4](t), t) = -lambda[3](t)*(1-q)*u[2]*eta-lambda[4](t)*(-u[2]*eta-mu-alpha)-lambda[5](t)*u[2]*q*eta, diff(lambda[5](t), t) = -lambda[1](t)*delta-lambda[5](t)*(-mu-delta), lambda[1](20) = 0, lambda[2](20) = 0, lambda[3](20) = 0, lambda[4](20) = 0, lambda[5](20) = 0}, type = numeric);
Error, (in dsolve/numeric/process_input) invalid specification of initial conditions, got 1 = 0

sol:=dsolve([ode1,ics],numeric, method = bvp[midrich],maxmesh=500);

Error, (in dsolve/numeric/process_input) system must be entered as a set/list of expressions/equations

dsolve[':-interactive']({});
Error, `:=` unexpected
sol:=dsolve([ode1,ics],numeric, method = bvp[midrich],maxmesh=500);
Error, (in dsolve/numeric/process_input) system must be entered as a set/list of expressions/equations

eq1:=diff(s(t), t)=(1-p*Psi)*tau+phi* v(t) + delta *r(t)-lambda*(1-u[3])*s(t)-u[1]*varphi*s(t) -mu*s(t);
eq2:diff(v(t), t) =p*Psi*tau + u[1]*vartheta*s(t) -gamma*lambda* (1-u[3])*v(t)-(mu+phi)*v(t);
eq3:=diff(c(t), t) =(1-u[3])*rho*lambda* (s(t) +gamma*v(t))+(1-q)* u[2]*eta*i(t) -(mu +beta +chi)*c(t);
eq4:=diff(i(t), t) =(1-rho)*(1-u[3])*lambda*( s(t) +gamma*v(t)) +chi*c(t) - u[2]*eta*i(t) - (mu +alpha )*i(t);
eq5:=diff(r(t), t) = beta*c(t) + u[2]*q*eta*i(t) -(mu +delta)*r(t);

d
--- s(t) = (1 - p Psi) tau + phi v(t) + delta r(t) - lambda (1 - u[3]) s(t)
dt

- u[1] varphi s(t) - mu s(t)
d
--- v(t) = p Psi tau + u[1] vartheta s(t) - gamma lambda (1 - u[3]) v(t)
dt

- (mu + phi) v(t)
d
--- c(t) = (1 - u[3]) rho lambda (s(t) + gamma v(t)) + (1 - q) u[2] eta i(t)
dt

- (mu + beta + chi) c(t)
d
--- i(t) = (1 - rho) (1 - u[3]) lambda (s(t) + gamma v(t)) + chi c(t)
dt

- u[2] eta i(t) - (mu + alpha) i(t)
d
--- r(t) = beta c(t) + u[2] q eta i(t) - (mu + delta) r(t)
dt
eq6:=diff(Q(t),t)=b[1]*c(t)+b[2]*i(t)+w[1]*(u[1])^2/2+w[2]*(u[2])^2/2+w[3]*(u[3])^2/2;
d 1 2 1 2 1 2
--- Q(t) = b[1] c(t) + b[2] i(t) + - w[1] u[1] + - w[2] u[2] + - w[3] u[3]
dt 2 2 2
ics:=s(0)=8200, v(0)=2800,c(0)=1100,i(0)=1500,r(0)=200,Q(0)=6700;
s(0) = 8200, v(0) = 2800, c(0) = 1100, i(0) = 1500, r(0) = 200, Q(0) = 6700
sol0:=dsolve({eq1,eq2,eq3,eq4,eq5,eq6,ics},type=numeric,stiff=true,'parameters'=[u[1],u[2],u[3]],abserr=1e-15,relerr=1e-12,maxfun=0,range=0..50):
Error, (in dsolve/numeric/process_input) system must be entered as a set/list of expressions/equations
with(plots):
Q0:=6700;
6700
obj:=proc(u)
global sol0,Q0;
local ob1;
try
sol0('parameters'=[u[1],u[2],u[3]]):
ob1:=subs(sol0(20.),Q(t)):
catch :
ob1:=0;
end try;
#ob1:=subs(sol0(20.),Q(t));
if ob1>Q0 then Q0:=ob1;print(Q0,u);end;
ob1;
end proc;
proc(u) ... end;
obj([1,1,1]);
0
obj([3,2.5],4);
0
u0:=Vector(3,[0.,0.,0.],datatype=float[8]);
Vector[column](%id = 85973880)

Q0:=0;
Q0 := 0
with(Optimization);
[ImportMPS, Interactive, LPSolve, LSSolve, Maximize, Minimize, NLPSolve,

QPSolve]
sol2:=NLPSolve(3,obj,initialpoint=u0,method=nonlinearsimplex,maximize,evaluationlimit=100):
sol0('parameters'=[3.18125786060723, 2.36800986932868]);
sol0(parameters = [3.18125786060723, 2.36800986932868])
for i from 1 to 3 do odeplot(sol0,[t,x[i](t)],0..20,thickness=3,axes=boxed);od;
Error, (in plots/odeplot) input is not a valid dsolve/numeric solution

 

Hi,

I am using the solve command to solve an equation of the form "linear over quadratic is equal to a constant" where the constant is assumed to be nonzero. This is easily solved by hand, of course, but I to use the solution in other computations. So I asked maple to solve it for me. But when I check maple's solution (i.e. just plug the two solutions in on the left hand side and simplify) maple does not return the original constant. Can anyone help me understand what is going wrong?

Dear Forum, 

 

I am a new Maple user, and its symbolic prowess is really amazing. So we are trying to interface it with a C library. I want to generate some C code through Maple, and am trying the CodeGeneration package. 

But the default conversion of C(a, b) is b = C language equivalent of expression a.

Now this should be fine for most purposes, but the C library that we are working with, "ACADOToolkit" in this case, requires the equations to be formatted in a certain way. So, I need the following equation in C:

 

f << dot(v) == (u-0.2*v*v)/m

 

Now the LHS part of == is to be hard-coded, but we want to generate the equation on the right using maple. Even if I define an equation as 

eq1:= diff(v(t),t)=(u(t)-0.2*v(t)*v(t))/m(t) and then use C(rhs(eq1)), I get the result in the form of cg = u - 0.2 ...., whereas I want this to be assigned to something else, in this case - "f << dot(v)= ".

 

How can I achieve this ?

 

Thanks 

Chintan Pathak 

Research Scholar, 

University of Washington

 

hello , 

how i can exract value from pdsolve ,i need to use dU(x,R)/dR 

thank you 

 

restart; with(plots)

n := 1/3;

1/3

(1)

Uu := (3*n+1)*(1-R^((n+1)/n))/(n+1);

-(3/2)*R^4+3/2

(2)

eq := Uu*(diff(theta(x, R), x))-4*(diff(R*(diff(theta(x, R), R)), R))/R;

(-(3/2)*R^4+3/2)*(diff(theta(x, R), x))-4*(diff(theta(x, R), R)+R*(diff(diff(theta(x, R), R), R)))/R

(3)

IBC := {theta(0, R) = 1, theta(x, 1) = 0, (D[2](theta))(x, 0) = 0};

{theta(0, R) = 1, theta(x, 1) = 0, (D[2](theta))(x, 0) = 0}

(4)

pds := pdsolve(eq, IBC, numeric);

module () local INFO; export plot, plot3d, animate, value, settings; option `Copyright (c) 2001 by Waterloo Maple Inc. All rights reserved.`; end module

(5)

U := subs(pds:-value(output = listprocedure), theta(x, R));

proc () local tv, xv, solnproc, stype, ndsol, vals; option `Copyright (c) 2001 by Waterloo Maple Inc. All rights reserved.`; Digits := trunc(evalhf(Digits)); solnproc := proc (tv, xv) local INFO, errest, nd, dvars, dary, daryt, daryx, vals, msg, i, j; option `Copyright (c) 2001 by Waterloo Maple Inc. All rights reserved.`; table( [( "soln_procedures" ) = array( 1 .. 1, [( 1 ) = (18446744074366926358)  ] ) ] ) INFO := table( [( "timestep" ) = 0.500000000000000e-1, ( "IBC" ) = b, ( "spaceidx" ) = 2, ( "fdepvars" ) = [theta(x, R)], ( "dependson" ) = [{1}], ( "eqnords" ) = [[1, 2]], ( "intspace" ) = Matrix(21, 1, {(1, 1) = .0, (2, 1) = .0, (3, 1) = .0, (4, 1) = .0, (5, 1) = .0, (6, 1) = .0, (7, 1) = .0, (8, 1) = .0, (9, 1) = .0, (10, 1) = .0, (11, 1) = .0, (12, 1) = .0, (13, 1) = .0, (14, 1) = .0, (15, 1) = .0, (16, 1) = .0, (17, 1) = .0, (18, 1) = .0, (19, 1) = .0, (20, 1) = .0, (21, 1) = .0}, datatype = float[8], order = C_order), ( "solvec2" ) = Vector(21, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0, (19) = .0, (20) = .0, (21) = .0}, datatype = float[8]), ( "allocspace" ) = 21, ( "solmat_ne" ) = 0, ( "depords" ) = [[1, 2]], ( "BCS", 1 ) = {[[1, 0, 1], b[1, 0, 1]], [[1, 1, 0], b[1, 1, 0]]}, ( "spacepts" ) = 21, ( "solvec3" ) = Vector(21, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0, (19) = .0, (20) = .0, (21) = .0}, datatype = float[8]), ( "autonomous" ) = true, ( "vectorproc" ) = proc (v, vp, vpp, t, x, k, h, n, vec) local _s1, _s2, _s3, _s4, _s5, _s6, xi; _s3 := 4*k; _s4 := -3*h^2; _s5 := 2*h*k; _s6 := 2*k*h^2; vec[1] := 0; vec[n] := 0; for xi from 2 to n-1 do _s1 := -vp[xi-1]+vp[xi+1]; _s2 := vp[xi-1]-2*vp[xi]+vp[xi+1]; vec[xi] := (_s4*vp[xi]*x[xi]^5+_s2*_s3*x[xi]-_s4*vp[xi]*x[xi]+_s1*_s5)/(_s6*x[xi]) end do end proc, ( "timeidx" ) = 1, ( "extrabcs" ) = [0], ( "pts", R ) = [0, 1], ( "solvec5" ) = 0, ( "timevar" ) = x, ( "t0" ) = 0, ( "solmat_v" ) = Vector(147, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0, (19) = .0, (20) = .0, (21) = .0, (22) = .0, (23) = .0, (24) = .0, (25) = .0, (26) = .0, (27) = .0, (28) = .0, (29) = .0, (30) = .0, (31) = .0, (32) = .0, (33) = .0, (34) = .0, (35) = .0, (36) = .0, (37) = .0, (38) = .0, (39) = .0, (40) = .0, (41) = .0, (42) = .0, (43) = .0, (44) = .0, (45) = .0, (46) = .0, (47) = .0, (48) = .0, (49) = .0, (50) = .0, (51) = .0, (52) = .0, (53) = .0, (54) = .0, (55) = .0, (56) = .0, (57) = .0, (58) = .0, (59) = .0, (60) = .0, (61) = .0, (62) = .0, (63) = .0, (64) = .0, (65) = .0, (66) = .0, (67) = .0, (68) = .0, (69) = .0, (70) = .0, (71) = .0, (72) = .0, (73) = .0, (74) = .0, (75) = .0, (76) = .0, (77) = .0, (78) = .0, (79) = .0, (80) = .0, (81) = .0, (82) = .0, (83) = .0, (84) = .0, (85) = .0, (86) = .0, (87) = .0, (88) = .0, (89) = .0, (90) = .0, (91) = .0, (92) = .0, (93) = .0, (94) = .0, (95) = .0, (96) = .0, (97) = .0, (98) = .0, (99) = .0, (100) = .0, (101) = .0, (102) = .0, (103) = .0, (104) = .0, (105) = .0, (106) = .0, (107) = .0, (108) = .0, (109) = .0, (110) = .0, (111) = .0, (112) = .0, (113) = .0, (114) = .0, (115) = .0, (116) = .0, (117) = .0, (118) = .0, (119) = .0, (120) = .0, (121) = .0, (122) = .0, (123) = .0, (124) = .0, (125) = .0, (126) = .0, (127) = .0, (128) = .0, (129) = .0, (130) = .0, (131) = .0, (132) = .0, (133) = .0, (134) = .0, (135) = .0, (136) = .0, (137) = .0, (138) = .0, (139) = .0, (140) = .0, (141) = .0, (142) = .0, (143) = .0, (144) = .0, (145) = .0, (146) = .0, (147) = .0}, datatype = float[8], order = C_order, attributes = [source_rtable = (Matrix(21, 7, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (9, 1) = .0, (9, 2) = .0, (9, 3) = .0, (9, 4) = .0, (9, 5) = .0, (9, 6) = .0, (9, 7) = .0, (10, 1) = .0, (10, 2) = .0, (10, 3) = .0, (10, 4) = .0, (10, 5) = .0, (10, 6) = .0, (10, 7) = .0, (11, 1) = .0, (11, 2) = .0, (11, 3) = .0, (11, 4) = .0, (11, 5) = .0, (11, 6) = .0, (11, 7) = .0, (12, 1) = .0, (12, 2) = .0, (12, 3) = .0, (12, 4) = .0, (12, 5) = .0, (12, 6) = .0, (12, 7) = .0, (13, 1) = .0, (13, 2) = .0, (13, 3) = .0, (13, 4) = .0, (13, 5) = .0, (13, 6) = .0, (13, 7) = .0, (14, 1) = .0, (14, 2) = .0, (14, 3) = .0, (14, 4) = .0, (14, 5) = .0, (14, 6) = .0, (14, 7) = .0, (15, 1) = .0, (15, 2) = .0, (15, 3) = .0, (15, 4) = .0, (15, 5) = .0, (15, 6) = .0, (15, 7) = .0, (16, 1) = .0, (16, 2) = .0, (16, 3) = .0, (16, 4) = .0, (16, 5) = .0, (16, 6) = .0, (16, 7) = .0, (17, 1) = .0, (17, 2) = .0, (17, 3) = .0, (17, 4) = .0, (17, 5) = .0, (17, 6) = .0, (17, 7) = .0, (18, 1) = .0, (18, 2) = .0, (18, 3) = .0, (18, 4) = .0, (18, 5) = .0, (18, 6) = .0, (18, 7) = .0, (19, 1) = .0, (19, 2) = .0, (19, 3) = .0, (19, 4) = .0, (19, 5) = .0, (19, 6) = .0, (19, 7) = .0, (20, 1) = .0, (20, 2) = .0, (20, 3) = .0, (20, 4) = .0, (20, 5) = .0, (20, 6) = .0, (20, 7) = .0, (21, 1) = .0, (21, 2) = .0, (21, 3) = .0, (21, 4) = .0, (21, 5) = .0, (21, 6) = .0, (21, 7) = .0}, datatype = float[8], order = C_order))]), ( "indepvars" ) = [x, R], ( "maxords" ) = [1, 2], ( "solvec1" ) = Vector(21, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0, (19) = .0, (20) = .0, (21) = .0}, datatype = float[8]), ( "startup_only" ) = false, ( "solvec4" ) = 0, ( "explicit" ) = false, ( "solmatrix" ) = Matrix(21, 7, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (1, 7) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (2, 7) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (3, 7) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0, (4, 7) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (5, 5) = .0, (5, 6) = .0, (5, 7) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0, (6, 5) = .0, (6, 6) = .0, (6, 7) = .0, (7, 1) = .0, (7, 2) = .0, (7, 3) = .0, (7, 4) = .0, (7, 5) = .0, (7, 6) = .0, (7, 7) = .0, (8, 1) = .0, (8, 2) = .0, (8, 3) = .0, (8, 4) = .0, (8, 5) = .0, (8, 6) = .0, (8, 7) = .0, (9, 1) = .0, (9, 2) = .0, (9, 3) = .0, (9, 4) = .0, (9, 5) = .0, (9, 6) = .0, (9, 7) = .0, (10, 1) = .0, (10, 2) = .0, (10, 3) = .0, (10, 4) = .0, (10, 5) = .0, (10, 6) = .0, (10, 7) = .0, (11, 1) = .0, (11, 2) = .0, (11, 3) = .0, (11, 4) = .0, (11, 5) = .0, (11, 6) = .0, (11, 7) = .0, (12, 1) = .0, (12, 2) = .0, (12, 3) = .0, (12, 4) = .0, (12, 5) = .0, (12, 6) = .0, (12, 7) = .0, (13, 1) = .0, (13, 2) = .0, (13, 3) = .0, (13, 4) = .0, (13, 5) = .0, (13, 6) = .0, (13, 7) = .0, (14, 1) = .0, (14, 2) = .0, (14, 3) = .0, (14, 4) = .0, (14, 5) = .0, (14, 6) = .0, (14, 7) = .0, (15, 1) = .0, (15, 2) = .0, (15, 3) = .0, (15, 4) = .0, (15, 5) = .0, (15, 6) = .0, (15, 7) = .0, (16, 1) = .0, (16, 2) = .0, (16, 3) = .0, (16, 4) = .0, (16, 5) = .0, (16, 6) = .0, (16, 7) = .0, (17, 1) = .0, (17, 2) = .0, (17, 3) = .0, (17, 4) = .0, (17, 5) = .0, (17, 6) = .0, (17, 7) = .0, (18, 1) = .0, (18, 2) = .0, (18, 3) = .0, (18, 4) = .0, (18, 5) = .0, (18, 6) = .0, (18, 7) = .0, (19, 1) = .0, (19, 2) = .0, (19, 3) = .0, (19, 4) = .0, (19, 5) = .0, (19, 6) = .0, (19, 7) = .0, (20, 1) = .0, (20, 2) = .0, (20, 3) = .0, (20, 4) = .0, (20, 5) = .0, (20, 6) = .0, (20, 7) = .0, (21, 1) = .0, (21, 2) = .0, (21, 3) = .0, (21, 4) = .0, (21, 5) = .0, (21, 6) = .0, (21, 7) = .0}, datatype = float[8], order = C_order), ( "depvars" ) = [theta], ( "solmat_is" ) = 0, ( "adjusted" ) = false, ( "matrixhf" ) = true, ( "norigdepvars" ) = 1, ( "stages" ) = 1, ( "theta" ) = 1/2, ( "ICS" ) = [1], ( "multidep" ) = [false, false], ( "soltimes" ) = Vector(3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8]), ( "depeqn" ) = [1], ( "method" ) = theta, ( "depshift" ) = [1], ( "depdords" ) = [[[1, 2]]], ( "matrixproc" ) = proc (v, vp, vpp, t, x, k, h, n, mat) local _s1, _s2, _s3, xi; _s1 := h^2; _s2 := -(3/2)/k; _s3 := (1/2)*(8*k+3*_s1)/(k*h^2); mat[3] := -(3/2)/h; mat[4] := 2/h; mat[5] := -(1/2)/h; mat[7*n-4] := 1; for xi from 2 to n-1 do mat[7*xi-4] := _s2*x[xi]^4+_s3; mat[7*xi-5] := (h-2*x[xi])/(_s1*x[xi]); mat[7*xi-3] := -(h+2*x[xi])/(_s1*x[xi]) end do end proc, ( "solution" ) = Array(1..3, 1..21, 1..1, {(1, 1, 1) = .0, (1, 2, 1) = .0, (1, 3, 1) = .0, (1, 4, 1) = .0, (1, 5, 1) = .0, (1, 6, 1) = .0, (1, 7, 1) = .0, (1, 8, 1) = .0, (1, 9, 1) = .0, (1, 10, 1) = .0, (1, 11, 1) = .0, (1, 12, 1) = .0, (1, 13, 1) = .0, (1, 14, 1) = .0, (1, 15, 1) = .0, (1, 16, 1) = .0, (1, 17, 1) = .0, (1, 18, 1) = .0, (1, 19, 1) = .0, (1, 20, 1) = .0, (1, 21, 1) = .0, (2, 1, 1) = .0, (2, 2, 1) = .0, (2, 3, 1) = .0, (2, 4, 1) = .0, (2, 5, 1) = .0, (2, 6, 1) = .0, (2, 7, 1) = .0, (2, 8, 1) = .0, (2, 9, 1) = .0, (2, 10, 1) = .0, (2, 11, 1) = .0, (2, 12, 1) = .0, (2, 13, 1) = .0, (2, 14, 1) = .0, (2, 15, 1) = .0, (2, 16, 1) = .0, (2, 17, 1) = .0, (2, 18, 1) = .0, (2, 19, 1) = .0, (2, 20, 1) = .0, (2, 21, 1) = .0, (3, 1, 1) = .0, (3, 2, 1) = .0, (3, 3, 1) = .0, (3, 4, 1) = .0, (3, 5, 1) = .0, (3, 6, 1) = .0, (3, 7, 1) = .0, (3, 8, 1) = .0, (3, 9, 1) = .0, (3, 10, 1) = .0, (3, 11, 1) = .0, (3, 12, 1) = .0, (3, 13, 1) = .0, (3, 14, 1) = .0, (3, 15, 1) = .0, (3, 16, 1) = .0, (3, 17, 1) = .0, (3, 18, 1) = .0, (3, 19, 1) = .0, (3, 20, 1) = .0, (3, 21, 1) = .0}, datatype = float[8], order = C_order), ( "totalwidth" ) = 7, ( "rightwidth" ) = 0, ( "solmat_i2" ) = 0, ( "minspcpoints" ) = 4, ( "erroraccum" ) = true, ( "eqndep" ) = [1], ( "errorest" ) = false, ( "banded" ) = true, ( "solspace" ) = Vector(21, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = .0, (14) = .0, (15) = .0, (16) = .0, (17) = .0, (18) = .0, (19) = .0, (20) = .0, (21) = 1.0}, datatype = float[8]), ( "solmat_i1" ) = 0, ( "timeadaptive" ) = false, ( "spacestep" ) = 0.500000000000000e-1, ( "initialized" ) = false, ( "vectorhf" ) = true, ( "linear" ) = true, ( "spacevar" ) = R, ( "periodic" ) = false, ( "spaceadaptive" ) = false, ( "mixed" ) = false, ( "inputargs" ) = [(-(3/2)*R^4+3/2)*(diff(theta(x, R), x))-4*(diff(theta(x, R), R)+R*(diff(diff(theta(x, R), R), R)))/R, {theta(0, R) = 1, theta(x, 1) = 0, (D[2](theta))(x, 0) = 0}], ( "bandwidth" ) = [1, 3], ( "PDEs" ) = [(-(3/2)*R^4+3/2)*(diff(theta(x, R), x))-4*(diff(theta(x, R), R)+R*(diff(diff(theta(x, R), R), R)))/R], ( "leftwidth" ) = 1 ] ); if xv = "left" then return INFO["solspace"][1] elif xv = "right" then return INFO["solspace"][INFO["spacepts"]] elif tv = "start" then return INFO["t0"] elif not (type(tv, 'numeric') and type(xv, 'numeric')) then error "non-numeric input" end if; if xv < INFO["solspace"][1] or INFO["solspace"][INFO["spacepts"]] < xv then error "requested %1 value must be in the range %2..%3", INFO["spacevar"], INFO["solspace"][1], INFO["solspace"][INFO["spacepts"]] end if; dary := Vector(3, {(1) = .0, (2) = .0, (3) = .0}, datatype = float[8]); daryt := 0; daryx := 0; dvars := []; errest := false; nd := nops(INFO["depvars"]); if dary[nd+1] <> tv then try `pdsolve/numeric/evolve_solution`(INFO, tv) catch: msg := StringTools:-FormatMessage(lastexception[2 .. -1]); if tv < INFO["t0"] then error cat("unable to compute solution for %1<%2:
", msg), INFO["timevar"], INFO["failtime"] else error cat("unable to compute solution for %1>%2:
", msg), INFO["timevar"], INFO["failtime"] end if end try end if; if dary[nd+1] <> tv or dary[nd+2] <> xv then `pdsolve/interp2dto0d`(3, INFO["soltimes"], INFO["spacepts"], INFO["solspace"], nops(INFO["depvars"]), INFO["solution"], true, tv, xv, dary); if errest then `pdsolve/interp2dto0d`(3, INFO["soltimes"], INFO["spacepts"], INFO["err_t"], nops(INFO["depvars"]), INFO["solution"], true, tv, xv, daryt); `pdsolve/interp2dto0d`(3, INFO["soltimes"], INFO["spacepts"], INFO["err_x"], nops(INFO["depvars"]), INFO["solution"], true, tv, xv, daryx) end if end if; dary[nd+1] := tv; dary[nd+2] := xv; if dvars = [] then [seq(dary[i], i = 1 .. INFO["norigdepvars"])] else vals := NULL; for i to nops(dvars) do j := eval(dvars[i]); try if errest then vals := vals, evalhf(j(tv, xv, dary, daryt, daryx)) else vals := vals, evalhf(j(tv, xv, dary)) end if catch: userinfo(5, `pdsolve/numeric`, `evalhf failure`); try if errest then vals := vals, j(tv, xv, dary, daryt, daryx) else vals := vals, j(tv, xv, dary) end if catch: vals := vals, undefined end try end try end do; [vals] end if end proc; stype := "1st"; if nargs = 1 then if args[1] = "left" then return solnproc(0, "left") elif args[1] = "right" then return solnproc(0, "right") elif args[1] = "start" then return solnproc("start", 0) else error "too few arguments to solution procedure" end if elif nargs = 2 then if stype = "1st" then tv := evalf(args[1]); xv := evalf(args[2]) else tv := evalf(args[2]); xv := evalf(args[1]) end if; if not (type(tv, 'numeric') and type(xv, 'numeric')) then if procname <> unknown then return ('procname')(args[1 .. nargs]) else ndsol := pointto(solnproc("soln_procedures")[1]); return ('ndsol')(args[1 .. nargs]) end if end if else error "incorrect arguments to solution procedure" end if; vals := solnproc(tv, xv); vals[1] end proc

(6)

NULL

gg := U(x, 1):

NULL

thm := int(U(x, R)*Uu, R = 0 .. 1):

 

 

NULL

 

Download U(R)_numériqueg2.mw

I want to reference the previous equation/expression which is not displayed (':')in my worksheet. I allready know the '%' sign, but this references the previous equation/expression which was executed . By previous I mean the result (which is not displayed) in the previous line.

As I do not want the previous equation to be displayed I also cannot use the equation lable (CTRL+L).

 

Example

x:=a=b+1:

solve(previous,{b});

 

Thank you for your help.

I'm new here, so I'm not totally sure this is the right place to ask this. I apologize if it isn't, please let me know in that case.

 

My problem is that Maple won't recognize the built-in command 'complexplot3d'. For example, typing:

complexplot3d(z^2, z = -1-I .. 1+I)

doesn't do anything, and it's displayed again in blue as if it was not a command.

 

Any kind of help would be extremely helpful, as I have no clue of what's going on. Thanks in advance!


Here, I attached my maple code. I need to find root. I am using fsolve. But I am not geting the root. Please any one help me... to find the root.

reatart:NULL``

m1 := 0.3e-1;

0.3e-1

(1)

m2 := .4;

.4

(2)

m3 := 2.5;

2.5

(3)

m4 := .3;

.3

(4)

be := .1;

.1

(5)

rho := .1;

.1

(6)

ga := 25;

25

(7)

a := 3.142;

3.142

(8)

q := .5;

.5

(9)

z[0] := 3;

3

(10)

x[0] := 1.5152;

1.5152

(11)

w[0] := 1.1152;

1.1152

(12)

a1 := be*z[0];

.3

(13)

a2 := be*x[0];

.15152

(14)

a3 := rho*w[0];

.11152

(15)

a4 := rho*z[0];

.3

(16)

a5 := rho*w[0];

.11152

(17)

a6 := rho*z[0];

.3

(18)

b1 := a1*a4*ga+a4*ga*m1;

2.475

(19)

D1 := a1+m1+m2+m3+m4;

3.53

(20)

D2 := a1*m2+a1*m3+a1*m4-a2*ga+a3*ga+m1*m2+m1*m3+m1*m4+m2*m3+m2*m4+m3*m4;

1.92600

(21)

D3 := a1*a3*ga+a1*m2*m3+a1*m2*m4+a1*m3*m4-a2*ga*m1-a2*ga*m4+a3*ga*m1+a3*ga*m4+m1*m2*m3+m1*m3*m4+m2*m3*m4+m1*m2*m3;

1.4499000

(22)

D4 := a1*a3*a4*ga+a1*m2*m3*m4-a2*ga*m1*m4+a3*ga*m1*m4+m1*m2*m3*m4;

.3409200

(23)

G1 := -a1*a6-a6*m1-a6*m2-a6*m3;

-.969

(24)

G2 := -a1*a6*m2-a1*a6*m3+a2*a6*ga-a3*a6*ga+a4*a5*ga-a6*m1*m2-a6*m1*m3-a6*m2*m3;

.549300

(25)

G3 := -a1*a3*a6*ga-a1*a6*m2*m3+a2*a6*ga*m1-a3*a6*ga*m1-a6*m1*m2*m3;

-.3409200

(26)

A1 := w^(4*q)*cos(4*q*a*(1/2))+D1*w^(3*q)*cos(3*q*a*(1/2))+D2*w^(2*q)*cos(2*q*a*(1/2))+D3*w^q*cos((1/2)*q*a)+D4;

-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200

(27)

B1 := w^(4*q)*sin(4*q*a*(1/2))+D1*w^(3*q)*sin(3*q*a*(1/2))+D2*w^(2*q)*sin(2*q*a*(1/2))+D3*w^q*sin((1/2)*q*a);

-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5

(28)

A2 := -w^(3*q)*a6*cos(3*q*a*(1/2))+G1*w^(2*q)*cos(2*q*a*(1/2))+G2*w^q*cos((1/2)*q*a)+G3;

.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200

(29)

B2 := -w^(3*q)*a6*sin(3*q*a*(1/2))+G1*w^(2*q)*sin(2*q*a*(1/2))+G2*w^q*sin((1/2)*q*a);

-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5

(30)

C := .27601200;

.27601200

(31)

Q1 := 4*C^2*(A2^2+B2^2);

.3047304966*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+.3047304966*(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2

(32)

Q2 := -4*C*A2*(A1^2-A2^2+B1^2-B2^2-C^2);

-1.10404800*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)*((-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2-(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2-(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1)

(33)

Q3 := (A1^2-A2^2+B1^2-B2^2-C^2)^2-4*C^2*B2^2;

((-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2-(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2-(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1)^2-.3047304966*(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2

(34)

V := simplify(-4*Q1*Q3+Q2^2);

-0.1e-12-0.5481797400e-1*w^11-40.93358002*w^(19/2)-212.0102604*w^(17/2)-1.048226159*w^(21/2)-8.667039897*w^10-119.4464160*w^9-208.1803245*w^8-54.3436016*w^7-38.4722894*w^6+2.67061391*w^5-2.29413863*w^4-.136247212*w^2+.899997750*w^3+0.1e-10*w^(1/2)-0.150073928e-1*w^(3/2)+0.54469063e-2*w-2.53869438*w^(11/2)-2.40374793*w^(9/2)-84.14780373*w^(15/2)-86.62603442*w^(13/2)+2.023073705*w^(7/2)-0.6906749e-2*w^(5/2)

(35)

x := (-Q2+sqrt(V))/(2*Q1);

(1/2)*(1.10404800*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)*((-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2-(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2-(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1)+(-0.1e-12-0.5481797400e-1*w^11-40.93358002*w^(19/2)-212.0102604*w^(17/2)-1.048226159*w^(21/2)-8.667039897*w^10-119.4464160*w^9-208.1803245*w^8-54.3436016*w^7-38.4722894*w^6+2.67061391*w^5-2.29413863*w^4-.136247212*w^2+.899997750*w^3+0.1e-10*w^(1/2)-0.150073928e-1*w^(3/2)+0.54469063e-2*w-2.53869438*w^(11/2)-2.40374793*w^(9/2)-84.14780373*w^(15/2)-86.62603442*w^(13/2)+2.023073705*w^(7/2)-0.6906749e-2*w^(5/2))^(1/2))/(.3047304966*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+.3047304966*(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2)

(36)

E := -2*A1*C*x-A1^2+A2^2-B1^2+B2^2-C^2;

-.2760120000*(-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)*(1.10404800*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)*((-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2-(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2-(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1)+(-0.1e-12-0.5481797400e-1*w^11-40.93358002*w^(19/2)-212.0102604*w^(17/2)-1.048226159*w^(21/2)-8.667039897*w^10-119.4464160*w^9-208.1803245*w^8-54.3436016*w^7-38.4722894*w^6+2.67061391*w^5-2.29413863*w^4-.136247212*w^2+.899997750*w^3+0.1e-10*w^(1/2)-0.150073928e-1*w^(3/2)+0.54469063e-2*w-2.53869438*w^(11/2)-2.40374793*w^(9/2)-84.14780373*w^(15/2)-86.62603442*w^(13/2)+2.023073705*w^(7/2)-0.6906749e-2*w^(5/2))^(1/2))/(.3047304966*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+.3047304966*(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2)-(-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2+(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2-(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2+(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1

(37)

y := -E/(2*C*B1);

-1.811515442*(-.2760120000*(-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)*(1.10404800*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)*((-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2-(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2-(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1)+(-0.1e-12-0.5481797400e-1*w^11-40.93358002*w^(19/2)-212.0102604*w^(17/2)-1.048226159*w^(21/2)-8.667039897*w^10-119.4464160*w^9-208.1803245*w^8-54.3436016*w^7-38.4722894*w^6+2.67061391*w^5-2.29413863*w^4-.136247212*w^2+.899997750*w^3+0.1e-10*w^(1/2)-0.150073928e-1*w^(3/2)+0.54469063e-2*w-2.53869438*w^(11/2)-2.40374793*w^(9/2)-84.14780373*w^(15/2)-86.62603442*w^(13/2)+2.023073705*w^(7/2)-0.6906749e-2*w^(5/2))^(1/2))/(.3047304966*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+.3047304966*(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2)-(-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2+(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2-(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2+(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1)/(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)

(38)

``

fsolve(x^2+y^2 = 1, w)

fsolve((1/4)*(1.10404800*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)*((-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2-(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2-(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1)+(-0.1e-12-0.5481797400e-1*w^11-40.93358002*w^(19/2)-212.0102604*w^(17/2)-1.048226159*w^(21/2)-8.667039897*w^10-119.4464160*w^9-208.1803245*w^8-54.3436016*w^7-38.4722894*w^6+2.67061391*w^5-2.29413863*w^4-.136247212*w^2+.899997750*w^3+0.1e-10*w^(1/2)-0.150073928e-1*w^(3/2)+0.54469063e-2*w-2.53869438*w^(11/2)-2.40374793*w^(9/2)-84.14780373*w^(15/2)-86.62603442*w^(13/2)+2.023073705*w^(7/2)-0.6906749e-2*w^(5/2))^(1/2))^2/(.3047304966*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+.3047304966*(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2)^2+3.281588197*(-.2760120000*(-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)*(1.10404800*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)*((-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2-(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2-(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1)+(-0.1e-12-0.5481797400e-1*w^11-40.93358002*w^(19/2)-212.0102604*w^(17/2)-1.048226159*w^(21/2)-8.667039897*w^10-119.4464160*w^9-208.1803245*w^8-54.3436016*w^7-38.4722894*w^6+2.67061391*w^5-2.29413863*w^4-.136247212*w^2+.899997750*w^3+0.1e-10*w^(1/2)-0.150073928e-1*w^(3/2)+0.54469063e-2*w-2.53869438*w^(11/2)-2.40374793*w^(9/2)-84.14780373*w^(15/2)-86.62603442*w^(13/2)+2.023073705*w^(7/2)-0.6906749e-2*w^(5/2))^(1/2))/(.3047304966*(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2+.3047304966*(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2)-(-.9999999170*w^2.0-2.496849400*w^1.5-0.3922745903e-3*w^1.0+1.025129710*w^.5+.3409200)^2+(.2121968329*w^1.5+0.1973593344e-3*w^1.0+.3883741982*w^.5-.3409200)^2-(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2+(-.2120672160*w^1.5-.9689999799*w^1.0+.3884533076*w^.5)^2-0.7618262414e-1)^2/(-0.4073463989e-3*w^2.0+2.495324242*w^1.5+1.925999960*w^1.0+1.025338523*w^.5)^2 = 1, w)

(39)

``

 

Download root.mw

Is there a way to force the branch choice with the LambertW?

If I turn on all _EnvAllSolutions:=true:

I get a placeholder for the branch. Unfortunately the name of this placeholder changes every time I re-evaluate.

Is there a way to force this to take a certain value?

 

Regards.

How do I use Maple to pull the propane price from www.fuelsonline.ca ?

If I use HTTP[Get]("http://www.fuelsonline.ca")

I only get            301,""

Any help?

 

 

hi,

how we can use maple to find solution of singuler integral equation by using product nystrom method or toeplitz method in maple?

I have the following expression (generated by some other procedure):

This does not have a taylor expansion in pV[6] in the general case because the square roots can become negative:

taylor(xpr,pV[6]);
Error, does not have a taylor expansion, try series()

But I can get an expansion by restrictig the range of pV[6]:

taylor(xpr,pV[6]) assuming -0.01<pV[6],pV[6]<0.01;

So far things are perfectly fine. But when I try mtaylor:

mtaylor(xpr,pV[6]) assuming -0.01<pV[6],pV[6]<0.01;
Error, (in assuming) when calling 'mtaylor'. Received: 'does not have a taylor expansion, try series()'

So the assumption seems to be ignored. I can work around this by expanding in pV[6] first, using taylor, and then expanding the result from that using mtaylor (I really also want the expansions in the other pV components; 6 in total although in this example some do not show up). I'll have to convince myself that this work-around gives the correct result but I think it does. However, I don't particularly like it.

I consider this a bug and am tempted to submit an SCR. But before I do that; is there anything obvious I am missing here?

Thanks,

M.D.

PS: This was done using Maple 15. I'll check newer versions later.

mtaylor_assuming.mw

Hello, when you run an error occurs:

Error, (in plots:-display) unknown plot object: circle
Error, (in plots:-display) expecting plot structure but received: P[0]
Error, (in plots:-display) expecting plot structure but received: PP

I'm not good in Maple. Please help me understand.

Programm: https://dropmefiles.com/Qnkzn

First 164 165 166 167 168 169 170 Last Page 166 of 2218