Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Why when I read a file in (image file - specifically a TIFF file) and then write the exact same file back out, it makes a file 30% larger.  Should it not be the same size??

Trying to solve this integral here. 

restart;
with(Statistics);

X := RandomVariable(Normal(10, mu));
                            X := _R
dummy := int(PDF(X, mu), r = -infinity .. 500);
                         /   /           2\\         
                         |   |  (mu - 10) ||         
                         |exp|- ----------||         
                         |   |        2   ||         
                         |   \    2 mu    /|         
          dummy := signum|-----------------| infinity
                         \       mu        /         
solve(dummy = 0.05);
 

What am I missing? Any ideas ? :)

How Do I set the Command Line Font in Maple 2019?

The default font is strange.  eq is displayed as a a lower case char like '8' followed by 'q'.

I would like to have something like courier 10, etc.

Hi, I am using the GroupTheory package and I wanted to created the following group in Maple:

I stumbled across this link https://www.maplesoft.com/products/maple/features/grouptheory.aspx and then tried to use the following commands to define this group in Maple:

1. First a defined a 12x12 matrix:

ct := <<e | p | q | r | s | t | u | v | w | x | y | z>, <p | q | e | y | u | w | z | r | x | t | v | s>, <q | e | p | v | z | x | s | y | t | w | r | u>, <r | z | t | s | e | y | v | x | p | u | q | w>, <s | w | y | e | r | q | x | u | z | v | t | p>, <t | r | z | x | w | u | e | q | y | p | s | v>, <u | x | v | p | y | e | t | z | s | r | w | q>, <v | u | x | z | q | r | y | w | e | s | p | t>, <w | y | s | t | x | z | p | e | v | q | u | r>, <x | v | u | w | t | s | q | p | r | e | z | y>, <y | s | w | u | p | v | r | t | q | z | e | x>, <z | t | r | q | v | p | w | s | u | y | x | e>>

 

2. Then I tried to define my  group using:

G := Group(ct)

 

However this doesn't work because I get the following error:

Error, (in GroupTheory:-Group) invalid input: arguments to GroupTheory:-Group, [Matrix(12, 12, {(1, 1) = e, (1, 2) = p, (1, 3) = q, (1, 4) = r, (1, 5) = s, (1, 6) = t, (1, 7) = u, (1, 8) = v, (1, 9) = w, (1, 10) = x, (1, 11) = y, (1, 12) = z, (2, 1) = p, (2, 2) = q, (2, 3) = e, (2, 4) = y, (2, 5) = u, (2, 6) = w, (2, 7) = z, (2, 8) = r, (2, 9) = x, (2, 10) = t, (2, 11) = v, (2, 12) = s, (3, 1) = q, (3, 2) = e, (3, 3) = p, (3, 4) = v, (3, 5) = z, (3, 6) = x, (3, 7) = s, (3, 8) = y, (3, 9) = t, (3, 10) = w, (3, 11) = r, (3, 12) = u, (4, 1) = r, (4, 2) = z, (4, 3) = t, (4, 4) = s, (4, 5) = e, (4, 6) = y, (4, 7) = v, (4, 8) = x, (4, 9) = p, (4, 10) = ...  (12, 8) = s, (12, 9) = u, (12, 10) = y, (12, 11) = x, (12, 12) = e})], do not match any of the accepted calling sequences

 

I don't know what's going wrong. It doesn't give a 2D Plot. Thanks in advance.

Temperature over 24hr period

 

y := 0.26e-1*x^3-1.03*x^2+10.2*x+34, 0 <= x and x <= 24

``

``

 

NULL


 

Download temperature24hr.mw

BE312-1920-CW2-Amended-Maple-Codemw-46469mw-46557_(1).mw

 

How do you run this code in Maple 2019 to Maple 18 because I can't see the output?

Thank you

I thought the easiest way to show the world map, a projected flat map into 3d was to use the builtin one and just transform it.  You can zoom into it and rotate it no problem but unforunately it's not as clean as I thought.  Is it possible to have cleaner shading manipulating the Builtin map to 3d?

with(plots):
with(plottools):
with(DataSets):
with(Builtin):
m := WorldMap():
m1 := Display(m)
                                

to3d := transform((x, y) -> [x, y, 0]):
m2 := to3d(m1)
                               

display(m2)

 

 

If a maple command or function are not available on the target language  of the code generation of maple, is it possible to set myself the expected output for such cases so that the Csharp(...)  recognizes the cases and generates the expect code?

for example 

h := proc(x::Array(1 .. 3, 1 .. 3), y::Array(1 .. 3, 1 .. 3)) local z; z := evalm(x &* y); return z[1, 1] + z[2, 2]; end proc;
CSharp(h);

The function names {`&*`, evalm} can not be recognized in the target language

but for the &* it shoud be easy to add a template with the desired C# output. 

Is it possible to add templates in existing languages but not new language definitions?


 

I am trying to solve a set of equations

Why are the results not the same as the following results?

Is there any other way to get the correct answer?


 

NULL

T[1] := 3*a__0*a__1^2*q = 0

3*a__0*a__1^2*q = 0

(1)

T[2] := 2*a__1*k^2*m^2+a__1^3*q = 0

2*a__1*k^2*m^2+a__1^3*q = 0

(2)

T[3] := -a__1*b__1*k^2*m^2+3*a__1^2*b__1^2*q+3*a__0^2*a__1*b__1-a__1*b__1*k^2+a__1*b__1*p = 0

-a__1*b__1*k^2*m^2+3*a__1^2*b__1^2*q+3*a__0^2*a__1*b__1-a__1*b__1*k^2+a__1*b__1*p = 0

(3)

T[4] := a__0^3*q+6*a__0*a__1*b__1*q+a__0*p = 0

a__0^3*q+6*a__0*a__1*b__1*q+a__0*p = 0

(4)

T[5] := b__1^3*q+2*b__1*k^2 = 0

b__1^3*q+2*b__1*k^2 = 0

(5)

vars := {a__0, a__1, b__1, k}

{a__0, a__1, b__1, k}

(6)

sys1 := {}; SolsT := {}; for i to 5 do sys1 := `union`(sys1, {T[i]}) end do; sys := sys1

{}

 

{}

 

{3*a__0*a__1^2*q = 0, b__1^3*q+2*b__1*k^2 = 0, 2*a__1*k^2*m^2+a__1^3*q = 0, a__0^3*q+6*a__0*a__1*b__1*q+a__0*p = 0, -a__1*b__1*k^2*m^2+3*a__1^2*b__1^2*q+3*a__0^2*a__1*b__1-a__1*b__1*k^2+a__1*b__1*p = 0}

(7)

``

for i to 5 do indets(T[i]) end do

{a__0, a__1, q}

 

{a__1, k, m, q}

 

{a__0, a__1, b__1, k, m, p, q}

 

{a__0, a__1, b__1, p, q}

 

{b__1, k, q}

(8)

Solll := [solve(sys, vars, explicit)]

[{a__0 = 0, a__1 = a__1, b__1 = 0, k = (1/2)*(-2*q)^(1/2)*a__1/m}, {a__0 = 0, a__1 = a__1, b__1 = 0, k = -(1/2)*(-2*q)^(1/2)*a__1/m}, {a__0 = (-q*p)^(1/2)/q, a__1 = 0, b__1 = b__1, k = (1/2)*(-2*q)^(1/2)*b__1}, {a__0 = -(-q*p)^(1/2)/q, a__1 = 0, b__1 = b__1, k = (1/2)*(-2*q)^(1/2)*b__1}, {a__0 = (-q*p)^(1/2)/q, a__1 = 0, b__1 = b__1, k = -(1/2)*(-2*q)^(1/2)*b__1}, {a__0 = -(-q*p)^(1/2)/q, a__1 = 0, b__1 = b__1, k = -(1/2)*(-2*q)^(1/2)*b__1}, {a__0 = (-q*p)^(1/2)/q, a__1 = 0, b__1 = 0, k = k}, {a__0 = -(-q*p)^(1/2)/q, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (1/2)*(-2*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(1/2)*(-2*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*q*(m^2-6*m+1)*p)^(1/2)*m/(q*(m^2-6*m+1)), b__1 = -(-2*q*(m^2-6*m+1)*p)^(1/2)/(q*(m^2-6*m+1)), k = ((m^2-6*m+1)*p)^(1/2)/(m^2-6*m+1)}, {a__0 = 0, a__1 = -(-2*q*(m^2-6*m+1)*p)^(1/2)*m/(q*(m^2-6*m+1)), b__1 = (-2*q*(m^2-6*m+1)*p)^(1/2)/(q*(m^2-6*m+1)), k = ((m^2-6*m+1)*p)^(1/2)/(m^2-6*m+1)}, {a__0 = 0, a__1 = (-2*q*(m^2-6*m+1)*p)^(1/2)*m/(q*(m^2-6*m+1)), b__1 = -(-2*q*(m^2-6*m+1)*p)^(1/2)/(q*(m^2-6*m+1)), k = -((m^2-6*m+1)*p)^(1/2)/(m^2-6*m+1)}, {a__0 = 0, a__1 = -(-2*q*(m^2-6*m+1)*p)^(1/2)*m/(q*(m^2-6*m+1)), b__1 = (-2*q*(m^2-6*m+1)*p)^(1/2)/(q*(m^2-6*m+1)), k = -((m^2-6*m+1)*p)^(1/2)/(m^2-6*m+1)}, {a__0 = 0, a__1 = (-2*q*(m^2+6*m+1)*p)^(1/2)*m/(q*(m^2+6*m+1)), b__1 = (-2*q*(m^2+6*m+1)*p)^(1/2)/(q*(m^2+6*m+1)), k = ((m^2+6*m+1)*p)^(1/2)/(m^2+6*m+1)}, {a__0 = 0, a__1 = -(-2*q*(m^2+6*m+1)*p)^(1/2)*m/(q*(m^2+6*m+1)), b__1 = -(-2*q*(m^2+6*m+1)*p)^(1/2)/(q*(m^2+6*m+1)), k = ((m^2+6*m+1)*p)^(1/2)/(m^2+6*m+1)}, {a__0 = 0, a__1 = (-2*q*(m^2+6*m+1)*p)^(1/2)*m/(q*(m^2+6*m+1)), b__1 = (-2*q*(m^2+6*m+1)*p)^(1/2)/(q*(m^2+6*m+1)), k = -((m^2+6*m+1)*p)^(1/2)/(m^2+6*m+1)}, {a__0 = 0, a__1 = -(-2*q*(m^2+6*m+1)*p)^(1/2)*m/(q*(m^2+6*m+1)), b__1 = -(-2*q*(m^2+6*m+1)*p)^(1/2)/(q*(m^2+6*m+1)), k = -((m^2+6*m+1)*p)^(1/2)/(m^2+6*m+1)}]

(9)

for i to nops(Solll) do SOlls[i] := simplify(Solll[i], 'symbolic') end do

{a__0 = 0, a__1 = a__1, b__1 = 0, k = ((1/2)*I)*2^(1/2)*q^(1/2)*a__1/m}

 

{a__0 = 0, a__1 = a__1, b__1 = 0, k = -((1/2)*I)*2^(1/2)*q^(1/2)*a__1/m}

 

{a__0 = I*p^(1/2)/q^(1/2), a__1 = 0, b__1 = b__1, k = ((1/2)*I)*2^(1/2)*q^(1/2)*b__1}

 

{a__0 = -I*p^(1/2)/q^(1/2), a__1 = 0, b__1 = b__1, k = ((1/2)*I)*2^(1/2)*q^(1/2)*b__1}

 

{a__0 = I*p^(1/2)/q^(1/2), a__1 = 0, b__1 = b__1, k = -((1/2)*I)*2^(1/2)*q^(1/2)*b__1}

 

{a__0 = -I*p^(1/2)/q^(1/2), a__1 = 0, b__1 = b__1, k = -((1/2)*I)*2^(1/2)*q^(1/2)*b__1}

 

{a__0 = I*p^(1/2)/q^(1/2), a__1 = 0, b__1 = 0, k = k}

 

{a__0 = -I*p^(1/2)/q^(1/2), a__1 = 0, b__1 = 0, k = k}

 

{a__0 = 0, a__1 = 0, b__1 = b__1, k = ((1/2)*I)*2^(1/2)*q^(1/2)*b__1}

 

{a__0 = 0, a__1 = 0, b__1 = b__1, k = -((1/2)*I)*2^(1/2)*q^(1/2)*b__1}

 

{a__0 = 0, a__1 = 0, b__1 = 0, k = k}

 

{a__0 = 0, a__1 = I*2^(1/2)*p^(1/2)*m/(q^(1/2)*(m^2-6*m+1)^(1/2)), b__1 = -I*2^(1/2)*p^(1/2)/(q^(1/2)*(m^2-6*m+1)^(1/2)), k = p^(1/2)/(m^2-6*m+1)^(1/2)}

 

{a__0 = 0, a__1 = -I*2^(1/2)*p^(1/2)*m/(q^(1/2)*(m^2-6*m+1)^(1/2)), b__1 = I*2^(1/2)*p^(1/2)/(q^(1/2)*(m^2-6*m+1)^(1/2)), k = p^(1/2)/(m^2-6*m+1)^(1/2)}

 

{a__0 = 0, a__1 = I*2^(1/2)*p^(1/2)*m/(q^(1/2)*(m^2-6*m+1)^(1/2)), b__1 = -I*2^(1/2)*p^(1/2)/(q^(1/2)*(m^2-6*m+1)^(1/2)), k = -p^(1/2)/(m^2-6*m+1)^(1/2)}

 

{a__0 = 0, a__1 = -I*2^(1/2)*p^(1/2)*m/(q^(1/2)*(m^2-6*m+1)^(1/2)), b__1 = I*2^(1/2)*p^(1/2)/(q^(1/2)*(m^2-6*m+1)^(1/2)), k = -p^(1/2)/(m^2-6*m+1)^(1/2)}

 

{a__0 = 0, a__1 = I*2^(1/2)*p^(1/2)*m/(q^(1/2)*(m^2+6*m+1)^(1/2)), b__1 = I*2^(1/2)*p^(1/2)/(q^(1/2)*(m^2+6*m+1)^(1/2)), k = p^(1/2)/(m^2+6*m+1)^(1/2)}

 

{a__0 = 0, a__1 = -I*2^(1/2)*p^(1/2)*m/(q^(1/2)*(m^2+6*m+1)^(1/2)), b__1 = -I*2^(1/2)*p^(1/2)/(q^(1/2)*(m^2+6*m+1)^(1/2)), k = p^(1/2)/(m^2+6*m+1)^(1/2)}

 

{a__0 = 0, a__1 = I*2^(1/2)*p^(1/2)*m/(q^(1/2)*(m^2+6*m+1)^(1/2)), b__1 = I*2^(1/2)*p^(1/2)/(q^(1/2)*(m^2+6*m+1)^(1/2)), k = -p^(1/2)/(m^2+6*m+1)^(1/2)}

 

{a__0 = 0, a__1 = -I*2^(1/2)*p^(1/2)*m/(q^(1/2)*(m^2+6*m+1)^(1/2)), b__1 = -I*2^(1/2)*p^(1/2)/(q^(1/2)*(m^2+6*m+1)^(1/2)), k = -p^(1/2)/(m^2+6*m+1)^(1/2)}

(10)

 

Solsys := [allvalues([solve(sys, vars)])]

[[{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = (-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = (-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = (-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = (p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = (p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}], [{a__0 = 0, a__1 = a__1, b__1 = 0, k = -(-(1/2)*q)^(1/2)*a__1/m}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = -(-p/q)^(1/2), a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = 0, b__1 = b__1, k = -(-(1/2)*q)^(1/2)*b__1}, {a__0 = 0, a__1 = 0, b__1 = 0, k = k}, {a__0 = 0, a__1 = -(-2*p/(m^2*q-6*m*q+q))^(1/2)*m, b__1 = (-2*p/(m^2*q-6*m*q+q))^(1/2), k = -(p/(m^2-6*m+1))^(1/2)}, {a__0 = 0, a__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2)*m, b__1 = -(-2*p/(m^2*q+6*m*q+q))^(1/2), k = -(p/(m^2+6*m+1))^(1/2)}]]

(11)

``


 

Download

Hi all, assume data::list, I want check data is not empty, which one is faster ?

 

 

Greetings,

I need to numerically solve a set of about 95 simultaneous algebraic transcendental equations, with each having about 25 terms that are expressions of three independent variables and other parameters of the problem (some 2500 total terms).  I've had much difficulty solving this set on Engineering Equations Solver (EES, from fchart software), and I'm now suspecting bugs in that program.

I'm not able to find a spec sheet or user's manual that explains Maple's capabilities.  I haven't found a place to read about such things as, "maximum number of algebraic equations," or "maximum number of characters in an equation", or other kinds of guides that would give me a direct indication on the software's capabilities.

Is there a stand-alone desk top version than can crunch numbers without resource to the cloud?

Can anyone please direct me to a complete manual for the user explaining such details?  

Thanks,

Tom

I had expected that applying the power rule for exponents would lead to an answer of zero. Maple refuses to give the desired answer, but using a procedure it works as expected.

Did I miss something?
 

``

restart

kernelopts(version)

`Maple 2019.2, X86 64 WINDOWS, Nov 26 2019, Build ID 1435526`

(1)

interface(version)

`Standard Worksheet Interface, Maple 2019.2, Windows 10, November 26 2019 Build ID 1435526`

(2)

simplify(exp(k*(ln(t)+ln(a)))-(exp(ln(t)+ln(a)))^k, symbolic)

exp(k*(ln(t)+ln(a)))-t^k*a^k

(3)

W := proc (m, n) local r; r := simplify(exp(m*n)-(exp(m))^n, symbolic); return r end proc

W(n, k)

0

(4)

subs(n = ln(t)+ln(a), W(n, k))

0

(5)

V := proc (m, n) local r; r := simplify((exp(m))^n, symbolic); return r end proc

V(n, k)

exp(k*n)

(6)

V(ln(t)+ln(a), k)

t^k*a^k

(7)

``


 

Download mapleprimes.mw

Hi, 

Here is an example where evalf ( Int(....) ) fails to compute an in integral.
The function to integrate is very smooth and, except method=_Gquad, all the others seem to fail (even method=_MonteCarlo fails, which is probably the most surprising thing!)

Is it a weakness of evalf+Int or a misusse of my own ?

restart:

interface(version)

`Standard Worksheet Interface, Maple 2015.2, Mac OS X, December 21 2015 Build ID 1097895`

(1)

plot3d(cos(x*y), x=-1..3, y=-1..-0.2)

 

int(cos(x*y), [x=-1..3, y=-1..-1/5]);
evalf[15](%);

Si(3)+Si(1)-Si(3/5)-Si(1/5)

 

2.00705070023234

(2)

CodeTools:-Usage( evalf[10](Int(cos(x*y), [x=-1..3, y=-1..-0.2], method=_Gquad)) );

memory used=1.24KiB, alloc change=0 bytes, cpu time=0ns, real time=0ns, gc time=0ns

 

2.007050700

(3)

CodeTools:-Usage( evalf[10](Int(cos(x*y), [x=-1..3, y=-1..-0.2], method=_CubaVegas)) );

memory used=22.14KiB, alloc change=0 bytes, cpu time=16.99s, real time=17.01s, gc time=0ns

 

Int(Int(cos(x*y), x = -1. .. 3.), y = -1. .. -.2)

(4)

CodeTools:-Usage( evalf[10](Int(cos(x*y), [x=-1..3, y=-1..-0.2], method=_MonteCarlo)) );

memory used=12.79KiB, alloc change=0 bytes, cpu time=1000.00us, real time=0ns, gc time=0ns

 

Int(Int(cos(x*y), x = -1. .. 3.), y = -1. .. -.2)

(5)

N := 10^6:
X := Statistics:-Sample(Uniform(-1, 3), N):
Y := Statistics:-Sample(Uniform(-1, -0.2), N):
Z := cos~(X*~Y):
add(Z) / N * (4*0.8);

HFloat(2.0076470771803545)

(6)

 


 

Download evalf_Int.mw

 

I'm using variable names that have subscripts, not as a table index but literal i.e. R__1 as a unique variable name.  It seems whenever I make assumptions on variables that have subscripts, when I use them the variables that have subscripts are printed twice:

 

Can anyone explain why this happens and how to get around it?

 

Thanks in advance.

Dear Friends

I want to know that how can I plot a 2D curve in 3D? 

I need to plot the curve for example z=y^2, in a 3D space and exactly in the plane x=0. The ranges are -1<y<1, -1<x<1, 0<z<1

(I want to copy and paste this curve in another 3D figure.) 

Thanks a lot

First 575 576 577 578 579 580 581 Last Page 577 of 2218