Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Dear all 
I have a function defined over the closed interval [ x[k], x[k+2] ] and zero elsewhere 
I would like to plot this sequence of function and compute an integral. 

I need your help to finish the attahced code, something is wrong. I can't  use piecewise funciton in loop and plot all functions in the same graph

piecewise_funciton_and_integral.mw

thanks for your remaks and help

Hello, can someone explain why something like this fails? The help page for 'isolate' says the second argument can be 'any algebraic expression'. Thanks.

I have the following systems of ODE in hand and would like to solve them. It would be great if somebody could help me with it.

dudx := -415; dudy := 3901; dudz := -3365; dvdx := 23; dvdy := -1270; dvdz := 994; dwdx := 57; dwdy := -1665; dwdz := 1683; taup := 0.5390603100674905e-5

-415

 

3901

 

-3365

 

23

 

-1270

 

994

 

57

 

-1665

 

1683

 

0.5390603100674905e-5

(1)

u := .387; v := -.205; w := -.286; x0 := -0.979849e-2; y0 := -0.14583e-2; z0 := 0.623749e-1

.387

 

-.205

 

-.286

 

-0.979849e-2

 

-0.14583e-2

 

0.623749e-1

(2)

a__1 := dudx/taup; a__2 := dudy/taup; a__3 := dudz/taup; a__4 := 1/taup; a__5 := u/taup; b__1 := dvdx/taup; b__2 := dvdy/taup; b__3 := dvdz/taup; b__4 := 1/taup; b__5 := v/taup; c__1 := dwdx/taup; c__2 := dwdy/taup; c__3 := dwdz/taup; c__4 := 1/taup; c__5 := w/taup

-76985820.00

 

723666708.0

 

-624234420.0

 

185508.0000

 

71791.59600

 

4266684.000

 

-235595160.0

 

184394952.0

 

185508.0000

 

-38029.14000

 

10573956.00

 

-308870820.0

 

312209964.0

 

185508.0000

 

-53055.28800

(3)

sys := diff(x(t), t, t) = a__1*x(t)+a__2*y(t)+a__3*z(t)-a__4*(diff(x(t), t))+a__5, diff(y(t), t, t) = b__1*x(t)+b__2*y(t)+b__3*z(t)-b__4*(diff(y(t), t))+b__5, diff(z(t), t, t) = c__1*x(t)+c__2*y(t)+c__3*z(t)-c__4*(diff(z(t), t))+c__5

diff(diff(x(t), t), t) = -76985820.00*x(t)+723666708.0*y(t)-624234420.0*z(t)-185508.0000*(diff(x(t), t))+71791.59600, diff(diff(y(t), t), t) = 4266684.000*x(t)-235595160.0*y(t)+184394952.0*z(t)-185508.0000*(diff(y(t), t))-38029.14000, diff(diff(z(t), t), t) = 10573956.00*x(t)-308870820.0*y(t)+312209964.0*z(t)-185508.0000*(diff(z(t), t))-53055.28800

(4)

ics := x(0) = x0, y(0) = y0, z(0) = z0, (D(x))(0) = 0, (D(y))(0) = 0, (D(z))(0) = 0

x(0) = -0.979849e-2, y(0) = -0.14583e-2, z(0) = 0.623749e-1, (D(x))(0) = 0, (D(y))(0) = 0, (D(z))(0) = 0

(5)


Thank you very much!

Download m_solution.mw

Hi 

Warm greetings.

Is it possible to solve the numerical scheme present in the below paper.

Anita Chaturvedi, Kokila Ramesh, and Vatsala G A. (2017). “A MATHEMATICAL APPROACH TO STUDY THE EFFECT OF POLLUTANTS/TOXICANTS IN AQUATIC ENVIRONMENT.” International Journal of Research - Granthaalayah, 5(4) RAST, 33-38.

https://doi.org/10.5281/zenodo.803418

Thank you.

Could please help me solving the following problem?
Thank you a lot.

The question https://www.mapleprimes.com/questions/233780-Plot-Absolute-Advantage-Of-Option-A disappeared (I know since I answered today).

Why?

I simplified a vector column using side relations. Then I wanted to evaluate using

eval( equation,  [x1=3,  x2=5......})

But side relations uses the reverse order i.e. after evaluation

[3=x1, 5=x2......]

So then the internals of the list need to be swaped tto work with eval.That is easy. I am just wondering is there a neater way to achieve this?

restart

NULL

P1 := Vector(3, {(1) = -(y[1]-y[3])*(y[2]-y[3])*((x[2]^2-x[2]*x[3]+x[3]^2)*x[1]^2-x[2]*x[3]*(x[2]+x[3])*x[1]+x[2]^2*x[3]^2)*(y[1]-y[2]), (2) = -(x[1]-x[3])*(x[2]-x[3])*(x[1]-x[2])*((y[2]^2-y[2]*y[3]+y[3]^2)*y[1]^2-y[2]*y[3]*(y[2]+y[3])*y[1]+y[2]^2*y[3]^2), (3) = ((-y[1]^2*y[2]+(3*y[2]*y[3]-y[3]^2)*y[1]-y[2]^2*y[3])*x[2]+x[3]*(y[1]^2*y[3]+y[2]*(y[2]-3*y[3])*y[1]+y[2]*y[3]^2))*x[1]^2+((y[1]^2*y[3]+y[2]*(y[2]-3*y[3])*y[1]+y[2]*y[3]^2)*x[2]^2+3*x[3]*(y[2]-y[3])*(y[1]-y[3])*(y[1]-y[2])*x[2]-x[3]^2*(y[1]^2*y[2]+(-3*y[2]*y[3]+y[3]^2)*y[1]+y[2]^2*y[3]))*x[1]-x[3]*((y[1]^2*y[2]+(-3*y[2]*y[3]+y[3]^2)*y[1]+y[2]^2*y[3])*x[2]-x[3]*(y[1]^2*y[3]+y[2]*(y[2]-3*y[3])*y[1]+y[2]*y[3]^2))*x[2]})

eqns := {(x[1]-x[2])*(x[2]-x[3])*(x[3]-x[1]) = R, (y[1]-y[2])*(y[2]-y[3])*(y[3]-y[1]) = S, x[1]^2*x[2]^2-x[1]^2*x[2]*x[3]+x[1]^2*x[3]^2-x[1]*x[2]^2*x[3]-x[1]*x[2]*x[3]^2+x[2]^2*x[3]^2 = Y, y[1]^2*y[2]^2-y[1]^2*y[2]*y[3]+y[1]^2*y[3]^2-y[1]*y[2]^2*y[3]-y[1]*y[2]*y[3]^2+y[2]^2*y[3]^2 = X, x[1]^2*x[2]+x[1]^2*x[3]+x[1]*x[2]^2-6*x[1]*x[2]*x[3]+x[1]*x[3]^2+x[2]^2*x[3]+x[2]*x[3]^2 = Z, y[1]^2*y[2]+y[1]^2*y[3]+y[1]*y[2]^2-6*y[1]*y[2]*y[3]+y[1]*y[3]^2+y[2]^2*y[3]+y[2]*y[3]^2 = W}

P1new := simplify(P1, eqns)

Vector[column](%id = 36893490132854572084)

(1)

values := {x[1] = 3, x[2] = 5, x[3] = 7, y[1] = 2, y[2] = -11, y[3] = 13}

{x[1] = 3, x[2] = 5, x[3] = 7, y[1] = 2, y[2] = -11, y[3] = 13}

(2)

vals1 := eval(eqns, values)

{-3432 = S, 16 = R, 120 = Z, 316 = Y, 2018 = W, 22753 = X}

(3)

eval(P1new, vals1)

Vector[column](%id = 36893490132854572084)

(4)

vals1swap := [seq(rhs(vals1[i]) = lhs(vals1[i]), i = 1 .. nops(vals1))]

[S = -3432, R = 16, Z = 120, Y = 316, W = 2018, X = 22753]

(5)

eval(P1new, vals1swap)

Vector[column](%id = 36893490132849052116)

(6)

eval(P1, values)

Vector[column](%id = 36893490132871267020)

(7)

``

NULL

``

Download Q_6-03-2022_side_rels_and_eval.mw

Need help to plot a graph along x-axis  in attached worksheet. 

help_graph.mw

NULL

restart;

with(plots):with(plottools):

Solve diagonal resistance of nodes (0,0,0)-(3,4,5), (Edge length = ohm).(156/47 ohm)

   

plots[display]([nodes, node2, plotlinesx], scaling = constrained, style = wireframe, axes = boxed, orientation = [-50, 70, 0])

 

Solve minimum diagonal surface distance of nodes (0,0,0)-(3,4,5).(sqrt(74))
NULL

NULL

Download Resistance-345.mw

Solve diagonal resistance of nodes (0,0,0)-(3,4,5),

Edge length = ohm, therefore, each edge has 3, 4 and 5 ohm, respectivery. (156/47 ohm)

Solve minimum diagonal surface distance of nodes (0,0,0)-(3,4,5). (sqrt(74))

Electric circuit study.

Tokoro.

A have som problems when i Will save a project. It Will take 2-5 Minutes where my other freinds never Experince this? Also i have some problems when i pauses writing, when i take notes in class, it Will give me the loading circle on mac( iam using a MacBook Air 2018) 

i hope you Can help:)

thx

Hi, im trying to optimize a function with a constraint. 

I've tried the Optimize package but I can't seem to make it work. 

I've attached  an image to my question, witht the function and the constraint. I want to find the optimal "t_x"

Function: rho*ln((-beta*tau + rho)/(1 + t__x)) + sigma*ln(sigma/(1 + t__y)) + beta*tau + B - rho - sigma - beta*tau*ln((-beta*tau + rho)/(1 + t__x))

Constaint: -t__x*(-beta*tau + rho)/(1 + t__x) + t__y*sigma/(1 + t__y) = R

Hope you can help 

Dear Colleagues,

I am trying to solve the following system of ode

odeSystem := {diff(y1(x), x) = -x*y2(x)-(1+x)*y3(x), diff(y2(x), x) = -x*y1(x)-(1+x)*y4(x), diff(y3(x), x) = -x*y1(x)-(1+x)*y4(x)-5*x*cos((1/2)*x^2), diff(y4(x), x) = -x*y2(x)-(1+x)*y3(x)+5*x*sin((1/2)*x^2), y1(0) = 5, y2(0) = 1, y3(0) = -1, y4(0) = 0};
systemSol := dsolve(odeSystem);

However, the result displayed is not explicit and contains integral sign. Please, I need help to obtain explicit result.

Thank you.

Please see the attached file; I'm attempting to do some calculations with the 'PDETools' package; notice the first term in equation (4), where sqrt(x2+y2) is not canceling in the fraction, despite using the 'simplify' command; why is this happening, and how can I achieve complete simplification?

Ques_Mapleprime.mw

with(PDEtools):

DepVars := [u(x, y, t), U(xi, eta)]; 1; alias(u = u(x, y, t))

[u(x, y, t), U(xi, eta)]

 

u

(1)

xi[1] := 1/2*(x^2+y^2); 1; xi[2] := t; 1; u := (h(t)+(x^2+y^2)*(1/2))*arccos(x/sqrt(x^2+y^2))/t+U(xi[1], xi[2])

(1/2)*x^2+(1/2)*y^2

 

t

 

(h(t)+(1/2)*x^2+(1/2)*y^2)*arccos(x/(x^2+y^2)^(1/2))/t+U((1/2)*x^2+(1/2)*y^2, t)

(2)

(diff(u, x))*(diff(u, y))

(x*arccos(x/(x^2+y^2)^(1/2))/t-(h(t)+(1/2)*x^2+(1/2)*y^2)*(1/(x^2+y^2)^(1/2)-x^2/(x^2+y^2)^(3/2))/((1-x^2/(x^2+y^2))^(1/2)*t)+(D[1](U))((1/2)*x^2+(1/2)*y^2, t)*x)*(y*arccos(x/(x^2+y^2)^(1/2))/t+(h(t)+(1/2)*x^2+(1/2)*y^2)*x*y/((x^2+y^2)^(3/2)*(1-x^2/(x^2+y^2))^(1/2)*t)+(D[1](U))((1/2)*x^2+(1/2)*y^2, t)*y)

(3)

collect(simplify(subs(1/2*(x^2+y^2) = xi, t = eta, (x*arccos(x/(x^2+y^2)^(1/2))/t-(h(t)+(1/2)*x^2+(1/2)*y^2)*(1/(x^2+y^2)^(1/2)-x^2/(x^2+y^2)^(3/2))/((1-x^2/(x^2+y^2))^(1/2)*t)+(D[1](U))((1/2)*x^2+(1/2)*y^2, t)*x)*(y*arccos(x/(x^2+y^2)^(1/2))/t+(h(t)+(1/2)*x^2+(1/2)*y^2)*x*y/((x^2+y^2)^(3/2)*(1-x^2/(x^2+y^2))^(1/2)*t)+(D[1](U))((1/2)*x^2+(1/2)*y^2, t)*y))), D, 'distributed')

(1/4)*(2*(y^2/(x^2+y^2))^(1/2)*(x^2+y^2)^(1/2)*eta*x^3+2*(y^2/(x^2+y^2))^(1/2)*(x^2+y^2)^(1/2)*eta*x*y^2)*(2*(y^2/(x^2+y^2))^(1/2)*(x^2+y^2)^(1/2)*eta*x^2+2*(y^2/(x^2+y^2))^(1/2)*(x^2+y^2)^(1/2)*eta*y^2)*(D[1](U))(xi, eta)^2/(y*(x^2+y^2)^2*eta^2)+(1/4)*((2*arccos(x/(x^2+y^2)^(1/2))*x^3*(x^2+y^2)^(1/2)*(y^2/(x^2+y^2))^(1/2)+2*arccos(x/(x^2+y^2)^(1/2))*x*(x^2+y^2)^(1/2)*(y^2/(x^2+y^2))^(1/2)*y^2-x^2*y^2-y^4-2*h(eta)*y^2)*(2*(y^2/(x^2+y^2))^(1/2)*(x^2+y^2)^(1/2)*eta*x^2+2*(y^2/(x^2+y^2))^(1/2)*(x^2+y^2)^(1/2)*eta*y^2)+(2*(y^2/(x^2+y^2))^(1/2)*(x^2+y^2)^(1/2)*eta*x^3+2*(y^2/(x^2+y^2))^(1/2)*(x^2+y^2)^(1/2)*eta*x*y^2)*(2*arccos(x/(x^2+y^2)^(1/2))*x^2*(x^2+y^2)^(1/2)*(y^2/(x^2+y^2))^(1/2)+2*arccos(x/(x^2+y^2)^(1/2))*(x^2+y^2)^(1/2)*(y^2/(x^2+y^2))^(1/2)*y^2+x^3+x*y^2+2*h(eta)*x))*(D[1](U))(xi, eta)/(y*(x^2+y^2)^2*eta^2)+(1/4)*(2*arccos(x/(x^2+y^2)^(1/2))*x^3*(x^2+y^2)^(1/2)*(y^2/(x^2+y^2))^(1/2)+2*arccos(x/(x^2+y^2)^(1/2))*x*(x^2+y^2)^(1/2)*(y^2/(x^2+y^2))^(1/2)*y^2-x^2*y^2-y^4-2*h(eta)*y^2)*(2*arccos(x/(x^2+y^2)^(1/2))*x^2*(x^2+y^2)^(1/2)*(y^2/(x^2+y^2))^(1/2)+2*arccos(x/(x^2+y^2)^(1/2))*(x^2+y^2)^(1/2)*(y^2/(x^2+y^2))^(1/2)*y^2+x^3+x*y^2+2*h(eta)*x)/(y*(x^2+y^2)^2*eta^2)

(4)

``

Download Ques_Mapleprime.mw

Hi, is it possible to convert mathematica files into maple. i was trying to upload mathematica file here but got failed, so uploading mathematica file into pdf. could anyone can help me to convert these file into maple.

Conversion.pdf

Could you help me to convert the following maple solution expressed by the hypergeom function to the LegendreP and Q function?

diff(T[3](t), t, t)+3*(diff(a(t), t))*(diff(T[3](t), t))/a(t)+(2*(diff(a(t), t, t))/a(t)+6*(diff(a(t), t))^2/a(t)^2+(-Omega^2+6)/a(t)^2)*T[3](t)

diff(diff(T[3](t), t), t)+3*(diff(a(t), t))*(diff(T[3](t), t))/a(t)+(2*(diff(diff(a(t), t), t))/a(t)+6*(diff(a(t), t))^2/a(t)^2+(-Omega^2+6)/a(t)^2)*T[3](t)

(1)

"a(t) :=Zeta*(1-(1-t/(Zeta^()))^(2))^(1/(2)) "

proc (t) options operator, arrow, function_assign; Zeta*(1-(1-t/Zeta)^2)^(1/2) end proc

(2)

ODE2 := diff(T[3](t), t, t)+3*(diff(a(t), t))*(diff(T[3](t), t))/a(t)+(2*(diff(a(t), t, t))/a(t)+6*(diff(a(t), t))^2/a(t)^2+(-Omega^2+6)/a(t)^2)*T[3](t)

diff(diff(T[3](t), t), t)+3*(1-t/Zeta)*(diff(T[3](t), t))/((1-(1-t/Zeta)^2)*Zeta)+(2*(-(1-t/Zeta)^2/((1-(1-t/Zeta)^2)^(3/2)*Zeta)-1/((1-(1-t/Zeta)^2)^(1/2)*Zeta))/(Zeta*(1-(1-t/Zeta)^2)^(1/2))+6*(1-t/Zeta)^2/((1-(1-t/Zeta)^2)^2*Zeta^2)+(-Omega^2+6)/(Zeta^2*(1-(1-t/Zeta)^2)))*T[3](t)

(3)

generalsol := dsolve(ODE2, T[3](t))

T[3](t) = _C1*hypergeom([1/2+(-Omega^2+1)^(1/2), 1/2-(-Omega^2+1)^(1/2)], [1-((1/2)*I)*15^(1/2)], (1/2)*t/Zeta)*t^(-((1/4)*I)*15^(1/2)-1/4)*(2*Zeta-t)^(((1/4)*I)*15^(1/2)-1/4)+_C2*(-(-2*Zeta+t)*t)^(((1/4)*I)*15^(1/2)-1/4)*hypergeom([((1/2)*I)*15^(1/2)+1/2+(-Omega^2+1)^(1/2), ((1/2)*I)*15^(1/2)+1/2-(-Omega^2+1)^(1/2)], [1+((1/2)*I)*15^(1/2)], (1/2)*t/Zeta)

(4)

convert(_C1*hypergeom([1/2+sqrt(-Omega^2+1), 1/2-sqrt(-Omega^2+1)], [1-I*sqrt(15)*(1/2)], t/(2*Zeta))*t^(-I*sqrt(15)*(1/4)-1/4)*(2*Zeta-t)^(I*sqrt(15)*(1/4)-1/4), LegendreP)

_C1*GAMMA(1-((1/2)*I)*15^(1/2))*(-t/Zeta)^(((1/4)*I)*15^(1/2))*LegendreP(-1/2+(-Omega^2+1)^(1/2), ((1/2)*I)*15^(1/2), 1-t/Zeta)*t^(-((1/4)*I)*15^(1/2)-1/4)*(2*Zeta-t)^(((1/4)*I)*15^(1/2)-1/4)/((2*Zeta-t)/Zeta)^(((1/4)*I)*15^(1/2))

(5)

convert(_C2*(-t*(t-2*Zeta))^(I*sqrt(15)*(1/4)-1/4)*hypergeom([I*sqrt(15)*(1/2)+1/2+sqrt(-Omega^2+1), I*sqrt(15)*(1/2)+1/2-sqrt(-Omega^2+1)], [1+I*sqrt(15)*(1/2)], t/(2*Zeta)), LegendreQ)

_C2*(-t*(-2*Zeta+t))^(((1/4)*I)*15^(1/2)-1/4)*hypergeom([((1/2)*I)*15^(1/2)+1/2+(-Omega^2+1)^(1/2), ((1/2)*I)*15^(1/2)+1/2-(-Omega^2+1)^(1/2)], [1+((1/2)*I)*15^(1/2)], (1/2)*t/Zeta)

(6)

NULL

Download solve3.mw

Like this

Thank you.

First 335 336 337 338 339 340 341 Last Page 337 of 2224