Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

http://www.maplesoft.com/applications/view.aspx?SID=4229

from book example, it seems assumed that input size of data such as list size or matrix size is the same as

trained data set size, but this need to hard code infinite number of types of size

What is the method to programming neural network when input size is smaller or changing and not equal to size of trained data set?

Hello,

I have a list of equations. I would like to display this list in column.
Problem : as each term of my list is an equation, i can not transform my list in a vector.
How can I do to display a list of equations in column ?

Thank you for your help.

Probably not Maple's territory, but maybe a challenge?  Can we can get maple to do this?  Done by Matlab found here..

http://stackoverflow.com/questions/28279337/matlab-cuda-ocean-wave-simulation

i got 2 curves
a := abs(x);
b := (3/4)*x^2+1/4;

how can i get the max distance between them from x = -1 until x =1?

 heeeeeeeeeelp
 

Hello! Hope everyone would be fine. I want to solve the following system of ODEs please help to find the numerical solution

N := .6; alpha := .4; beta := .1; Nt := .2; Pr := .5; Nb := .1; s := .2; lambda[1] := 1; delta := .5; gm := 1; Sc := 1:L:=1:

Eq1 := (alpha*s+1)*(diff(F(eta), eta, eta, eta))-(F(eta)+(1/2)*s*eta)*(diff(F(eta), eta, eta))+((1/2)*(diff(F(eta), eta))-s)*(diff(F(eta), eta))-2*(G(eta)^2-(1-gm)^2)-2*lambda[1]*(H(eta)+N*Y(eta))-(alpha+beta-(1/4)*delta*(diff(F(eta), eta, eta, eta)))*(diff(F(eta), eta, eta))^2-(alpha-2*beta)*(diff(F(eta), eta))*(diff(F(eta), eta, eta, eta))-(2*(alpha-beta-(1/4)*delta*(diff(F(eta), eta, eta, eta))))*(diff(G(eta), eta))^2-(2*(alpha-(1/4)*delta*(diff(F(eta), eta, eta))))*G(eta)*(diff(G(eta), eta, eta)) = 0; Eq2 := (alpha*s+1)*(diff(G(eta), eta, eta))-F(eta)*(diff(G(eta), eta))+G(eta)*(diff(F(eta), eta))+s*(1-gm-G(eta)-(1/2)*eta*(diff(G(eta), eta)))-(1/2)*alpha*s*eta*(diff(G(eta), eta, eta, eta))+((3/2)*alpha+beta)*G(eta)*(diff(F(eta), eta, eta, eta))-((1/2)*alpha+beta)*(diff(F(eta), eta))*(diff(G(eta), eta, eta))-delta*((diff(F(eta), eta, eta))^2+6*(diff(G(eta), eta))^2)*(diff(G(eta), eta, eta)) = 0; Eq3 := (diff(H(eta), eta, eta))/Pr-F(eta)*(diff(H(eta), eta))+(1/2)*H(eta)*(diff(F(eta), eta))-s*(2*H(eta)+(1/2)*eta*(diff(H(eta), eta)))+Nb*(diff(H(eta), eta))*(diff(Y(eta), eta))+Nt*(diff(H(eta), eta))^2 = 0; Eq4 := (diff(Y(eta), eta, eta))/Sc-F(eta)*(diff(Y(eta), eta))+(1/2)*Y(eta)*(diff(F(eta), eta))-s*(2*Y(eta)+(1/2)*eta*(diff(Y(eta), eta)))+Nt*(diff(H(eta), eta, eta))/Nb = 0;

IC1 := F(0) = 0, (D(F))(0) = 0, G(0) = gm, H(0) = 1, Y(0) = 1; IC2 := (D(F))(L) = 0, G(L) = 1-gm, (D(G))(L) = 0, H(L) = 0, Y(L) = 0; dsys1 := {Eq1, Eq2, Eq3, Eq4, IC1, IC2}; dsol1 := dsolve(dsys1, numeric, output = listprocedure, range = 0 .. L);

dsol1f := subs(dsol1, F(eta));

dsol1g := subs(dsol1, G(eta)); dsol1h := subs(dsol1, H(eta)); dsol1y := subs(dsol1, Y(eta));

With my best regards and sincerely.

Graphical Programming with MapleSim in Vector Mechanics to Structures 2D

At the present time before constructing or starting to develop a mechanical structures project it is necessary to model it using graphic programming; In this opportunity and used MapleSim as a computational tool belonging to the company Maplesoft. The modern approach to modeling and simulation makes the fabrication of complex designs easy to solve. We will cover some examples taken from the engineering being implemented in Maplesim with insertion of physical objects; To be seen in real time through video output; Then integrates with Maple to analyze the equations and data through the static and dynamic behavior of the fabricated. Solved methods of physical block components include functionality for many domains: rotational and translational mechanics, multi-body dynamics, logic, and structural blocks; With techniques like: Drag-and-Drop Physical Modeling Environment and Create Custom Components Directly From Their Equations, thus the systems that would take hours or days to build from equations; In principle they can be created in a fraction of time using MapleSim, so it can incorporate significantly more complex graphical algorithms. In MapleSim, I use the revolutionary multibody technology that perfectly combines advanced multi-domain modeling tools to provide all the functionality you need in one environment.

FAST_UNT_2017.pdf

Lenin Araujo Castillo

Ambassador Maple - Perú

 

 

Let:

f:=x->1/sqrt(2*Pi)*exp(-x^2/2);

I.e. f is a standard Gaussian PDF.

Then (in Maple 2016.1):

Int(convert(f(x)*f(y)*x*x*abs(x+y),piecewise,x),x=-infinity..infinity,y=-infinity..infinity):
evalf(%);

Returns:

1.692568751

However (again in Maple 2016.1):

int(convert(f(x)*f(y)*x*x*abs(x+y),piecewise,x),x=-infinity..infinity,y=-infinity..infinity):
evalf(%);

Returns:

-0.5641895835

This is clearly incorrect, as the integral of a positive function must be positive.

This also seems to be a problem in which ever version of Maple is used behind the scenes on this forum.

int(convert(1/sqrt(2*Pi)*exp(-x^2/2)*1/sqrt(2*Pi)*exp(-y^2/2)*x*x*abs(x+y),piecewise,x),x=-infinity..infinity,y=-infinity..infinity)

gives:

int(convert(1/sqrt(2*Pi)*exp(-x^2/2)*1/sqrt(2*Pi)*exp(-y^2/2)*x*x*abs(x+y),piecewise,x),x=-infinity..infinity,y=-infinity..infinity)

Hi, there

How can I find the recurrence relation  for second derivative of sequence of functions  f-{n}(x)=\frac{(1-x^2)^n}{n!} in  maple 15?

please specify the commands.

we know the solution f"_{n}(x)=2(1-2n)f_{n-1}(x)+4f_{n-2}(x)

Regards

M.R. Yegan

Dear all

I have created a script code in maple. I also have contructed a power circuit in matlab simulink. How I use my code in matlab?

Hi,

Seem to be a bit stuck. Here's my code:
 

Thanks in advance :-) 

It is suggested  

hypergeom([1/3, 2/3], [3/2], (27/4)*z^2*(1-z)) = 1/z

if z > 1. Here is my try to prove that with Maple:


 

a := `assuming`([convert(hypergeom([1/3, 2/3], [3/2], (27/4)*z^2*(1-z)), elementary)], [z > 1])

-(1/((1/2)*(27*z^3-27*z^2+4)^(1/2)+(3/2)*z*(3*z-3)^(1/2))^(1/3)-1/((1/2)*(27*z^3-27*z^2+4)^(1/2)-(3/2)*z*(3*z-3)^(1/2))^(1/3))/(z*(3*z-3)^(1/2))

(1)

b := `assuming`([simplify(a, symbolic)], [z >= 1])

2*(-(12*(3*z+1)^(1/2)*z-12*z*(3*z-3)^(1/2)-8*(3*z+1)^(1/2))^(1/3)+(12*(3*z+1)^(1/2)*z+12*z*(3*z-3)^(1/2)-8*(3*z+1)^(1/2))^(1/3))/((3*z-3)^(1/2)*(12*(3*z+1)^(1/2)*z+12*z*(3*z-3)^(1/2)-8*(3*z+1)^(1/2))^(1/3)*(12*(3*z+1)^(1/2)*z-12*z*(3*z-3)^(1/2)-8*(3*z+1)^(1/2))^(1/3)*z)

(2)

plot(1/b, z = 1 .. 10)

 

simplify(diff(1/b, z), symbolic)

-48*(((3*z-2)*(3*z+1)^(1/2)+z*(3*z-3)^(1/2))*((12*z-8)*(3*z+1)^(1/2)-12*z*(3*z-3)^(1/2))^(1/3)+((12*z-8)*(3*z+1)^(1/2)+12*z*(3*z-3)^(1/2))^(1/3)*((-3*z+2)*(3*z+1)^(1/2)+z*(3*z-3)^(1/2)))/((3*z+1)^(1/2)*(3*z-3)^(1/2)*((12*z-8)*(3*z+1)^(1/2)+12*z*(3*z-3)^(1/2))^(2/3)*((12*z-8)*(3*z+1)^(1/2)-12*z*(3*z-3)^(1/2))^(2/3)*(((12*z-8)*(3*z+1)^(1/2)-12*z*(3*z-3)^(1/2))^(1/3)-((12*z-8)*(3*z+1)^(1/2)+12*z*(3*z-3)^(1/2))^(1/3))^2)

(3)

``


 

Download simplification.mw

Maple provides efficient vectorization and automatic parallelization for many common operators. For example

x -> 2*~x*~cos~(x*~x)

But in my application it is common to want to create rather long vectorized operators starting from some complicated symbolic computations. Doing conversions by hand from symbolic expressions to element-wise operations is laborious and error prone.

As a very simple example consider that it is possible to obtain (almost) the same result as above by writing the following as a vectorized operation

D(x->sin(x^2))~

But there are at least two problems with this. First of all it is not nearly as efficient as the first operator and second, perhaps not unrelated, is that the datatype returned when applying this operator to a Vector/rtable of hardware floats (e.g. datatype=float[8]) becomes something  more general.

My question is how can I convert a complicated symbolic expression into an efficient numeric element-wise vector operation?

I have tried several different approaches but so far without success. In the case above for example it seemed natural to expect that the following derivative

D(x->sin~(x^~2))

would produce a vectorized result, but this is not the case. In another attempt I was unable to see how to perform substitions into an expression, e.g. like this

unapply(subs(`*`=`*`~, cos=cos~, diff(sin(x),x)), x)

I would be glad to receive suggestions and/or references to relevant documentation. 

 

Everything is simple, until you go underwater – This is what the University of Waterloo Submarine Racing team, or in short ‘WatSub’ coined as their motto. Never mind learning to scuba dive, and dealing with such things as rust, this newly formed team would have to compete against university teams with a decade or more of experience.

But that did not deter the team, and they started work on Ontario’s first submarine racing project. The team approached Maplesoft to be a sponsor and we are proud to have supported this ingenious venture. The team has used Maplesoft technology in the design and testing of the submarine.

“Maple has been our go-to calculations and analysis tool throughout the development of Amy (2015-2016 season), and we will continue using it throughout the development of Bolt (2016-2017 season),” said Gonzalo Espinoza Graham, President of the WatSub Team. “Its familiar interface and computing environment allowed us to set design benchmark targets from early on the design process and follow through with them on the later stage.”

What started as an engineering project in December 2014, becoming officially the first submarine racing team in Ontario. The team soon grew to over 130 general members and a tight core-team, who were eager to tackle new challenges.  The team resides inside the Sedra Student Design Centre, University of Waterloo’s state of the art facility that houses over 25 student teams, the largest of its kind in North America.  

WatSub made its first appearance on the European International Submarine Races (eISR) back in July 2016, with its 1st submarine ‘Amy’, where a single scuba diver piloted the submarine and propelled it through an unforgiving winding course marked by obstacles and turns 10 meters underwater. The team has since then participated in other competitions and is constantly improving the design and performance of the submarine, learning from each competition they participate in.  Next year Amy will participate in the 14th edition of the eISR international competition. “I think the greatest thing we learned is never to give up,” said Ana Krstanovic, a third-year political science student who manages communications for the team. “We’re more motivated now than ever.”

 

Ojaswi Tagore, Gonzalo Espinoza Graham, and Janna Henzl represented WatSub at the European International Submarine Race in Gosport, UK.

 

Another example of an innovative project that Maplesoft supported in 2016 is Waterloop: The Canadian SpaceX Hyperloop Competition Team, Canada's only SpaceX Hyperloop Pod Competition team. This project, which could change the way we travel in the future, is driven by a group of dedicated University of Waterloo students who have taken on the challenge to design and build a functional prototype Hyperloop pod. They will test it on a one-mile test track in Hawthorne, California in January 2017, pitting it against 22 of the 1200+ teams who originally entered the competition.

The Hyperloop is a conceptual next generation high-speed transit system that will take commuters between cities at speeds over 1,000 km/h. The technology will differ from previous rail transit by having pods ride on a cushion of air in a reduced pressure tube in order to reach greater speeds with a smoother ride, and is powered entirely by renewable energy.

 The Hyperloop Pod Competition was launched by Elon Musk, the billionaire engineer and founder of SpaceX and Tesla Motors.  The competition is separated into 3 rounds. The first one was held in late December, where selected teams sent in their initial designs to be reviewed. From there, 180 teams were chosen to compete at Texas A&M University. Each team set up a booth and a panel of judges critiqued them and chose 31 teams to move onto the final, build and test stage.

Waterloop Goose I

Waterloop Goose X

The GOOSE I is Waterloop’s half-scale, functional prototype vehicle pod, which will be the one in the competition.  The GOOSE X pod is a conceptual full size Hyperloop vehicle inspired by the prototype they are building. The full size pod will have a capacity of 26 passengers per pod.

"Our prototype has been designed to be as simple and economical as possible, while still performing all necessary functions for the full size Hyperloop. If it is successful, it has the potential to revolutionize the transit industry in the same manner the train and airplane has before it," said Montgomery de Luna, architectural design lead for Waterloop. “We would like to thank Maplesoft for their generous support.  Without sponsors like Maplesoft supporting our vision and encouraging innovative student projects, we wouldn’t be able to achieve our goal.”

Revolutionizing the transportation industry isn’t easy and is at times frustrating and time consuming for these teams, but having the best tools and resources will ensure that the teams have a good chance at excelling in competitions and creating innovative models that could change our future.

I use the example procedure when search. Clock in help 

but elapsed function can only run one time

because it return clock is not running

need to run clock start again and calculate from beginning again

how elapsed function can run more times

Hi!

Everyone,

I want to draw  phase plane of system of three fractional order equations. 

 

Note that 

Also want the  phase portrait when the values of alpha are not same....

Also

Thanks

 

 

 

First 1008 1009 1010 1011 1012 1013 1014 Last Page 1010 of 2224