Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

I have specified the problem in the red comments of the worksheet i am uploading:


 

restart

with(FileTools):

currentdir("H:\\USB 1 BACKUP\\ESD-USB\\maple_library"):

["ArithmeticMean_Display_Definition.txt", "BinomialCoefficient_PadicOrder.txt", "Binomial_coefficent_p_adic_valuation_Display_Definition.txt", "CompareGeometricMean.txt", "CompareHarmonicMean.txt", "CompareMean.txt", "Compare_Arithmetic_Mean_Description.txt", "Compare_Mean_Description.txt", "ConsistencyCompareGeometricMean.txt", "ConsistencyCompareHarmonicMean.txt", "ConsistencyCompareMean.txt", "delta.txt", "delta_Display_Definition.txt", "digit_base_conversion.txt", "EulerProduct.txt", "GeometricMean_Display_Definition.txt", "HarmonicMean_Display_Definition.txt", "Mobius.txt", "MultiplicitySet.txt", "omega.txt", "p_adic_valuation.txt", "p_adic_valuation_Display_Definition.txt", "RationalParition.txt", "SquareFreeCount.txt", "WilsonTheoremLemma.txt", "WilsonTheoremLemma1_Display_Definition.txt", "WilsonTheoremLemma2_Display_Definition.txt", "WilsonTheoremLemma3_Display_Definition.txt"]

(1)

with(StringTools):

L := map(StringTools:-Has, FunctionList, "_Display_Definition"):

S[display] := {}:

for k to nops(L) do if L[k] = true then S[display] := `union`(S[display], {FunctionList[k]}) else S[procedure] := `union`(S[procedure], {FunctionList[k]}) end if end do;

for t to nops(S[display]) do read S[display][t] end do;

``

S[display]

{"p_adic_valuation.txt", "Compare_Mean_Description.txt", "delta_Display_Definition.txt", "digit_base_conversion.txt", "ArithmeticMean_Display_Definition.txt", "BinomialCoefficient_PadicOrder.txt", "Compare_Arithmetic_Mean_Description.txt", "GeometricMean_Display_Definition.txt", "HarmonicMean_Display_Definition.txt", "p_adic_valuation_Display_Definition.txt", "WilsonTheoremLemma1_Display_Definition.txt", "WilsonTheoremLemma2_Display_Definition.txt", "WilsonTheoremLemma3_Display_Definition.txt", "Binomial_coefficent_p_adic_valuation_Display_Definition.txt"}

(2)

read S[display][5]

`The Arithmetic Mean for the multiset:`

 

[a[j]][j = 1 .. n]

 

mu[A] = (sum(a[j], j = 1 .. n))/n

(3)

read S[display][7]

`CompareArithmeticMean(L,N) will return output informing you of what percentage of N random`

 

`natural number multisets of the same length as the multiset L and same range=[min(L),max(L)]`

 

`have a lower arithmetic mean than L, equal to L, and greater than L.`

(4)

``


 

Download possible_string_tools_bug.mw

I’m very pleased to announce that we have just released the Maple Companion mobile app for iOS and Android phones. As its name implies, this free app is a complement to Maple. You can use it to take pictures of math you find out in the wild (e.g. in your handwritten notes, on a blackboard, in a textbook), and bring that math into Maple so you can get to work.

The Maple Companion lets you:

  • Avoid the mistakes that can occur when transcribing mathematical expressions into Maple manually
  • Save time when entering multiple equations into Maple, such as when you are checking your homework or pulling information from a reference book
  • Push math you’ll need later into Maple now, even if you don’t have your computer handy

The Maple Companion is an idea we started playing with recently. We believe it has interesting potential as a tool to help students learn math, and we’d really like your feedback to help shape its future direction. This first release is a step towards that goal, so you can try it out and start thinking about what else you would like to see from an app like this. Should it bring in entire documents? Integrate with tutors and Math Apps? Help students figure out where they went wrong when solving a problem? Let us know what you think!

Visit Maple Companion to learn more, link to the app stores so you can download the app, and access the feedback form. And of course, you are also welcome to give us your ideas in the comment section of this post.

Can someone explain the content and detail of this message:

com.maplesoft.mathdoc.model.plot.PlotException: Unrecognized option in COLOR: RGBA

Have quadrature detected time domain complex data arrays.  Trying to fft array to get frequency domain arrays.  Arrays returned are always sinusoidal in nature rotating between + and - y axis.  Can not phase correct these sinusoidal frequency arrays.  Any ideas how to pretreat time domain arrays before fft or posttreat frequency domain arrays after fft in order to determine phase correction angles that will allow combination of real and imaginary frequency domain data points that are only in + y axis.

How can I set the alpha for the plot symbols? I would like to add some alpha for blending purposes(will help with the visual in my case).

 

Idealy I would like to plot a 2d "guassian" fade.

A warm greeting for all

How to import a figure from Mathematica to Maple.

Amr

I have a dependent and independent variables u(x),v(x),w(x),....diff( u(x),x$n)=U(k),diff( v(x),x$n)=V(k)......

Is it possible to create, diff(     , x$n)  is an operator or any differentiable function?

I'm having trouble connecting from Maple on Windows 10 to MSQL Server. I tried Microsoft recommended drivers such as sqljdbc_6.4.0.0, did (as I thought) all required steps. The only invariable result I get is "Cannot load driver". I was wandering if anyone had implemented such a construction. Driver name & version , connection string and Java version would be greatly appreciated. Another option is to have any driver, which connects to any of standard databases (Oracle, MySQL).  The only limitation is- it must be from Windows 7 or 10.
          Thanks.
           A.B.


The results should be the same, right?

50/3.(Vector(2, {(1) = .72, (2) = 0.6e-1})) = Vector[column](%id = 18446745399574633758)NULL

NULLNULL

``

50/3*.72 = 12.00000000

50/3*0.6e-1 = 1.000000000NULL

``


 

Download test.mw

I am trying to compare time taken in minutes for each iterative model(Jacobi, Gauss-Seidel and SOR) to complete, so as to figure out the iterativre model with a faster time of convergence but i don't know the command to initiate.

Hello,

I want to evaluate the change of temperature and energy loss during the flow through an expansion valve.

But the command fsolve this does not work with CoolProp.

The following command is just repeated, but gives no result.

fsolve({ThermophysicalData:-Property("D", "H2", "temperature" = TTT, "pressure" = ppp) = 31.13, ThermophysicalData:-Property("H", "H2", "temperature" = TTT, "pressure" = ppp) = 4.098640000*10^6}, {TTT, ppp})

Regards,

Andreas

Hi!

Assume that we have, in the cube C:=[-1,1]^N, for a fixed integer N>=2, a point X1  and   cosider the (closed) ball centered at X1 and radius R1:=0.6. Fixed an integer m>2, Somebody can indicate me how to compute the centers (belonging to C) and the radius of m disjoint balls with the above ball?

That is to say, compute points X2,...,Xm (in C) and positive numbers R2,...,Rm such that the intersection of the (closed) balls B(Xj,Rj) for j=1,...,m be empty. 

Some suggestion?

Many thanks in advance for your comments.

If i have a function like: f(d) = 1- inf { a \in [0,1]: a = e^{d(a-1)} } how can i plot it in maple?

Or simple one function with a maximum over an intervall in it?

Hello,

I have a problem in solving an integral in maple. I can't solve the below integral in maple and it returns the integral itself to me. I also attach an image from the integral if here is not clearly shown. I want maple to return me just a number. can anyone help me in this?

Thank you

int(sin(beta)*(-0.4447569104e-1*beta(10)^3+1.846983291*beta(10)^2+78.88888890*beta(10)+620.4645491)/(9.+.6366197724*beta(10))^2, beta = 0 .. (1/2)*Pi)

 

 

 

 

restart;
T := mu+lambda*H(xi)+(v-1)*H(xi)^2;
                                                2
               mu + lambda H(xi) + (v - 1) H(xi) 
u[0] := a[0]+a[1]*(d+H(xi))+a[2]/(d+H(xi))+a[3]*(d+H(xi))^2+a[4]/(d+H(xi))^2;
                                a[2]                      2
    a[0] + a[1] (d + H(xi)) + --------- + a[3] (d + H(xi)) 
                              d + H(xi)                    

             a[4]    
       + ------------
                    2
         (d + H(xi)) 
diff(u[0], xi);
                            / d        \
                       a[2] |---- H(xi)|
        / d        \        \ dxi      /
   a[1] |---- H(xi)| - -----------------
        \ dxi      /                2   
                         (d + H(xi))    

                                                 / d        \
                                          2 a[4] |---- H(xi)|
                           / d        \          \ dxi      /
      + 2 a[3] (d + H(xi)) |---- H(xi)| - -------------------
                           \ dxi      /                 3    
                                             (d + H(xi))     
collect(%, diff(H(xi), xi));
/           a[2]                               2 a[4]   \ / d       
|a[1] - ------------ + 2 a[3] (d + H(xi)) - ------------| |---- H(xi
|                  2                                   3| \ dxi     
\       (d + H(xi))                         (d + H(xi)) /           

   \
  )|
   /
d[1] := (a[1]-a[2]/(d+H(xi))^2+2*a[3]*(d+H(xi))-2*a[4]/(d+H(xi))^3)*T;
 /           a[2]                               2 a[4]   \ /  
 |a[1] - ------------ + 2 a[3] (d + H(xi)) - ------------| \mu
 |                  2                                   3|    
 \       (d + H(xi))                         (d + H(xi)) /    

                                  2\
    + lambda H(xi) + (v - 1) H(xi) /
diff(d[1], xi);
/       / d        \                                / d        \\ 
|2 a[2] |---- H(xi)|                         6 a[4] |---- H(xi)|| 
|       \ dxi      /          / d        \          \ dxi      /| 
|------------------- + 2 a[3] |---- H(xi)| + -------------------| 
|              3              \ dxi      /                 4    | 
\   (d + H(xi))                                 (d + H(xi))     / 

  /                                 2\   /           a[2]    
  \mu + lambda H(xi) + (v - 1) H(xi) / + |a[1] - ------------
                                         |                  2
                                         \       (d + H(xi)) 

                             2 a[4]   \ /       / d        \
   + 2 a[3] (d + H(xi)) - ------------| |lambda |---- H(xi)|
                                     3| \       \ dxi      /
                          (d + H(xi)) /                     

                     / d        \\
   + 2 (v - 1) H(xi) |---- H(xi)||
                     \ dxi      //
collect(%, diff(H(xi), xi));
//   2 a[2]                  6 a[4]   \ /                 
||------------ + 2 a[3] + ------------| \mu + lambda H(xi)
||           3                       4|                   
\\(d + H(xi))             (d + H(xi)) /                   

                  2\   /           a[2]                         
   + (v - 1) H(xi) / + |a[1] - ------------ + 2 a[3] (d + H(xi))
                       |                  2                     
                       \       (d + H(xi))                      

        2 a[4]   \                           \ / d        \
   - ------------| (lambda + 2 (v - 1) H(xi))| |---- H(xi)|
                3|                           | \ dxi      /
     (d + H(xi)) /                           /             
d[2] := ((2*a[2]/(d+H(xi))^3+2*a[3]+6*a[4]/(d+H(xi))^4)*(mu+lambda*H(xi)+(v-1)*H(xi)^2)+(a[1]-a[2]/(d+H(xi))^2+2*a[3]*(d+H(xi))-2*a[4]/(d+H(xi))^3)*(lambda+(2*(v-1))*H(xi)))*T;
//   2 a[2]                  6 a[4]   \ /                 
||------------ + 2 a[3] + ------------| \mu + lambda H(xi)
||           3                       4|                   
\\(d + H(xi))             (d + H(xi)) /                   

                  2\   /           a[2]                         
   + (v - 1) H(xi) / + |a[1] - ------------ + 2 a[3] (d + H(xi))
                       |                  2                     
                       \       (d + H(xi))                      

        2 a[4]   \                           \ /                 
   - ------------| (lambda + 2 (v - 1) H(xi))| \mu + lambda H(xi)
                3|                           |                   
     (d + H(xi)) /                           /                   

                  2\
   + (v - 1) H(xi) /

eq := (2*k*k)*w*beta*d[2]-(2*alpha*k*k)*d[1]-2*w*u[0]+k*u[0]*u[0];
   2        //   2 a[2]                  6 a[4]   \ /  
2 k  w beta ||------------ + 2 a[3] + ------------| \mu
            ||           3                       4|    
            \\(d + H(xi))             (d + H(xi)) /    

                                 2\   /           a[2]    
   + lambda H(xi) + (v - 1) H(xi) / + |a[1] - ------------
                                      |                  2
                                      \       (d + H(xi)) 

                             2 a[4]   \                          
   + 2 a[3] (d + H(xi)) - ------------| (lambda + 2 (v - 1) H(xi)
                                     3|                          
                          (d + H(xi)) /                          

   \ /                                 2\            2 /    
  )| \mu + lambda H(xi) + (v - 1) H(xi) / - 2 alpha k  |a[1]
   |                                                   |    
   /                                                   \    

         a[2]                               2 a[4]   \ /  
   - ------------ + 2 a[3] (d + H(xi)) - ------------| \mu
                2                                   3|    
     (d + H(xi))                         (d + H(xi)) /    

                                 2\       /    
   + lambda H(xi) + (v - 1) H(xi) / - 2 w |a[0]
                                          |    
                                          \    

                          a[2]                      2
   + a[1] (d + H(xi)) + --------- + a[3] (d + H(xi)) 
                        d + H(xi)                    

         a[4]    \     /                            a[2]   
   + ------------| + k |a[0] + a[1] (d + H(xi)) + ---------
                2|     |                          d + H(xi)
     (d + H(xi)) /     \                                   

                     2       a[4]    \  
   + a[3] (d + H(xi))  + ------------|^2
                                    2|  
                         (d + H(xi)) /  
value(%);
   2        //   2 a[2]                  6 a[4]   \ /  
2 k  w beta ||------------ + 2 a[3] + ------------| \mu
            ||           3                       4|    
            \\(d + H(xi))             (d + H(xi)) /    

                                 2\   /           a[2]    
   + lambda H(xi) + (v - 1) H(xi) / + |a[1] - ------------
                                      |                  2
                                      \       (d + H(xi)) 

                             2 a[4]   \                          
   + 2 a[3] (d + H(xi)) - ------------| (lambda + 2 (v - 1) H(xi)
                                     3|                          
                          (d + H(xi)) /                          

   \ /                                 2\            2 /    
  )| \mu + lambda H(xi) + (v - 1) H(xi) / - 2 alpha k  |a[1]
   |                                                   |    
   /                                                   \    

         a[2]                               2 a[4]   \ /  
   - ------------ + 2 a[3] (d + H(xi)) - ------------| \mu
                2                                   3|    
     (d + H(xi))                         (d + H(xi)) /    

                                 2\       /    
   + lambda H(xi) + (v - 1) H(xi) / - 2 w |a[0]
                                          |    
                                          \    

                          a[2]                      2
   + a[1] (d + H(xi)) + --------- + a[3] (d + H(xi)) 
                        d + H(xi)                    

         a[4]    \     /                            a[2]   
   + ------------| + k |a[0] + a[1] (d + H(xi)) + ---------
                2|     |                          d + H(xi)
     (d + H(xi)) /     \                                   

                     2       a[4]    \  
   + a[3] (d + H(xi))  + ------------|^2
                                    2|  
                         (d + H(xi)) /  
expr := simplify(%);
Error, (in simplify) too many levels of recursion
temp := algsubs(d+H(xi) = freeze(d+H(xi)), numer(expr));
                              expr
thaw(collect(temp, freeze(d+H(xi)))/denom(expr));
                              expr
collect(%, H(xi));
 

First 637 638 639 640 641 642 643 Last Page 639 of 2218