Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Dear All,

I am plotting the following function using implicitplot command.:


plots[implicitplot3d]((17.31626331*M^3-(4*(z[1]-z[2])^2*M^2-1.171300684*(z[1]+z[2])^2)*(1.082266457-2*M)*(1.082266457-3*M))^2 = 4.598621420*(z[1]+z[2])^2*M*(1.082266457-2*M)^3*(4*(z[1]-z[2])^2*M^2-1.171300684*(z[1]+z[2])^2), M = 0 .. 1, z[1] = 0 .. 10, z[2] = -10 .. 0);

How can I extract data points from the plot obtained

Ive been trying to plot the following system



With these initial conditions (Also G*M=1)

ics:=[x(0)=1, y(0)=0,vx(0)=0,vy(0)=1];

I use this command to try and do this

with(DEtools):
DEplot(subs({G=1,M=1},satODE1),{x(t),y(t),vx(t),vy(t)},t=-2..2,ics,scene=[x(t),y(t)],scaling=constrained);

But I get this error message

Error, (in DEtools/DEplot/CheckInitial) too few initial conditions: [x(0) = 1]

Which I find odd because I have an initial condition for each variable

Im not sure what makes this different to other DE's Ive plotted other than having more equations in the system

 

How can I plot a paraboloid?

 

How can I accelerate the convergence rate of the following series:

I can't get the Real and Imaginary parts of matrix to seperate out as required. It is an SU(2) matrix. Want to convert is to a 4 Vector (quaternion). I think because Maple doesnt know what psi(t) is being conservative so to speak. Tried assume, assuming...
 

restart

assume*{psi(t), 'real'}

assume*{real, psi(t)}

(1)

V := Matrix(2, 2, {(1, 1) = (1/4)*cos((1/2)*psi(t))*sqrt(2)*sqrt(4-2*sech((1/6)*sqrt(3)*t))-I*cos((1/2)*psi(t))*sqrt(2)*tanh((1/6)*sqrt(3)*t)/sqrt(4-2*sech((1/6)*sqrt(3)*t))-((1/2)*I)*sin((1/2)*psi(t))*sqrt(2)*sqrt(3)*sech((1/6)*sqrt(3)*t)/sqrt(4-2*sech((1/6)*sqrt(3)*t)), (1, 2) = (1/2)*cos((1/2)*psi(t))*sqrt(2)*sqrt(3)*sech((1/6)*sqrt(3)*t)/sqrt(4-2*sech((1/6)*sqrt(3)*t))+((1/4)*I)*sin((1/2)*psi(t))*sqrt(2)*sqrt(4-2*sech((1/6)*sqrt(3)*t))-sin((1/2)*psi(t))*sqrt(2)*tanh((1/6)*sqrt(3)*t)/sqrt(4-2*sech((1/6)*sqrt(3)*t)), (2, 1) = ((1/4)*I)*sin((1/2)*psi(t))*sqrt(2)*sqrt(4-2*sech((1/6)*sqrt(3)*t))+sin((1/2)*psi(t))*sqrt(2)*tanh((1/6)*sqrt(3)*t)/sqrt(4-2*sech((1/6)*sqrt(3)*t))-(1/2)*cos((1/2)*psi(t))*sqrt(2)*sqrt(3)*sech((1/6)*sqrt(3)*t)/sqrt(4-2*sech((1/6)*sqrt(3)*t)), (2, 2) = ((1/2)*I)*sin((1/2)*psi(t))*sqrt(2)*sqrt(3)*sech((1/6)*sqrt(3)*t)/sqrt(4-2*sech((1/6)*sqrt(3)*t))+(1/4)*cos((1/2)*psi(t))*sqrt(2)*sqrt(4-2*sech((1/6)*sqrt(3)*t))+I*cos((1/2)*psi(t))*sqrt(2)*tanh((1/6)*sqrt(3)*t)/sqrt(4-2*sech((1/6)*sqrt(3)*t))})

Matrix(%id = 18446744074495800014)

(2)

``

``

v := Vector(4, [Re(V[1, 1]), Im(V[1, 2]), Re(V[2, 1]), Im(V[1, 1])])

Vector[column](%id = 18446744074531387982)

(3)

``


 

Download extract_R_and_I.mw

How to get homogenous expressions from symmetric polynomial.

Example. Let P = (a^2 + 2)(b^2 + 2)(c^2 + 2), we have deg(P) = 6. I want to get polynomials of degree n on A[n] with n = 0, 1, ..., 6. Specific

P = a^2b^2c^2 + 2(a^2b^2 + b^2c^2 + c^2a^2) + 4(a^2 + b^2 + c^2) + 8.

And

A[0] = 8

A[1] = 0

A[2] = 4(a^2 + b^2 + c^2)

A[3] = 0

A[4] = 2(a^2b^2 + b^2c^2 + c^2a^2)

A[5] = 0

A[6] = a^2b^2c^2

Thank you very much.

I am not unfamiliar with the Wolfram syntax but also not very good with it, and there is a particular element in a Mathematica code I have been given which I do not entirely understand how to efficiently write in Maple. The basic idea is to read in a list of expressions from an external file (LIST) and process the non zero elements and assign them to a function (COEF) which can be called later on. Here is the Mathematica exert:

k = 0;
i = 0;
a = b = \[Theta];
Do[k = k + 1; KK = LIST[[k]]; 
  If[KK =!= 0, i = i + 1; ff = Factor[KK]; 
   COEF[x,y, z, l_, m_, n_] = ff], {z, -2, 
   2}, {y, -2, 2}, {x, -2, 2}];

The LIST has the following form and only contains l, m and n and another factor E which is left undefined for now. It does not contain x, y or z. The LIST can contain any number of terms depending on the problem. Here is an example:

LIST={0, 0, 0, 0, 0, 0, 0, a^2 b m (-1 + n) n (a^2 + b^2 - 2 E), ... ,0,0, a^3 n(l+1+m) ... }

So the Do loop cycles through the LIST and extracts out the non zero terms. What I am unsure about is how it is looping over x,y and z when they do not appear in the LIST at all. I assume it is attaching a x,y,z combination to each COEF and they can be called like this:

COEF[0,1,1,0,2,3]

For the instance of when x=0, y=1, z=1, l=0, m=2 n=3. Is this correct? What would be the best way to replicate this in Maple?

- Yeti

Hi,

This question concerns the package GraphTheory
( Maple 2015 on a Windows 7 PC )

Let G1 be some graph and V a list of vertices in G1
The default colors DrawGraph uses for the vertices is yellow

I define the graph G2 this way :
    G2 := copy(G1):
    HighlightVertex(G2, V, red);
    DrawGraph(G2);
Obviously the result is a graph where vertices in V are red while the remaining ones are still yellow

Question 1 :  Why does the command DrawGraph(G1) returns exactly the same picture ?
I have thought that defining G2 as a copy of G1 would have preserved the default colouring of the vertices.
Note that the same undesired (at least for me) thing occurs with the  HighlightEdges command.

Question 2 : Is it possible to retrieve the original colouring of G1 without using HighlightVertex(G1, V, yellow)  ?

Thank you in advance

Dragilev:=proc(Polynomials::depends(list(ratpoly(integer,Variables))),Variables::list(symbol),DEvar::symbol,DEsuffix::string)

The above procedure parameter Polynomials accepts a list of polynomials containing indeterminates contained in parameter Variables, but also accepts simple arithmetic expressions such as 34.

Is there any parameter qualifying coding which will only accept polynomials containing one or more of the indeterminates passed in parameter Variables?

Is it possible to have an information box pop out when cursor is hovered over a plotted point?

i want to solve the system of equation ( 1 )  , (2)  ,  (3)   under the assumation that x , y have the CDF in (4)  ,  (5)
 

diff(L(lambda[1], lambda[2], alpha), lambda[1]) = n/lambda[1]+sum(x[i], i = 1 .. n)-(sum(2*x[i]*exp(lambda[1])/(exp(x__i*`λ__1`)-1+alpha), i = 1 .. n))

diff(L(lambda[1], lambda[2], alpha), lambda[1]) = n/lambda[1]+sum(x[i], i = 1 .. n)-(sum(2*x[i]*exp(lambda[1])/(exp(x__i*`λ__1`)-1+alpha), i = 1 .. n))

(1)

diff(L(lambda[1], lambda[2], alpha), lambda[2]) = m/lambda[2]+sum(y[j], j = 1 .. m)-(sum(2*y[j]*exp(lambda[2])/(exp(y__j*`λ__2`)-1+alpha), j = 1 .. m))

diff(L(lambda[1], lambda[2], alpha), lambda[2]) = m/lambda[2]+sum(y[j], j = 1 .. m)-(sum(2*y[j]*exp(lambda[2])/(exp(y__j*`λ__2`)-1+alpha), j = 1 .. m))

(2)

diff(L(lambda[1], lambda[2], alpha), alpha) = (n+m)/alpha-(sum(2/(exp(x[i]*`λ__1`)-1+alpha), i = 1 .. n))-(sum(2/(exp(y[j]*`λ__2`)-1+alpha), j = 1 .. m))

diff(L(lambda[1], lambda[2], alpha), alpha) = (n+m)/alpha-(sum(2/(exp(x[i]*`λ__1`)-1+alpha), i = 1 .. n))-(sum(2/(exp(y[j]*`λ__2`)-1+alpha), j = 1 .. m))

(3)

G(x, lambda[1], alpha) = 1-alpha/(exp(lambda[1]*x)-1+alpha)

G(x, lambda[1], alpha) = 1-alpha/(exp(lambda[1]*x)-1+alpha)

(4)

G(y, lambda[2], alpha) = 1-alpha/(exp(lambda[2]*x)-1+alpha)

G(y, lambda[2], alpha) = 1-alpha/(exp(lambda[2]*x)-1+alpha)

(5)

``

``


 

Download internet.mw

How do we write code for optimal problem using Pontryagin's maximum principle for simulation.

Hi!

I a have a question about factorizing real polynomials.

Suppose I have a real polynomial p(x) with integer coefficients. If the degree of p(x) is less than or equal to 4, we can factorize it into linear radical factors. On the other hand, if we require the factorization to be real, theoretically we can factorize it into linear and irreducible quadratic factors.

My question is, if the input p(x) is real polynomial with integer coefficients, is there any Maple function that can give me factorization output with real linear and irreducible quadratic factors, with radical coeffs?

For example, I tried q := 20*x^3+10*x^2+4*x+1, it has one real root and 2 complex roots. I want a factorization like q(x) = 20*(x-r1)*(a*x^2 + b*x + c), with r1, a, b, c, all real radicals.

I compared functions: factors(), solve(), sqrfree(), Splits(), and none of them give what I want.

factors(q) gives: 
[20, [[x^3+(1/2)*x^2+(1/5)*x+1/20, 1]]]

 

factors(q, real)  gives: 
[20., [[x+.3423840948583691316993036540027816871936619136844427977504078911, 1], [x^2+.1576159051416308683006963459972183128063380863155572022495921089*x+.1460348209828001458360112632660894203743660942160039146818509889, 1]]]

solve(q)   gives:
-(1/30)*(350+105*sqrt(15))^(1/3)+7/(6*(350+105*sqrt(15))^(1/3))-1/6, (1/60)*(350+105*sqrt(15))^(1/3)-7/(12*(350+105*sqrt(15))^(1/3))-1/6+(1/2*I)*sqrt(3)*(-(1/30)*(350+105*sqrt(15))^(1/3)-7/(6*(350+105*sqrt(15))^(1/3))), (1/60)*(350+105*sqrt(15))^(1/3)-7/(12*(350+105*sqrt(15))^(1/3))-1/6-(1/2*I)*sqrt(3)*(-(1/30)*(350+105*sqrt(15))^(1/3)-7/(6*(350+105*sqrt(15))^(1/3)))

simplify(convert(Splits(q,x),radical))    gives:
[20, [[(1/30)*(350+105*sqrt(5)*sqrt(3))^(1/3)+1/6-7/(6*(350+105*sqrt(5)*sqrt(3))^(1/3))+x, 1], [-(1/60)*(I*sqrt(3)*(350+105*sqrt(5)*sqrt(3))^(2/3)+(35*I)*sqrt(3)+(350+105*sqrt(5)*sqrt(3))^(2/3)-60*x*(350+105*sqrt(5)*sqrt(3))^(1/3)-10*(350+105*sqrt(5)*sqrt(3))^(1/3)-35)/(350+105*sqrt(5)*sqrt(3))^(1/3), 1], [(1/60*I)*sqrt(3)*(350+105*sqrt(5)*sqrt(3))^(1/3)+(7/12*I)*sqrt(3)/(350+105*sqrt(5)*sqrt(3))^(1/3)-(1/60)*(350+105*sqrt(5)*sqrt(3))^(1/3)+1/6+7/(12*(350+105*sqrt(5)*sqrt(3))^(1/3))+x, 1]]]

None of them give me what I want. Is there any build-in function that can help me do that?

Thanks!

William

 

I haven't soved yet why dchange is not working for this simple command. Any help out there?

Thanks a lot

First 983 984 985 986 987 988 989 Last Page 985 of 2224