Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

I am not sure how to use dsolve for my problem.
CQ_v1.mw

Is there a trick to make Maple simplify 

to

I can't use the exp() trick given in earlier questions, since there is no exp here. Below are my attempts. Can someone find another smart trick to do this simplification? Should simplify() have simplified it as is with no assumptions or using tricks? This is all done in code, so solutions can not depend on "looking on screen" and deciding what to do for each step.

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

restart;

interface(rtablesize=30);

[10, 10]

A:=-(sqrt(3)*sqrt(-2*C1 - 2*x) - 3)/(3*sqrt(-2*C1 - 2*x)*x);

-(1/3)*(3^(1/2)*(-2*C1-2*x)^(1/2)-3)/((-2*C1-2*x)^(1/2)*x)

B:=-(1/(sqrt(3)*x)) + 1/(sqrt(2)*x*sqrt(-x - C1));

-(1/3)*3^(1/2)/x+(1/2)*2^(1/2)/(x*(-x-C1)^(1/2))

simplify(A-B);

0

MmaTranslator:-Mma:-LeafCount(A);
MmaTranslator:-Mma:-LeafCount(B);

29

26

full_simplify:=proc(e::anything,assum::anything)
   local result::list;

   #add more methods as needed

   result:=[(simplify(e) assuming assum),
            (simplify(e,size=false) assuming assum),
            (simplify(e,size) assuming assum),
            (simplify(e,sqrt) assuming assum),
            (simplify(combine(e)) assuming assum),
            (simplify(combine(e),size) assuming assum),
            (radnormal(evala( combine(e) )) assuming assum),
            (simplify(evala( combine(e) )) assuming assum),
            (evala(radnormal( combine(e) )) assuming assum),
            (simplify(radnormal( combine(e) )) assuming assum),
            (evala(factor(e)) assuming assum),
            (simplify(e,ln) assuming assum),
            (simplify(e,power) assuming assum),
            (simplify(e,RootOf) assuming assum),
            (simplify(e,sqrt) assuming assum),
            (simplify(e,trig) assuming assum),
            (simplify(convert(e,trig)) assuming assum),
            (simplify(convert(e,exp)) assuming assum),
            (combine(e) assuming assum)
   ];   
   RETURN( result )

end proc:

Vector(full_simplify(A,real))

Vector(19, {(1) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (2) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (3) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (4) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (5) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (6) = -(1/3)*(sqrt(-6*C1-6*x)-3)/(sqrt(-2*C1-2*x)*x), (7) = (1/6)*sqrt(-2*C1-2*x)*(sqrt(-6*C1-6*x)-3)/((C1+x)*x), (8) = (1/6)*sqrt(-2*C1-2*x)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/((C1+x)*x), (9) = (1/6)*sqrt(-2*C1-2*x)*(sqrt(-6*C1-6*x)-3)/((C1+x)*x), (10) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (11) = -(1/6)*(2*sqrt(3)*C1+2*sqrt(3)*x+3*sqrt(-2*C1-2*x))/((C1+x)*x), (12) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (13) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (14) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (15) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (16) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (17) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (18) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (19) = -(1/3)*(sqrt(-6*C1-6*x)-3)/(sqrt(-2*C1-2*x)*x)})

Vector(full_simplify(A,positive))

Vector(19, {(1) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (2) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (3) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (4) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (5) = (1/3)*(-sqrt(3)*sqrt(2*C1+2*x)-3*I)/(sqrt(2*C1+2*x)*x), (6) = -(1/3)*(I*sqrt(6*C1+6*x)-3)/(sqrt(-2*C1-2*x)*x), (7) = (1/6)*sqrt(-2*C1-2*x)*(I*sqrt(6*C1+6*x)-3)/((C1+x)*x), (8) = -(1/6)*sqrt(2*C1+2*x)*(sqrt(3)*sqrt(2*C1+2*x)+3*I)/((C1+x)*x), (9) = (1/6)*sqrt(-2*C1-2*x)*(I*sqrt(6*C1+6*x)-3)/((C1+x)*x), (10) = (1/3)*(-sqrt(3)*sqrt(2*C1+2*x)-3*I)/(sqrt(2*C1+2*x)*x), (11) = -(1/6)*(2*sqrt(3)*C1+2*sqrt(3)*x+3*sqrt(-2*C1-2*x))/((C1+x)*x), (12) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (13) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (14) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (15) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (16) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (17) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (18) = -(1/3)*(sqrt(3)*sqrt(-2*C1-2*x)-3)/(sqrt(-2*C1-2*x)*x), (19) = -(1/3)*(I*sqrt(6*C1+6*x)-3)/(sqrt(-2*C1-2*x)*x)})

 

 

Download simplification_may_8_2025.mw

For reference, using another software

I'm trying to extract the real and imaginary parts of a given PDE. However, during the substitution step, something unexpected occurs. Specifically, my replacement does not yield the expected result, and an extra term appears: D(k)(t*w + x) in the expression P11. I'm unsure why this term arises and would appreciate any insight into what might be going wrong during the substitution process.

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, t)); declare(U(xi)); declare(V(xi))

u(x, t)*`will now be displayed as`*u

 

U(xi)*`will now be displayed as`*U

 

V(xi)*`will now be displayed as`*V

(2)

pde := I*(diff(u(x, t), `$`(t, 2))-s^2*(diff(u(x, t), `$`(x, 2))))+(1/24)*c[1]*(diff(u(x, t), t, `$`(x, 4)))-alpha*s*c[1]*(diff(u(x, t), `$`(x, 5)))+diff(c[2]*u(x, t)*U(-t*v+x)^2+c[3]*u(x, t)*U(-t*v+x)^4+c[4]*u(x, t)*(diff(U(-t*v+x)^2, `$`(x, 2))), t)-beta*s*(diff(u(x, t), `$`(x, 5)))+diff(c[2]*u(x, t)*U(-t*v+x)^2+c[3]*u(x, t)*U(-t*v+x)^4+c[4]*u(x, t)*(diff(U(-t*v+x)^2, `$`(x, 2))), x)

I*(diff(diff(u(x, t), t), t)-s^2*(diff(diff(u(x, t), x), x)))+(1/24)*c[1]*(diff(diff(diff(diff(diff(u(x, t), t), x), x), x), x))-alpha*s*c[1]*(diff(diff(diff(diff(diff(u(x, t), x), x), x), x), x))+c[2]*(diff(u(x, t), t))*U(-t*v+x)^2-2*c[2]*u(x, t)*U(-t*v+x)*(D(U))(-t*v+x)*v+c[3]*(diff(u(x, t), t))*U(-t*v+x)^4-4*c[3]*u(x, t)*U(-t*v+x)^3*(D(U))(-t*v+x)*v+c[4]*(diff(u(x, t), t))*(2*(D(U))(-t*v+x)^2+2*U(-t*v+x)*((D@@2)(U))(-t*v+x))+c[4]*u(x, t)*(-6*(D(U))(-t*v+x)*((D@@2)(U))(-t*v+x)*v-2*U(-t*v+x)*((D@@3)(U))(-t*v+x)*v)-beta*s*(diff(diff(diff(diff(diff(u(x, t), x), x), x), x), x))+c[2]*(diff(u(x, t), x))*U(-t*v+x)^2+2*c[2]*u(x, t)*U(-t*v+x)*(D(U))(-t*v+x)+c[3]*(diff(u(x, t), x))*U(-t*v+x)^4+4*c[3]*u(x, t)*U(-t*v+x)^3*(D(U))(-t*v+x)+c[4]*(diff(u(x, t), x))*(2*(D(U))(-t*v+x)^2+2*U(-t*v+x)*((D@@2)(U))(-t*v+x))+c[4]*u(x, t)*(6*(D(U))(-t*v+x)*((D@@2)(U))(-t*v+x)+2*U(-t*v+x)*((D@@3)(U))(-t*v+x))

(3)

``

G1 := U(-t*v+x) = U(xi); G2 := (D(U))(-t*v+x) = diff(U(xi), xi); G3 := ((D@@2)(U))(-t*v+x) = diff(U(xi), `$`(xi, 2)); G4 := ((D@@3)(U))(-t*v+x) = diff(U(xi), `$`(xi, 3)); G5 := ((D@@4)(U))(-t*v+x) = diff(U(xi), `$`(xi, 4)); G6 := ((D@@5)(U))(-t*v+x) = diff(U(xi), `$`(xi, 5))

U(-t*v+x) = U(xi)

 

(D(U))(-t*v+x) = diff(U(xi), xi)

 

((D@@2)(U))(-t*v+x) = diff(diff(U(xi), xi), xi)

 

((D@@3)(U))(-t*v+x) = diff(diff(diff(U(xi), xi), xi), xi)

 

((D@@4)(U))(-t*v+x) = diff(diff(diff(diff(U(xi), xi), xi), xi), xi)

 

((D@@5)(U))(-t*v+x) = diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi)

(4)

NULL

T := xi = -t*v+x; T1 := u(x, t) = U(-t*v+x)*exp(I*k(t*w+x))

xi = -t*v+x

 

u(x, t) = U(-t*v+x)*exp(I*k(t*w+x))

(5)

P1 := I*(diff(u(x, t), `$`(t, 2))-s^2*(diff(u(x, t), `$`(x, 2))))+(1/24)*c[1]*(diff(u(x, t), t, `$`(x, 4)))-alpha*s*c[1]*(diff(u(x, t), `$`(x, 5)))+diff(c[2]*u(x, t)*U(-t*v+x)^2+c[3]*u(x, t)*U(-t*v+x)^4+c[4]*u(x, t)*(diff(U(-t*v+x)^2, `$`(x, 2))), t)-beta*s*(diff(u(x, t), `$`(x, 5)))+diff(c[2]*u(x, t)*U(-t*v+x)^2+c[3]*u(x, t)*U(-t*v+x)^4+c[4]*u(x, t)*(diff(U(-t*v+x)^2, `$`(x, 2))), x)

I*(diff(diff(u(x, t), t), t)-s^2*(diff(diff(u(x, t), x), x)))+(1/24)*c[1]*(diff(diff(diff(diff(diff(u(x, t), t), x), x), x), x))-alpha*s*c[1]*(diff(diff(diff(diff(diff(u(x, t), x), x), x), x), x))+c[2]*(diff(u(x, t), t))*U(-t*v+x)^2-2*c[2]*u(x, t)*U(-t*v+x)*(D(U))(-t*v+x)*v+c[3]*(diff(u(x, t), t))*U(-t*v+x)^4-4*c[3]*u(x, t)*U(-t*v+x)^3*(D(U))(-t*v+x)*v+c[4]*(diff(u(x, t), t))*(2*(D(U))(-t*v+x)^2+2*U(-t*v+x)*((D@@2)(U))(-t*v+x))+c[4]*u(x, t)*(-6*(D(U))(-t*v+x)*((D@@2)(U))(-t*v+x)*v-2*U(-t*v+x)*((D@@3)(U))(-t*v+x)*v)-beta*s*(diff(diff(diff(diff(diff(u(x, t), x), x), x), x), x))+c[2]*(diff(u(x, t), x))*U(-t*v+x)^2+2*c[2]*u(x, t)*U(-t*v+x)*(D(U))(-t*v+x)+c[3]*(diff(u(x, t), x))*U(-t*v+x)^4+4*c[3]*u(x, t)*U(-t*v+x)^3*(D(U))(-t*v+x)+c[4]*(diff(u(x, t), x))*(2*(D(U))(-t*v+x)^2+2*U(-t*v+x)*((D@@2)(U))(-t*v+x))+c[4]*u(x, t)*(6*(D(U))(-t*v+x)*((D@@2)(U))(-t*v+x)+2*U(-t*v+x)*((D@@3)(U))(-t*v+x))

(6)

P11 := eval(P1, {T, T1})

I*(((D@@2)(U))(-t*v+x)*v^2*exp(I*k(t*w+x))-(2*I)*(D(U))(-t*v+x)*v*(D(k))(t*w+x)*w*exp(I*k(t*w+x))+I*U(-t*v+x)*((D@@2)(k))(t*w+x)*w^2*exp(I*k(t*w+x))-U(-t*v+x)*(D(k))(t*w+x)^2*w^2*exp(I*k(t*w+x))-s^2*(((D@@2)(U))(-t*v+x)*exp(I*k(t*w+x))+(2*I)*(D(U))(-t*v+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))+I*U(-t*v+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-U(-t*v+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))))+(1/24)*c[1]*(6*((D@@3)(U))(-t*v+x)*v*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-4*((D@@3)(U))(-t*v+x)*(D(k))(t*w+x)^2*w*exp(I*k(t*w+x))+4*(D(U))(-t*v+x)*(D(k))(t*w+x)^4*w*exp(I*k(t*w+x))-(D(U))(-t*v+x)*v*(D(k))(t*w+x)^4*exp(I*k(t*w+x))+I*U(-t*v+x)*(D(k))(t*w+x)^5*w*exp(I*k(t*w+x))-(24*I)*(D(U))(-t*v+x)*(D(k))(t*w+x)^2*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-(10*I)*U(-t*v+x)*((D@@3)(k))(t*w+x)*w*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(15*I)*U(-t*v+x)*((D@@2)(k))(t*w+x)^2*w*(D(k))(t*w+x)*exp(I*k(t*w+x))+(6*I)*(D(U))(-t*v+x)*v*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+12*((D@@2)(U))(-t*v+x)*v*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-18*((D@@2)(U))(-t*v+x)*(D(k))(t*w+x)*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+10*U(-t*v+x)*(D(k))(t*w+x)^3*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+I*((D@@4)(U))(-t*v+x)*(D(k))(t*w+x)*w*exp(I*k(t*w+x))-16*(D(U))(-t*v+x)*((D@@3)(k))(t*w+x)*w*(D(k))(t*w+x)*exp(I*k(t*w+x))-12*(D(U))(-t*v+x)*((D@@2)(k))(t*w+x)^2*w*exp(I*k(t*w+x))-5*U(-t*v+x)*((D@@4)(k))(t*w+x)*w*(D(k))(t*w+x)*exp(I*k(t*w+x))-10*U(-t*v+x)*((D@@3)(k))(t*w+x)*w*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(-t*v+x)*((D@@5)(k))(t*w+x)*w*exp(I*k(t*w+x))-I*(D(U))(-t*v+x)*v*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))+3*(D(U))(-t*v+x)*v*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+(4*I)*((D@@3)(U))(-t*v+x)*((D@@2)(k))(t*w+x)*w*exp(I*k(t*w+x))-(6*I)*((D@@2)(U))(-t*v+x)*(D(k))(t*w+x)^3*w*exp(I*k(t*w+x))-(6*I)*((D@@3)(U))(-t*v+x)*v*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-(4*I)*((D@@2)(U))(-t*v+x)*v*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))+(6*I)*((D@@2)(U))(-t*v+x)*((D@@3)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(D(U))(-t*v+x)*((D@@4)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*((D@@2)(U))(-t*v+x)*v*(D(k))(t*w+x)^3*exp(I*k(t*w+x))-(4*I)*((D@@4)(U))(-t*v+x)*v*(D(k))(t*w+x)*exp(I*k(t*w+x))+4*(D(U))(-t*v+x)*v*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-((D@@5)(U))(-t*v+x)*v*exp(I*k(t*w+x)))-alpha*s*c[1]*(I*U(-t*v+x)*((D@@5)(k))(t*w+x)*exp(I*k(t*w+x))+(10*I)*((D@@2)(U))(-t*v+x)*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))-(10*I)*((D@@2)(U))(-t*v+x)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))-(30*I)*(D(U))(-t*v+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*((D@@4)(U))(-t*v+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-10*U(-t*v+x)*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-15*(D(U))(-t*v+x)*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+10*U(-t*v+x)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*(D(U))(-t*v+x)*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))-5*U(-t*v+x)*((D@@4)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-20*(D(U))(-t*v+x)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-30*((D@@2)(U))(-t*v+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-(10*I)*U(-t*v+x)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(15*I)*U(-t*v+x)*((D@@2)(k))(t*w+x)^2*(D(k))(t*w+x)*exp(I*k(t*w+x))+I*U(-t*v+x)*(D(k))(t*w+x)^5*exp(I*k(t*w+x))+(10*I)*((D@@3)(U))(-t*v+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))+((D@@5)(U))(-t*v+x)*exp(I*k(t*w+x))+5*(D(U))(-t*v+x)*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*((D@@3)(U))(-t*v+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x)))+c[2]*(-(D(U))(-t*v+x)*v*exp(I*k(t*w+x))+I*U(-t*v+x)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*U(-t*v+x)^2-2*c[2]*U(-t*v+x)^2*exp(I*k(t*w+x))*(D(U))(-t*v+x)*v+c[3]*(-(D(U))(-t*v+x)*v*exp(I*k(t*w+x))+I*U(-t*v+x)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*U(-t*v+x)^4-4*c[3]*U(-t*v+x)^4*exp(I*k(t*w+x))*(D(U))(-t*v+x)*v+c[4]*(-(D(U))(-t*v+x)*v*exp(I*k(t*w+x))+I*U(-t*v+x)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*(2*(D(U))(-t*v+x)^2+2*U(-t*v+x)*((D@@2)(U))(-t*v+x))+c[4]*U(-t*v+x)*exp(I*k(t*w+x))*(-6*(D(U))(-t*v+x)*((D@@2)(U))(-t*v+x)*v-2*U(-t*v+x)*((D@@3)(U))(-t*v+x)*v)-beta*s*(I*U(-t*v+x)*((D@@5)(k))(t*w+x)*exp(I*k(t*w+x))+(10*I)*((D@@2)(U))(-t*v+x)*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))-(10*I)*((D@@2)(U))(-t*v+x)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))-(30*I)*(D(U))(-t*v+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*((D@@4)(U))(-t*v+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-10*U(-t*v+x)*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-15*(D(U))(-t*v+x)*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+10*U(-t*v+x)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*(D(U))(-t*v+x)*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))-5*U(-t*v+x)*((D@@4)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-20*(D(U))(-t*v+x)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-30*((D@@2)(U))(-t*v+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-(10*I)*U(-t*v+x)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(15*I)*U(-t*v+x)*((D@@2)(k))(t*w+x)^2*(D(k))(t*w+x)*exp(I*k(t*w+x))+I*U(-t*v+x)*(D(k))(t*w+x)^5*exp(I*k(t*w+x))+(10*I)*((D@@3)(U))(-t*v+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))+((D@@5)(U))(-t*v+x)*exp(I*k(t*w+x))+5*(D(U))(-t*v+x)*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*((D@@3)(U))(-t*v+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x)))+c[2]*((D(U))(-t*v+x)*exp(I*k(t*w+x))+I*U(-t*v+x)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*U(-t*v+x)^2+2*c[2]*U(-t*v+x)^2*exp(I*k(t*w+x))*(D(U))(-t*v+x)+c[3]*((D(U))(-t*v+x)*exp(I*k(t*w+x))+I*U(-t*v+x)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*U(-t*v+x)^4+4*c[3]*U(-t*v+x)^4*exp(I*k(t*w+x))*(D(U))(-t*v+x)+c[4]*((D(U))(-t*v+x)*exp(I*k(t*w+x))+I*U(-t*v+x)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*(2*(D(U))(-t*v+x)^2+2*U(-t*v+x)*((D@@2)(U))(-t*v+x))+c[4]*U(-t*v+x)*exp(I*k(t*w+x))*(6*(D(U))(-t*v+x)*((D@@2)(U))(-t*v+x)+2*U(-t*v+x)*((D@@3)(U))(-t*v+x))

(7)

P111 := subs({G1, G2, G3, G4, G5, G6}, P11)NULL

I*((diff(diff(U(xi), xi), xi))*v^2*exp(I*k(t*w+x))-(2*I)*(diff(U(xi), xi))*v*(D(k))(t*w+x)*w*exp(I*k(t*w+x))+I*U(xi)*((D@@2)(k))(t*w+x)*w^2*exp(I*k(t*w+x))-U(xi)*(D(k))(t*w+x)^2*w^2*exp(I*k(t*w+x))-s^2*((diff(diff(U(xi), xi), xi))*exp(I*k(t*w+x))+(2*I)*(diff(U(xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-U(xi)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))))+(1/24)*c[1]*(6*(diff(diff(diff(U(xi), xi), xi), xi))*v*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-4*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*w*exp(I*k(t*w+x))+4*(diff(U(xi), xi))*(D(k))(t*w+x)^4*w*exp(I*k(t*w+x))-(diff(U(xi), xi))*v*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-12*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*w*exp(I*k(t*w+x))+3*(diff(U(xi), xi))*v*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*w*exp(I*k(t*w+x))+12*(diff(diff(U(xi), xi), xi))*v*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-18*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+10*U(xi)*(D(k))(t*w+x)^3*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*w*exp(I*k(t*w+x))-16*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*w*(D(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*w*(D(k))(t*w+x)*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*w*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*w*exp(I*k(t*w+x))-I*(diff(U(xi), xi))*v*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))+(4*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*w*exp(I*k(t*w+x))-(6*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*w*exp(I*k(t*w+x))-(6*I)*(diff(diff(diff(U(xi), xi), xi), xi))*v*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-(4*I)*(diff(diff(U(xi), xi), xi))*v*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))+(6*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(diff(U(xi), xi), xi))*v*(D(k))(t*w+x)^3*exp(I*k(t*w+x))-(4*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*v*(D(k))(t*w+x)*exp(I*k(t*w+x))+4*(diff(U(xi), xi))*v*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*v*exp(I*k(t*w+x))-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*w*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*w*(D(k))(t*w+x)*exp(I*k(t*w+x))+(6*I)*(diff(U(xi), xi))*v*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-(24*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x))-alpha*s*c[1]*(-(30*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*exp(I*k(t*w+x))+(10*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-15*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+10*U(xi)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(10*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-20*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-30*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-(10*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*(D(k))(t*w+x)*exp(I*k(t*w+x))+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*exp(I*k(t*w+x))+5*(diff(U(xi), xi))*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x)))+c[2]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*U(xi)^2-2*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^2*v*c[2]+c[3]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*U(xi)^4-4*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^4*v*c[3]+c[4]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*(2*(diff(U(xi), xi))^2+2*U(xi)*(diff(diff(U(xi), xi), xi)))+c[4]*U(xi)*exp(I*k(t*w+x))*(-6*(diff(U(xi), xi))*(diff(diff(U(xi), xi), xi))*v-2*U(xi)*(diff(diff(diff(U(xi), xi), xi), xi))*v)-beta*s*(-(30*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*exp(I*k(t*w+x))+(10*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-15*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+10*U(xi)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(10*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-20*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-30*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-(10*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*(D(k))(t*w+x)*exp(I*k(t*w+x))+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*exp(I*k(t*w+x))+5*(diff(U(xi), xi))*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x)))+c[2]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*U(xi)^2+2*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^2*c[2]+c[3]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*U(xi)^4+4*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^4*c[3]+c[4]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*(2*(diff(U(xi), xi))^2+2*U(xi)*(diff(diff(U(xi), xi), xi)))+c[4]*U(xi)*exp(I*k(t*w+x))*(6*(diff(U(xi), xi))*(diff(diff(U(xi), xi), xi))+2*U(xi)*(diff(diff(diff(U(xi), xi), xi), xi)))

(8)

``

pde1 := P111 = 0

I*((diff(diff(U(xi), xi), xi))*v^2*exp(I*k(t*w+x))-(2*I)*(diff(U(xi), xi))*v*(D(k))(t*w+x)*w*exp(I*k(t*w+x))+I*U(xi)*((D@@2)(k))(t*w+x)*w^2*exp(I*k(t*w+x))-U(xi)*(D(k))(t*w+x)^2*w^2*exp(I*k(t*w+x))-s^2*((diff(diff(U(xi), xi), xi))*exp(I*k(t*w+x))+(2*I)*(diff(U(xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-U(xi)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))))+(1/24)*c[1]*(6*(diff(diff(diff(U(xi), xi), xi), xi))*v*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-4*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*w*exp(I*k(t*w+x))+4*(diff(U(xi), xi))*(D(k))(t*w+x)^4*w*exp(I*k(t*w+x))-(diff(U(xi), xi))*v*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-12*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*w*exp(I*k(t*w+x))+3*(diff(U(xi), xi))*v*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*w*exp(I*k(t*w+x))+12*(diff(diff(U(xi), xi), xi))*v*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-18*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+10*U(xi)*(D(k))(t*w+x)^3*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*w*exp(I*k(t*w+x))-16*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*w*(D(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*w*(D(k))(t*w+x)*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*w*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*w*exp(I*k(t*w+x))-I*(diff(U(xi), xi))*v*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))+(4*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*w*exp(I*k(t*w+x))-(6*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*w*exp(I*k(t*w+x))-(6*I)*(diff(diff(diff(U(xi), xi), xi), xi))*v*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-(4*I)*(diff(diff(U(xi), xi), xi))*v*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))+(6*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(diff(U(xi), xi), xi))*v*(D(k))(t*w+x)^3*exp(I*k(t*w+x))-(4*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*v*(D(k))(t*w+x)*exp(I*k(t*w+x))+4*(diff(U(xi), xi))*v*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*v*exp(I*k(t*w+x))-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*w*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*w*(D(k))(t*w+x)*exp(I*k(t*w+x))+(6*I)*(diff(U(xi), xi))*v*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-(24*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x))-alpha*s*c[1]*(-(30*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*exp(I*k(t*w+x))+(10*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-15*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+10*U(xi)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(10*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-20*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-30*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-(10*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*(D(k))(t*w+x)*exp(I*k(t*w+x))+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*exp(I*k(t*w+x))+5*(diff(U(xi), xi))*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x)))+c[2]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*U(xi)^2-2*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^2*v*c[2]+c[3]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*U(xi)^4-4*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^4*v*c[3]+c[4]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*(2*(diff(U(xi), xi))^2+2*U(xi)*(diff(diff(U(xi), xi), xi)))+c[4]*U(xi)*exp(I*k(t*w+x))*(-6*(diff(U(xi), xi))*(diff(diff(U(xi), xi), xi))*v-2*U(xi)*(diff(diff(diff(U(xi), xi), xi), xi))*v)-beta*s*(-(30*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*exp(I*k(t*w+x))+(10*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-15*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+10*U(xi)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(10*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-20*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-30*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-(10*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*(D(k))(t*w+x)*exp(I*k(t*w+x))+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*exp(I*k(t*w+x))+5*(diff(U(xi), xi))*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x)))+c[2]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*U(xi)^2+2*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^2*c[2]+c[3]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*U(xi)^4+4*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^4*c[3]+c[4]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*(2*(diff(U(xi), xi))^2+2*U(xi)*(diff(diff(U(xi), xi), xi)))+c[4]*U(xi)*exp(I*k(t*w+x))*(6*(diff(U(xi), xi))*(diff(diff(U(xi), xi), xi))+2*U(xi)*(diff(diff(diff(U(xi), xi), xi), xi))) = 0

(9)

numer(lhs(I*((diff(diff(U(xi), xi), xi))*v^2*exp(I*k(t*w+x))-(2*I)*(diff(U(xi), xi))*v*(D(k))(t*w+x)*w*exp(I*k(t*w+x))+I*U(xi)*((D@@2)(k))(t*w+x)*w^2*exp(I*k(t*w+x))-U(xi)*(D(k))(t*w+x)^2*w^2*exp(I*k(t*w+x))-s^2*((diff(diff(U(xi), xi), xi))*exp(I*k(t*w+x))+(2*I)*(diff(U(xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-U(xi)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))))+(1/24)*c[1]*(-(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*v*exp(I*k(t*w+x))+6*(diff(diff(diff(U(xi), xi), xi), xi))*v*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-4*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*w*exp(I*k(t*w+x))+4*(diff(U(xi), xi))*(D(k))(t*w+x)^4*w*exp(I*k(t*w+x))-12*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*w*exp(I*k(t*w+x))+3*(diff(U(xi), xi))*v*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))-(diff(U(xi), xi))*v*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*w*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))+4*(diff(U(xi), xi))*v*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-I*(diff(U(xi), xi))*v*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))-(6*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*w*exp(I*k(t*w+x))-(6*I)*(diff(diff(diff(U(xi), xi), xi), xi))*v*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-(4*I)*(diff(diff(U(xi), xi), xi))*v*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))-(4*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*v*(D(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*w*exp(I*k(t*w+x))+I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*w*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*w*exp(I*k(t*w+x))+(6*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(diff(U(xi), xi), xi))*v*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+12*(diff(diff(U(xi), xi), xi))*v*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-18*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+10*U(xi)*(D(k))(t*w+x)^3*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-16*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*w*(D(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*w*(D(k))(t*w+x)*exp(I*k(t*w+x))+(6*I)*(diff(U(xi), xi))*v*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*w*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*w*(D(k))(t*w+x)*exp(I*k(t*w+x))-(24*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x))-alpha*s*c[1]*(-(10*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))+(10*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-15*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+10*U(xi)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(10*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-20*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-30*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*(D(k))(t*w+x)*exp(I*k(t*w+x))-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(30*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*exp(I*k(t*w+x))+5*(diff(U(xi), xi))*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x)))+c[2]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*U(xi)^2-2*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^2*v*c[2]+c[3]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*U(xi)^4-4*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^4*v*c[3]+c[4]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*(2*(diff(U(xi), xi))^2+2*U(xi)*(diff(diff(U(xi), xi), xi)))+c[4]*U(xi)*exp(I*k(t*w+x))*(-6*(diff(U(xi), xi))*(diff(diff(U(xi), xi), xi))*v-2*U(xi)*(diff(diff(diff(U(xi), xi), xi), xi))*v)-beta*s*(-(10*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))+(10*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-15*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+10*U(xi)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(10*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-20*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-30*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*(D(k))(t*w+x)*exp(I*k(t*w+x))-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(30*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*exp(I*k(t*w+x))+5*(diff(U(xi), xi))*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x)))+c[2]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*U(xi)^2+2*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^2*c[2]+c[3]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*U(xi)^4+4*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^4*c[3]+c[4]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*(2*(diff(U(xi), xi))^2+2*U(xi)*(diff(diff(U(xi), xi), xi)))+c[4]*U(xi)*exp(I*k(t*w+x))*(6*(diff(U(xi), xi))*(diff(diff(U(xi), xi), xi))+2*U(xi)*(diff(diff(diff(U(xi), xi), xi), xi))) = 0))*denom(rhs(I*((diff(diff(U(xi), xi), xi))*v^2*exp(I*k(t*w+x))-(2*I)*(diff(U(xi), xi))*v*(D(k))(t*w+x)*w*exp(I*k(t*w+x))+I*U(xi)*((D@@2)(k))(t*w+x)*w^2*exp(I*k(t*w+x))-U(xi)*(D(k))(t*w+x)^2*w^2*exp(I*k(t*w+x))-s^2*((diff(diff(U(xi), xi), xi))*exp(I*k(t*w+x))+(2*I)*(diff(U(xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-U(xi)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))))+(1/24)*c[1]*(-(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*v*exp(I*k(t*w+x))+6*(diff(diff(diff(U(xi), xi), xi), xi))*v*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-4*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*w*exp(I*k(t*w+x))+4*(diff(U(xi), xi))*(D(k))(t*w+x)^4*w*exp(I*k(t*w+x))-12*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*w*exp(I*k(t*w+x))+3*(diff(U(xi), xi))*v*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))-(diff(U(xi), xi))*v*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*w*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))+4*(diff(U(xi), xi))*v*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-I*(diff(U(xi), xi))*v*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))-(6*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*w*exp(I*k(t*w+x))-(6*I)*(diff(diff(diff(U(xi), xi), xi), xi))*v*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-(4*I)*(diff(diff(U(xi), xi), xi))*v*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))-(4*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*v*(D(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*w*exp(I*k(t*w+x))+I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*w*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*w*exp(I*k(t*w+x))+(6*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(diff(U(xi), xi), xi))*v*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+12*(diff(diff(U(xi), xi), xi))*v*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-18*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+10*U(xi)*(D(k))(t*w+x)^3*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-16*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*w*(D(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*w*(D(k))(t*w+x)*exp(I*k(t*w+x))+(6*I)*(diff(U(xi), xi))*v*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*w*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*w*(D(k))(t*w+x)*exp(I*k(t*w+x))-(24*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x))-alpha*s*c[1]*(-(10*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))+(10*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-15*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+10*U(xi)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(10*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-20*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-30*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*(D(k))(t*w+x)*exp(I*k(t*w+x))-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(30*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*exp(I*k(t*w+x))+5*(diff(U(xi), xi))*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x)))+c[2]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*U(xi)^2-2*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^2*v*c[2]+c[3]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*U(xi)^4-4*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^4*v*c[3]+c[4]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*(2*(diff(U(xi), xi))^2+2*U(xi)*(diff(diff(U(xi), xi), xi)))+c[4]*U(xi)*exp(I*k(t*w+x))*(-6*(diff(U(xi), xi))*(diff(diff(U(xi), xi), xi))*v-2*U(xi)*(diff(diff(diff(U(xi), xi), xi), xi))*v)-beta*s*(-(10*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))+(10*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-15*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+10*U(xi)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(10*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-20*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-30*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*(D(k))(t*w+x)*exp(I*k(t*w+x))-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(30*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*exp(I*k(t*w+x))+5*(diff(U(xi), xi))*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x)))+c[2]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*U(xi)^2+2*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^2*c[2]+c[3]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*U(xi)^4+4*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^4*c[3]+c[4]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*(2*(diff(U(xi), xi))^2+2*U(xi)*(diff(diff(U(xi), xi), xi)))+c[4]*U(xi)*exp(I*k(t*w+x))*(6*(diff(U(xi), xi))*(diff(diff(U(xi), xi), xi))+2*U(xi)*(diff(diff(diff(U(xi), xi), xi), xi))) = 0)) = numer(rhs(I*((diff(diff(U(xi), xi), xi))*v^2*exp(I*k(t*w+x))-(2*I)*(diff(U(xi), xi))*v*(D(k))(t*w+x)*w*exp(I*k(t*w+x))+I*U(xi)*((D@@2)(k))(t*w+x)*w^2*exp(I*k(t*w+x))-U(xi)*(D(k))(t*w+x)^2*w^2*exp(I*k(t*w+x))-s^2*((diff(diff(U(xi), xi), xi))*exp(I*k(t*w+x))+(2*I)*(diff(U(xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-U(xi)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))))+(1/24)*c[1]*(-(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*v*exp(I*k(t*w+x))+6*(diff(diff(diff(U(xi), xi), xi), xi))*v*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-4*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*w*exp(I*k(t*w+x))+4*(diff(U(xi), xi))*(D(k))(t*w+x)^4*w*exp(I*k(t*w+x))-12*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*w*exp(I*k(t*w+x))+3*(diff(U(xi), xi))*v*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))-(diff(U(xi), xi))*v*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*w*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))+4*(diff(U(xi), xi))*v*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-I*(diff(U(xi), xi))*v*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))-(6*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*w*exp(I*k(t*w+x))-(6*I)*(diff(diff(diff(U(xi), xi), xi), xi))*v*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-(4*I)*(diff(diff(U(xi), xi), xi))*v*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))-(4*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*v*(D(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*w*exp(I*k(t*w+x))+I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*w*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*w*exp(I*k(t*w+x))+(6*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(diff(U(xi), xi), xi))*v*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+12*(diff(diff(U(xi), xi), xi))*v*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-18*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+10*U(xi)*(D(k))(t*w+x)^3*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-16*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*w*(D(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*w*(D(k))(t*w+x)*exp(I*k(t*w+x))+(6*I)*(diff(U(xi), xi))*v*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*w*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*w*(D(k))(t*w+x)*exp(I*k(t*w+x))-(24*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x))-alpha*s*c[1]*(-(10*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))+(10*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-15*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+10*U(xi)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(10*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-20*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-30*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*(D(k))(t*w+x)*exp(I*k(t*w+x))-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(30*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*exp(I*k(t*w+x))+5*(diff(U(xi), xi))*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x)))+c[2]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*U(xi)^2-2*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^2*v*c[2]+c[3]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*U(xi)^4-4*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^4*v*c[3]+c[4]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*(2*(diff(U(xi), xi))^2+2*U(xi)*(diff(diff(U(xi), xi), xi)))+c[4]*U(xi)*exp(I*k(t*w+x))*(-6*(diff(U(xi), xi))*(diff(diff(U(xi), xi), xi))*v-2*U(xi)*(diff(diff(diff(U(xi), xi), xi), xi))*v)-beta*s*(-(10*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))+(10*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-15*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+10*U(xi)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(10*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-20*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-30*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*(D(k))(t*w+x)*exp(I*k(t*w+x))-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(30*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*exp(I*k(t*w+x))+5*(diff(U(xi), xi))*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x)))+c[2]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*U(xi)^2+2*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^2*c[2]+c[3]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*U(xi)^4+4*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^4*c[3]+c[4]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*(2*(diff(U(xi), xi))^2+2*U(xi)*(diff(diff(U(xi), xi), xi)))+c[4]*U(xi)*exp(I*k(t*w+x))*(6*(diff(U(xi), xi))*(diff(diff(U(xi), xi), xi))+2*U(xi)*(diff(diff(diff(U(xi), xi), xi), xi))) = 0))*denom(lhs(I*((diff(diff(U(xi), xi), xi))*v^2*exp(I*k(t*w+x))-(2*I)*(diff(U(xi), xi))*v*(D(k))(t*w+x)*w*exp(I*k(t*w+x))+I*U(xi)*((D@@2)(k))(t*w+x)*w^2*exp(I*k(t*w+x))-U(xi)*(D(k))(t*w+x)^2*w^2*exp(I*k(t*w+x))-s^2*((diff(diff(U(xi), xi), xi))*exp(I*k(t*w+x))+(2*I)*(diff(U(xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-U(xi)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))))+(1/24)*c[1]*(-(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*v*exp(I*k(t*w+x))+6*(diff(diff(diff(U(xi), xi), xi), xi))*v*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-4*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*w*exp(I*k(t*w+x))+4*(diff(U(xi), xi))*(D(k))(t*w+x)^4*w*exp(I*k(t*w+x))-12*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*w*exp(I*k(t*w+x))+3*(diff(U(xi), xi))*v*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))-(diff(U(xi), xi))*v*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*w*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))+4*(diff(U(xi), xi))*v*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-I*(diff(U(xi), xi))*v*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))-(6*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*w*exp(I*k(t*w+x))-(6*I)*(diff(diff(diff(U(xi), xi), xi), xi))*v*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-(4*I)*(diff(diff(U(xi), xi), xi))*v*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))-(4*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*v*(D(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*w*exp(I*k(t*w+x))+I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*w*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*w*exp(I*k(t*w+x))+(6*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*w*exp(I*k(t*w+x))+(4*I)*(diff(diff(U(xi), xi), xi))*v*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+12*(diff(diff(U(xi), xi), xi))*v*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-18*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+10*U(xi)*(D(k))(t*w+x)^3*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-16*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*w*(D(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*w*(D(k))(t*w+x)*exp(I*k(t*w+x))+(6*I)*(diff(U(xi), xi))*v*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*w*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*w*(D(k))(t*w+x)*exp(I*k(t*w+x))-(24*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*w*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x))-alpha*s*c[1]*(-(10*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))+(10*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-15*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+10*U(xi)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(10*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-20*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-30*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*(D(k))(t*w+x)*exp(I*k(t*w+x))-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(30*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*exp(I*k(t*w+x))+5*(diff(U(xi), xi))*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x)))+c[2]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*U(xi)^2-2*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^2*v*c[2]+c[3]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*U(xi)^4-4*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^4*v*c[3]+c[4]*(-(diff(U(xi), xi))*v*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*w*exp(I*k(t*w+x)))*(2*(diff(U(xi), xi))^2+2*U(xi)*(diff(diff(U(xi), xi), xi)))+c[4]*U(xi)*exp(I*k(t*w+x))*(-6*(diff(U(xi), xi))*(diff(diff(U(xi), xi), xi))*v-2*U(xi)*(diff(diff(diff(U(xi), xi), xi), xi))*v)-beta*s*(-(10*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*exp(I*k(t*w+x))+(5*I)*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))+(10*I)*(diff(diff(U(xi), xi), xi))*((D@@3)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*((D@@5)(k))(t*w+x)*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)^5*exp(I*k(t*w+x))-10*U(xi)*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-15*(diff(U(xi), xi))*((D@@2)(k))(t*w+x)^2*exp(I*k(t*w+x))+10*U(xi)*(D(k))(t*w+x)^3*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(10*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*exp(I*k(t*w+x))-5*U(xi)*((D@@4)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-20*(diff(U(xi), xi))*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*exp(I*k(t*w+x))-30*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(5*I)*(diff(U(xi), xi))*((D@@4)(k))(t*w+x)*exp(I*k(t*w+x))-(15*I)*U(xi)*((D@@2)(k))(t*w+x)^2*(D(k))(t*w+x)*exp(I*k(t*w+x))-(10*I)*U(xi)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*exp(I*k(t*w+x))-(30*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x))*((D@@2)(k))(t*w+x)+(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))*exp(I*k(t*w+x))+5*(diff(U(xi), xi))*(D(k))(t*w+x)^4*exp(I*k(t*w+x))-10*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2*exp(I*k(t*w+x)))+c[2]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*U(xi)^2+2*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^2*c[2]+c[3]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*U(xi)^4+4*exp(I*k(t*w+x))*(diff(U(xi), xi))*U(xi)^4*c[3]+c[4]*((diff(U(xi), xi))*exp(I*k(t*w+x))+I*U(xi)*(D(k))(t*w+x)*exp(I*k(t*w+x)))*(2*(diff(U(xi), xi))^2+2*U(xi)*(diff(diff(U(xi), xi), xi)))+c[4]*U(xi)*exp(I*k(t*w+x))*(6*(diff(U(xi), xi))*(diff(diff(U(xi), xi), xi))+2*U(xi)*(diff(diff(diff(U(xi), xi), xi), xi))) = 0))

-exp(I*k(t*w+x))*(-I*U(xi)*(D(k))(t*w+x)^5*c[1]*w-(4*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*c[1]*v+(6*I)*c[1]*w*(D(k))(t*w+x)^3*(diff(diff(U(xi), xi), xi))+(4*I)*c[1]*v*((D@@3)(k))(t*w+x)*(diff(diff(U(xi), xi), xi))-(6*I)*((D@@3)(k))(t*w+x)*(diff(diff(U(xi), xi), xi))*c[1]*w-(4*I)*((D@@4)(k))(t*w+x)*(diff(U(xi), xi))*c[1]*w+(4*I)*c[1]*v*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)-I*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)*c[1]*w-I*U(xi)*((D@@5)(k))(t*w+x)*c[1]*w+(6*I)*c[1]*v*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)-(4*I)*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)*c[1]*w+(24*I)*s*beta*U(xi)*(D(k))(t*w+x)^5-(240*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*beta*s+(240*I)*s*beta*((D@@3)(k))(t*w+x)*(diff(diff(U(xi), xi), xi))+(120*I)*s*beta*((D@@4)(k))(t*w+x)*(diff(U(xi), xi))+(120*I)*s*beta*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)+(24*I)*s*beta*((D@@5)(k))(t*w+x)*U(xi)+(240*I)*s*beta*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)-(48*I)*U(xi)^2*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*c[4]-(48*I)*U(xi)*(diff(U(xi), xi))^2*(D(k))(t*w+x)*c[4]-(24*I)*c[2]*w*U(xi)^3*(D(k))(t*w+x)-(24*I)*c[3]*w*U(xi)^5*(D(k))(t*w+x)+24*c[1]*s*alpha*(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))+48*c[4]*v*(diff(diff(diff(U(xi), xi), xi), xi))*U(xi)^2+c[1]*v*(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))+24*s*beta*(diff(diff(diff(diff(diff(U(xi), xi), xi), xi), xi), xi))-48*c[4]*(diff(diff(diff(U(xi), xi), xi), xi))*U(xi)^2+I*c[1]*v*((D@@4)(k))(t*w+x)*(diff(U(xi), xi))-10*c[1]*w*((D@@2)(k))(t*w+x)*U(xi)*(D(k))(t*w+x)^3-12*c[1]*v*((D@@2)(k))(t*w+x)*(D(k))(t*w+x)*(diff(diff(U(xi), xi), xi))+18*c[1]*w*((D@@2)(k))(t*w+x)*(D(k))(t*w+x)*(diff(diff(U(xi), xi), xi))-4*c[1]*v*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*(diff(U(xi), xi))+16*c[1]*w*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*(diff(U(xi), xi))+5*c[1]*w*((D@@4)(k))(t*w+x)*U(xi)*(D(k))(t*w+x)+10*c[1]*w*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*U(xi)+120*c[1]*s*alpha*(D(k))(t*w+x)^4*(diff(U(xi), xi))-360*c[1]*s*alpha*((D@@2)(k))(t*w+x)^2*(diff(U(xi), xi))-240*c[1]*s*alpha*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2+192*c[4]*v*U(xi)*(diff(U(xi), xi))*(diff(diff(U(xi), xi), xi))+240*s*beta*((D@@2)(k))(t*w+x)*U(xi)*(D(k))(t*w+x)^3-720*s*beta*((D@@2)(k))(t*w+x)*(D(k))(t*w+x)*(diff(diff(U(xi), xi), xi))-480*s*beta*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*(diff(U(xi), xi))-120*s*beta*((D@@4)(k))(t*w+x)*U(xi)*(D(k))(t*w+x)-240*s*beta*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*U(xi)-(240*I)*U(xi)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*c[1]*alpha*s-(360*I)*U(xi)*(D(k))(t*w+x)*((D@@2)(k))(t*w+x)^2*c[1]*alpha*s-(720*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*((D@@2)(k))(t*w+x)*c[1]*alpha*s+240*c[1]*s*alpha*((D@@2)(k))(t*w+x)*U(xi)*(D(k))(t*w+x)^3-720*c[1]*s*alpha*((D@@2)(k))(t*w+x)*(D(k))(t*w+x)*(diff(diff(U(xi), xi), xi))-480*c[1]*s*alpha*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)*(diff(U(xi), xi))-120*c[1]*s*alpha*((D@@4)(k))(t*w+x)*U(xi)*(D(k))(t*w+x)-240*c[1]*s*alpha*((D@@3)(k))(t*w+x)*((D@@2)(k))(t*w+x)*U(xi)+(15*I)*c[1]*w*((D@@2)(k))(t*w+x)^2*U(xi)*(D(k))(t*w+x)+(24*I)*c[1]*s*alpha*U(xi)*(D(k))(t*w+x)^5-(240*I)*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)^3*c[1]*alpha*s+(240*I)*c[1]*s*alpha*((D@@3)(k))(t*w+x)*(diff(diff(U(xi), xi), xi))+(120*I)*c[1]*s*alpha*((D@@4)(k))(t*w+x)*(diff(U(xi), xi))+(120*I)*c[1]*s*alpha*(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*(D(k))(t*w+x)+(24*I)*c[1]*s*alpha*((D@@5)(k))(t*w+x)*U(xi)+(240*I)*c[1]*s*alpha*(diff(diff(diff(U(xi), xi), xi), xi))*((D@@2)(k))(t*w+x)-(48*I)*U(xi)^2*(diff(diff(U(xi), xi), xi))*(D(k))(t*w+x)*c[4]*w-48*c[4]*(diff(U(xi), xi))^3-(48*I)*U(xi)*(diff(U(xi), xi))^2*(D(k))(t*w+x)*c[4]*w-(720*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*((D@@2)(k))(t*w+x)*beta*s-(240*I)*U(xi)*((D@@3)(k))(t*w+x)*(D(k))(t*w+x)^2*beta*s-(360*I)*U(xi)*(D(k))(t*w+x)*((D@@2)(k))(t*w+x)^2*beta*s-(6*I)*(diff(U(xi), xi))*(D(k))(t*w+x)^2*((D@@2)(k))(t*w+x)*c[1]*v+(24*I)*c[1]*w*((D@@2)(k))(t*w+x)*(D(k))(t*w+x)^2*(diff(U(xi), xi))+(10*I)*c[1]*w*((D@@3)(k))(t*w+x)*U(xi)*(D(k))(t*w+x)^2-(24*I)*s^2*U(xi)*(D(k))(t*w+x)^2-(24*I)*c[2]*U(xi)^3*(D(k))(t*w+x)-(24*I)*c[3]*U(xi)^5*(D(k))(t*w+x)+(24*I)*w^2*U(xi)*(D(k))(t*w+x)^2+24*w^2*((D@@2)(k))(t*w+x)*U(xi)+c[1]*v*(D(k))(t*w+x)^4*(diff(U(xi), xi))-4*c[1]*w*(D(k))(t*w+x)^4*(diff(U(xi), xi))-3*c[1]*v*((D@@2)(k))(t*w+x)^2*(diff(U(xi), xi))+12*c[1]*w*((D@@2)(k))(t*w+x)^2*(diff(U(xi), xi))-6*c[1]*v*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2+4*c[1]*w*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2+72*c[2]*v*U(xi)^2*(diff(U(xi), xi))+120*c[3]*v*U(xi)^4*(diff(U(xi), xi))+120*s*beta*(D(k))(t*w+x)^4*(diff(U(xi), xi))-360*s*beta*((D@@2)(k))(t*w+x)^2*(diff(U(xi), xi))-240*s*beta*(diff(diff(diff(U(xi), xi), xi), xi))*(D(k))(t*w+x)^2-192*c[4]*U(xi)*(diff(U(xi), xi))*(diff(diff(U(xi), xi), xi))-48*w*(D(k))(t*w+x)*v*(diff(U(xi), xi))-(24*I)*v^2*(diff(diff(U(xi), xi), xi))+(24*I)*s^2*(diff(diff(U(xi), xi), xi))-48*s^2*(D(k))(t*w+x)*(diff(U(xi), xi))-24*s^2*((D@@2)(k))(t*w+x)*U(xi)+48*c[4]*v*(diff(U(xi), xi))^3-72*c[2]*U(xi)^2*(diff(U(xi), xi))-120*c[3]*U(xi)^4*(diff(U(xi), xi))) = 0

(10)

%/(-exp(I*k(t*w+x)))

-()/exp(k(t*w+x)*I)

(11)
 

``

Download tr.mw

I do not remember seeing this before or reporting. Just in case, here is how to reproduce it. This happens also in Maple 2024.2

The problem with these errors is that they can not be cought using try/catch.

I was testing a solution which most likely wrong, but I get 

                 Error, (in content/gcd) too many levels of recursion

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1866 and is the same as the version installed in this computer, created 2025, May 6, 10:52 hours Pacific Time.`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 17 and is the same as the version installed in this computer, created May 5, 2025, 12:37 hours Eastern Time.`

restart;

sol:=ln((1/9*u(x)*6^(1/3)/surd((-9*A^2+2*A*x^(3/2))/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4),3)+1)^(1/3)/(1/81*u(x)^2*6^(2/3)/surd((-9*A^2+2*A*x^(3/2))/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4),3)^2-1/9*u(x)*6^(1/3)/surd((-9*A^2+2*A*x^(3/2))/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4),3)+1)^(1/6))+1/3*3^(1/2)*arctan(1/3*(2/9*u(x)*6^(1/3)/surd((-9*A^2+2*A*x^(3/2))/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4),3)-1)*3^(1/2)) = Int(3/2*(-32*x^(15/2)-6480*A^2*x^(9/2)-65610*A^4*x^(3/2)+720*A*x^6+29160*A^3*x^3+59049*A^5)/surd(-A*(-2*x^(3/2)+9*A)/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4),3)/(-128*x^11-54432*A^2*x^8-1837080*A^4*x^5+4782969*A^7*x^(1/2)-7440174*A^6*x^2+4960116*A^5*x^(7/2)+408240*A^3*x^(13/2)+4032*A*x^(19/2))*A*6^(1/3),x)+2*_C1;
ode:=diff(u(x),x) = -1/18/x^(1/2)*(-576*A*x^(9/2)-11664*A^3*x^(3/2)+32*x^6+3888*A^2*x^3+13122*A^4)/(-2*x^(3/2)+9*A)^3*u(x)^3-1/18/x^(1/2)*(1944*A*x^(5/2)-216*x^4-4374*A^2*x)/(-2*x^(3/2)+9*A)^3*u(x)-1/18/x^(1/2)*(486*A*x^(3/2)-2187*A^2)/(-2*x^(3/2)+9*A)^3;

ln(((1/9)*u(x)*6^(1/3)/surd((-9*A^2+2*A*x^(3/2))/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4), 3)+1)^(1/3)/((1/81)*u(x)^2*6^(2/3)/surd((-9*A^2+2*A*x^(3/2))/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4), 3)^2-(1/9)*u(x)*6^(1/3)/surd((-9*A^2+2*A*x^(3/2))/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4), 3)+1)^(1/6))+(1/3)*3^(1/2)*arctan((1/3)*((2/9)*u(x)*6^(1/3)/surd((-9*A^2+2*A*x^(3/2))/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4), 3)-1)*3^(1/2)) = Int((3/2)*(-32*x^(15/2)-6480*A^2*x^(9/2)-65610*A^4*x^(3/2)+720*A*x^6+29160*A^3*x^3+59049*A^5)*A*6^(1/3)/(surd(-A*(-2*x^(3/2)+9*A)/(-288*A*x^(9/2)-5832*A^3*x^(3/2)+16*x^6+1944*A^2*x^3+6561*A^4), 3)*(-128*x^11-54432*A^2*x^8-1837080*A^4*x^5+4782969*A^7*x^(1/2)-7440174*A^6*x^2+4960116*A^5*x^(7/2)+408240*A^3*x^(13/2)+4032*A*x^(19/2))), x)+2*_C1

diff(u(x), x) = -(1/18)*(-576*A*x^(9/2)-11664*A^3*x^(3/2)+32*x^6+3888*A^2*x^3+13122*A^4)*u(x)^3/(x^(1/2)*(-2*x^(3/2)+9*A)^3)-(1/18)*(1944*A*x^(5/2)-216*x^4-4374*A^2*x)*u(x)/(x^(1/2)*(-2*x^(3/2)+9*A)^3)-(1/18)*(486*A*x^(3/2)-2187*A^2)/(x^(1/2)*(-2*x^(3/2)+9*A)^3)

try
    odetest(sol,ode);
catch:
    print("cought error ok");
end try;

Error, (in content/gcd) too many levels of recursion

 

 

Download content_gce_odetest_error_may_7_2025.mw

I asked similar question 5 years ago about Physics update but it was not possible to find this information

How-To-Find-What-Changed-In-Physics

I'd like to ask now again same about  SupportTools. Can one find out what update is actually included in new version?

Even if it is just 2-3 lines. It will be good if users had an idea what was fixed or improved in the new version.

Any update to software should inlcude such information. Not asking for details, just general information will be nice. Right now one does an update and have no idea at all what the new update fixed or improved which is not good.

May be such information can be displayed on screen after a user updates?

Maplesoft’s CEO, Dr. Laurent Bernardin, has written an opinion piece on Fostering Student Retention through Success in Mathematics. In it, he discusses ways to reduce university dropout rates by turning the technology shortcuts students are already using in their math courses into data-driven insights and interventions that promote student success.

You can read the whole article here:  Fostering Student Retention through Success in Mathematics

You will not be shocked to learn that Maplesoft plays a role in the strategy he proposes. 😊 (But this is a serious problem for a lot of schools, and we really would like to help!)

I want to convert my code output into LaTeX format, but the current formatting isn't suitable for presentation. For example, when I use simplify, it sometimes introduces unnecessary fractions, making the expression look cluttered and less elegant on paper. I'm looking for a way to simplify expressions preferably by factoring terms, without introducing extra fractions, so the final LaTeX result appears clean and well-structured.

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, t)); declare(U(xi)); declare(V(xi))

u(x, t)*`will now be displayed as`*u

 

U(xi)*`will now be displayed as`*U

 

V(xi)*`will now be displayed as`*V

(2)

``

RR := (2*v*(1/3)+2*alpha*beta*(1/3))*U(xi)^3+(-3*alpha*k^2*lambda-4*alpha^2*k-k^2*v+2*k^2*w-4*k*v*w)*U(xi)+(alpha*lambda+v)*(diff(diff(U(xi), xi), xi)) = 0

((2/3)*v+(2/3)*alpha*beta)*U(xi)^3+(-3*alpha*k^2*lambda-4*alpha^2*k-k^2*v+2*k^2*w-4*k*v*w)*U(xi)+(alpha*lambda+v)*(diff(diff(U(xi), xi), xi)) = 0

(3)

IM := -2*(diff(diff(U(xi), xi), xi))*v*k-2*U(xi)*k^2*w^2-2*(diff(diff(U(xi), xi), xi))*alpha^2+2*(diff(diff(U(xi), xi), xi))*v^2+(diff(diff(U(xi), xi), xi))*k*w+2*U(xi)^3*k*w-2*U(xi)^3*alpha*beta*k-3*(diff(diff(U(xi), xi), xi))*alpha*k*lambda-U(xi)*k^3*w+2*U(xi)*alpha^2*k^2+U(xi)*alpha*k^3*lambda = 0

-2*(diff(diff(U(xi), xi), xi))*v*k-2*U(xi)*k^2*w^2-2*(diff(diff(U(xi), xi), xi))*alpha^2+2*(diff(diff(U(xi), xi), xi))*v^2+(diff(diff(U(xi), xi), xi))*k*w+2*U(xi)^3*k*w-2*U(xi)^3*alpha*beta*k-3*(diff(diff(U(xi), xi), xi))*alpha*k*lambda-U(xi)*k^3*w+2*U(xi)*alpha^2*k^2+U(xi)*alpha*k^3*lambda = 0

(4)

collect(%, {U(xi), diff(diff(U(xi), xi), xi)})

(-2*alpha*beta*k+2*k*w)*U(xi)^3+(alpha*k^3*lambda+2*alpha^2*k^2-k^3*w-2*k^2*w^2)*U(xi)+(-3*alpha*k*lambda-2*alpha^2-2*k*v+k*w+2*v^2)*(diff(diff(U(xi), xi), xi)) = 0

(5)

P := %

(-2*alpha*beta*k+2*k*w)*U(xi)^3+(alpha*k^3*lambda+2*alpha^2*k^2-k^3*w-2*k^2*w^2)*U(xi)+(-3*alpha*k*lambda-2*alpha^2-2*k*v+k*w+2*v^2)*(diff(diff(U(xi), xi), xi)) = 0

(6)

NULL

NULL

C1 := v = solve(2*v*(1/3)+2*alpha*beta*(1/3) = 0, v)

v = -alpha*beta

(7)

C2 := k = solve(-3*alpha*k^2*lambda-4*alpha^2*k-k^2*v+2*k^2*w-4*k*v*w = 0, k)

k = (0, -4*(alpha^2+v*w)/(3*alpha*lambda+v-2*w))

(8)

C22 := subs(C1, C2)

k = (0, -4*(-alpha*beta*w+alpha^2)/(-alpha*beta+3*alpha*lambda-2*w))

(9)

C222 := k = -(4*(-alpha*beta*w+alpha^2))/(-alpha*beta+3*alpha*lambda-2*w)

k = -4*(-alpha*beta*w+alpha^2)/(-alpha*beta+3*alpha*lambda-2*w)

(10)

ode := subs({C1, C222}, P)

(8*alpha*beta*(-alpha*beta*w+alpha^2)/(-alpha*beta+3*alpha*lambda-2*w)-8*(-alpha*beta*w+alpha^2)*w/(-alpha*beta+3*alpha*lambda-2*w))*U(xi)^3+(-64*alpha*(-alpha*beta*w+alpha^2)^3*lambda/(-alpha*beta+3*alpha*lambda-2*w)^3+32*alpha^2*(-alpha*beta*w+alpha^2)^2/(-alpha*beta+3*alpha*lambda-2*w)^2+64*(-alpha*beta*w+alpha^2)^3*w/(-alpha*beta+3*alpha*lambda-2*w)^3-32*(-alpha*beta*w+alpha^2)^2*w^2/(-alpha*beta+3*alpha*lambda-2*w)^2)*U(xi)+(12*alpha*(-alpha*beta*w+alpha^2)*lambda/(-alpha*beta+3*alpha*lambda-2*w)-2*alpha^2-8*alpha*beta*(-alpha*beta*w+alpha^2)/(-alpha*beta+3*alpha*lambda-2*w)-4*(-alpha*beta*w+alpha^2)*w/(-alpha*beta+3*alpha*lambda-2*w)+2*alpha^2*beta^2)*(diff(diff(U(xi), xi), xi)) = 0

(11)

numer(lhs((8*alpha*beta*(-alpha*beta*w+alpha^2)/(-alpha*beta+3*alpha*lambda-2*w)-8*(-alpha*beta*w+alpha^2)*w/(-alpha*beta+3*alpha*lambda-2*w))*U(xi)^3+(-64*alpha*(-alpha*beta*w+alpha^2)^3*lambda/(-alpha*beta+3*alpha*lambda-2*w)^3+32*alpha^2*(-alpha*beta*w+alpha^2)^2/(-alpha*beta+3*alpha*lambda-2*w)^2+64*(-alpha*beta*w+alpha^2)^3*w/(-alpha*beta+3*alpha*lambda-2*w)^3-32*(-alpha*beta*w+alpha^2)^2*w^2/(-alpha*beta+3*alpha*lambda-2*w)^2)*U(xi)+(12*alpha*(-alpha*beta*w+alpha^2)*lambda/(-alpha*beta+3*alpha*lambda-2*w)-2*alpha^2-8*alpha*beta*(-alpha*beta*w+alpha^2)/(-alpha*beta+3*alpha*lambda-2*w)-4*(-alpha*beta*w+alpha^2)*w/(-alpha*beta+3*alpha*lambda-2*w)+2*alpha^2*beta^2)*(diff(diff(U(xi), xi), xi)) = 0))*denom(rhs((8*alpha*beta*(-alpha*beta*w+alpha^2)/(-alpha*beta+3*alpha*lambda-2*w)-8*(-alpha*beta*w+alpha^2)*w/(-alpha*beta+3*alpha*lambda-2*w))*U(xi)^3+(-64*alpha*(-alpha*beta*w+alpha^2)^3*lambda/(-alpha*beta+3*alpha*lambda-2*w)^3+32*alpha^2*(-alpha*beta*w+alpha^2)^2/(-alpha*beta+3*alpha*lambda-2*w)^2+64*(-alpha*beta*w+alpha^2)^3*w/(-alpha*beta+3*alpha*lambda-2*w)^3-32*(-alpha*beta*w+alpha^2)^2*w^2/(-alpha*beta+3*alpha*lambda-2*w)^2)*U(xi)+(12*alpha*(-alpha*beta*w+alpha^2)*lambda/(-alpha*beta+3*alpha*lambda-2*w)-2*alpha^2-8*alpha*beta*(-alpha*beta*w+alpha^2)/(-alpha*beta+3*alpha*lambda-2*w)-4*(-alpha*beta*w+alpha^2)*w/(-alpha*beta+3*alpha*lambda-2*w)+2*alpha^2*beta^2)*(diff(diff(U(xi), xi), xi)) = 0)) = numer(rhs((8*alpha*beta*(-alpha*beta*w+alpha^2)/(-alpha*beta+3*alpha*lambda-2*w)-8*(-alpha*beta*w+alpha^2)*w/(-alpha*beta+3*alpha*lambda-2*w))*U(xi)^3+(-64*alpha*(-alpha*beta*w+alpha^2)^3*lambda/(-alpha*beta+3*alpha*lambda-2*w)^3+32*alpha^2*(-alpha*beta*w+alpha^2)^2/(-alpha*beta+3*alpha*lambda-2*w)^2+64*(-alpha*beta*w+alpha^2)^3*w/(-alpha*beta+3*alpha*lambda-2*w)^3-32*(-alpha*beta*w+alpha^2)^2*w^2/(-alpha*beta+3*alpha*lambda-2*w)^2)*U(xi)+(12*alpha*(-alpha*beta*w+alpha^2)*lambda/(-alpha*beta+3*alpha*lambda-2*w)-2*alpha^2-8*alpha*beta*(-alpha*beta*w+alpha^2)/(-alpha*beta+3*alpha*lambda-2*w)-4*(-alpha*beta*w+alpha^2)*w/(-alpha*beta+3*alpha*lambda-2*w)+2*alpha^2*beta^2)*(diff(diff(U(xi), xi), xi)) = 0))*denom(lhs((8*alpha*beta*(-alpha*beta*w+alpha^2)/(-alpha*beta+3*alpha*lambda-2*w)-8*(-alpha*beta*w+alpha^2)*w/(-alpha*beta+3*alpha*lambda-2*w))*U(xi)^3+(-64*alpha*(-alpha*beta*w+alpha^2)^3*lambda/(-alpha*beta+3*alpha*lambda-2*w)^3+32*alpha^2*(-alpha*beta*w+alpha^2)^2/(-alpha*beta+3*alpha*lambda-2*w)^2+64*(-alpha*beta*w+alpha^2)^3*w/(-alpha*beta+3*alpha*lambda-2*w)^3-32*(-alpha*beta*w+alpha^2)^2*w^2/(-alpha*beta+3*alpha*lambda-2*w)^2)*U(xi)+(12*alpha*(-alpha*beta*w+alpha^2)*lambda/(-alpha*beta+3*alpha*lambda-2*w)-2*alpha^2-8*alpha*beta*(-alpha*beta*w+alpha^2)/(-alpha*beta+3*alpha*lambda-2*w)-4*(-alpha*beta*w+alpha^2)*w/(-alpha*beta+3*alpha*lambda-2*w)+2*alpha^2*beta^2)*(diff(diff(U(xi), xi), xi)) = 0))

-2*alpha*(-24*U(xi)^3*alpha^4*beta^2*lambda+36*U(xi)^3*alpha^4*beta*lambda^2-12*U(xi)^3*alpha^2*beta^3*w^2-16*U(xi)*alpha^4*beta^3*w^2-16*U(xi)*alpha^2*beta^3*w^4+9*(diff(diff(U(xi), xi), xi))*alpha^4*beta^4*lambda-27*(diff(diff(U(xi), xi), xi))*alpha^4*beta^3*lambda^2+27*(diff(diff(U(xi), xi), xi))*alpha^4*beta^2*lambda^3+12*U(xi)^3*alpha^3*beta^2*w-36*U(xi)^3*alpha^3*lambda^2*w+32*U(xi)*alpha^5*beta^2*w+32*U(xi)*alpha^3*beta^2*w^3+32*U(xi)*alpha*beta^2*w^5-2*(diff(diff(U(xi), xi), xi))*alpha^3*beta^4*w+48*U(xi)^3*alpha^2*lambda*w^2-16*U(xi)*alpha^4*beta*w^2-48*U(xi)*alpha^4*lambda*w^2-64*U(xi)*alpha^2*beta*w^4+21*(diff(diff(U(xi), xi), xi))*alpha^4*beta^2*lambda-45*(diff(diff(U(xi), xi), xi))*alpha^4*beta*lambda^2+6*(diff(diff(U(xi), xi), xi))*alpha^2*beta^3*w^2-12*(diff(diff(U(xi), xi), xi))*alpha^3*beta^2*w-36*(diff(diff(U(xi), xi), xi))*alpha^3*lambda^2*w+16*(diff(diff(U(xi), xi), xi))*alpha*beta^2*w^3-12*(diff(diff(U(xi), xi), xi))*alpha^2*beta*w^2+12*(diff(diff(U(xi), xi), xi))*alpha^2*lambda*w^2-4*U(xi)^3*alpha^3*beta^4*w+24*U(xi)^3*alpha^3*beta^3*lambda*w-36*U(xi)^3*alpha^3*beta^2*lambda^2*w+32*U(xi)*alpha^3*beta^3*lambda*w^3+24*U(xi)^3*alpha^2*beta^2*lambda*w^2+36*U(xi)^3*alpha^2*beta*lambda^2*w^2-48*U(xi)*alpha^4*beta^2*lambda*w^2-48*U(xi)*alpha^2*beta^2*lambda*w^4-24*U(xi)^3*alpha^3*beta*lambda*w-48*U(xi)^3*alpha*beta*lambda*w^3+96*U(xi)*alpha^3*beta*lambda*w^3+6*(diff(diff(U(xi), xi), xi))*alpha^3*beta^3*lambda*w+18*(diff(diff(U(xi), xi), xi))*alpha^3*beta^2*lambda^2*w-54*(diff(diff(U(xi), xi), xi))*alpha^3*beta*lambda^3*w-48*(diff(diff(U(xi), xi), xi))*alpha^2*beta^2*lambda*w^2+90*(diff(diff(U(xi), xi), xi))*alpha^2*beta*lambda^2*w^2+48*(diff(diff(U(xi), xi), xi))*alpha^3*beta*lambda*w-48*(diff(diff(U(xi), xi), xi))*alpha*beta*lambda*w^3+4*U(xi)^3*alpha^4*beta^3-(diff(diff(U(xi), xi), xi))*alpha^4*beta^5+16*U(xi)^3*beta*w^4-16*U(xi)*alpha^6*beta+16*U(xi)*alpha^6*lambda-3*(diff(diff(U(xi), xi), xi))*alpha^4*beta^3+27*(diff(diff(U(xi), xi), xi))*alpha^4*lambda^3-16*U(xi)^3*alpha*w^3+32*U(xi)*alpha^3*w^3+8*(diff(diff(U(xi), xi), xi))*beta*w^4) = 0

(12)

simplify(-2*alpha*(24*U(xi)^3*alpha^3*beta^3*lambda*w-36*U(xi)^3*alpha^3*beta^2*lambda^2*w+32*U(xi)*alpha^3*beta^3*lambda*w^3+24*U(xi)^3*alpha^2*beta^2*lambda*w^2+36*U(xi)^3*alpha^2*beta*lambda^2*w^2-48*U(xi)*alpha^4*beta^2*lambda*w^2-48*U(xi)*alpha^2*beta^2*lambda*w^4-24*U(xi)^3*alpha^3*beta*lambda*w-48*U(xi)^3*alpha*beta*lambda*w^3+96*U(xi)*alpha^3*beta*lambda*w^3+6*(diff(diff(U(xi), xi), xi))*alpha^3*beta^3*lambda*w+18*(diff(diff(U(xi), xi), xi))*alpha^3*beta^2*lambda^2*w-54*(diff(diff(U(xi), xi), xi))*alpha^3*beta*lambda^3*w-48*(diff(diff(U(xi), xi), xi))*alpha^2*beta^2*lambda*w^2+90*(diff(diff(U(xi), xi), xi))*alpha^2*beta*lambda^2*w^2+48*(diff(diff(U(xi), xi), xi))*alpha^3*beta*lambda*w-48*(diff(diff(U(xi), xi), xi))*alpha*beta*lambda*w^3-24*U(xi)^3*alpha^4*beta^2*lambda+36*U(xi)^3*alpha^4*beta*lambda^2-12*U(xi)^3*alpha^2*beta^3*w^2-16*U(xi)*alpha^4*beta^3*w^2-16*U(xi)*alpha^2*beta^3*w^4+9*(diff(diff(U(xi), xi), xi))*alpha^4*beta^4*lambda-27*(diff(diff(U(xi), xi), xi))*alpha^4*beta^3*lambda^2+27*(diff(diff(U(xi), xi), xi))*alpha^4*beta^2*lambda^3+12*U(xi)^3*alpha^3*beta^2*w-36*U(xi)^3*alpha^3*lambda^2*w+32*U(xi)*alpha^5*beta^2*w+32*U(xi)*alpha^3*beta^2*w^3+32*U(xi)*alpha*beta^2*w^5-2*(diff(diff(U(xi), xi), xi))*alpha^3*beta^4*w+48*U(xi)^3*alpha^2*lambda*w^2-16*U(xi)*alpha^4*beta*w^2-48*U(xi)*alpha^4*lambda*w^2-64*U(xi)*alpha^2*beta*w^4+21*(diff(diff(U(xi), xi), xi))*alpha^4*beta^2*lambda-45*(diff(diff(U(xi), xi), xi))*alpha^4*beta*lambda^2+6*(diff(diff(U(xi), xi), xi))*alpha^2*beta^3*w^2-12*(diff(diff(U(xi), xi), xi))*alpha^3*beta^2*w-36*(diff(diff(U(xi), xi), xi))*alpha^3*lambda^2*w+16*(diff(diff(U(xi), xi), xi))*alpha*beta^2*w^3-12*(diff(diff(U(xi), xi), xi))*alpha^2*beta*w^2+12*(diff(diff(U(xi), xi), xi))*alpha^2*lambda*w^2-4*U(xi)^3*alpha^3*beta^4*w-(diff(diff(U(xi), xi), xi))*alpha^4*beta^5+4*U(xi)^3*alpha^4*beta^3+16*U(xi)^3*beta*w^4-16*U(xi)*alpha^6*beta+16*U(xi)*alpha^6*lambda-3*(diff(diff(U(xi), xi), xi))*alpha^4*beta^3+27*(diff(diff(U(xi), xi), xi))*alpha^4*lambda^3-16*U(xi)^3*alpha*w^3+32*U(xi)*alpha^3*w^3+8*(diff(diff(U(xi), xi), xi))*beta*w^4) = 0)

-64*alpha*((1/4)*((1/2)*(-beta^3+3*beta^2*lambda-3*beta+3*lambda)*alpha^2+beta*w*(beta-3*lambda)*alpha+beta*w^2)*((1/2)*(beta-3*lambda)*alpha+w)^2*(diff(diff(U(xi), xi), xi))+((1/2)*(-alpha*beta+w)*((1/2)*(beta-3*lambda)*alpha+w)^2*U(xi)^2+alpha*((1/2)*(-beta+lambda)*alpha^3+w*beta*alpha^2*lambda-(1/2)*w^2*(beta+3*lambda)*alpha+w^3)*(beta*w-alpha))*(beta*w-alpha)*U(xi)) = 0

(13)

%/(-64*alpha)

(1/4)*((1/2)*(-beta^3+3*beta^2*lambda-3*beta+3*lambda)*alpha^2+beta*w*(beta-3*lambda)*alpha+beta*w^2)*((1/2)*(beta-3*lambda)*alpha+w)^2*(diff(diff(U(xi), xi), xi))+((1/2)*(-alpha*beta+w)*((1/2)*(beta-3*lambda)*alpha+w)^2*U(xi)^2+alpha*((1/2)*(-beta+lambda)*alpha^3+w*beta*alpha^2*lambda-(1/2)*w^2*(beta+3*lambda)*alpha+w^3)*(beta*w-alpha))*(beta*w-alpha)*U(xi) = 0

(14)

PP := numer(lhs((1/4)*((1/2)*(-beta^3+3*beta^2*lambda-3*beta+3*lambda)*alpha^2+beta*w*(beta-3*lambda)*alpha+beta*w^2)*((1/2)*(beta-3*lambda)*alpha+w)^2*(diff(diff(U(xi), xi), xi))+((1/2)*(-alpha*beta+w)*((1/2)*(beta-3*lambda)*alpha+w)^2*U(xi)^2+alpha*((1/2)*(-beta+lambda)*alpha^3+w*beta*alpha^2*lambda-(1/2)*w^2*(beta+3*lambda)*alpha+w^3)*(beta*w-alpha))*(beta*w-alpha)*U(xi) = 0))*denom(rhs((1/4)*((1/2)*(-beta^3+3*beta^2*lambda-3*beta+3*lambda)*alpha^2+beta*w*(beta-3*lambda)*alpha+beta*w^2)*((1/2)*(beta-3*lambda)*alpha+w)^2*(diff(diff(U(xi), xi), xi))+((1/2)*(-alpha*beta+w)*((1/2)*(beta-3*lambda)*alpha+w)^2*U(xi)^2+alpha*((1/2)*(-beta+lambda)*alpha^3+w*beta*alpha^2*lambda-(1/2)*w^2*(beta+3*lambda)*alpha+w^3)*(beta*w-alpha))*(beta*w-alpha)*U(xi) = 0)) = numer(rhs((1/4)*((1/2)*(-beta^3+3*beta^2*lambda-3*beta+3*lambda)*alpha^2+beta*w*(beta-3*lambda)*alpha+beta*w^2)*((1/2)*(beta-3*lambda)*alpha+w)^2*(diff(diff(U(xi), xi), xi))+((1/2)*(-alpha*beta+w)*((1/2)*(beta-3*lambda)*alpha+w)^2*U(xi)^2+alpha*((1/2)*(-beta+lambda)*alpha^3+w*beta*alpha^2*lambda-(1/2)*w^2*(beta+3*lambda)*alpha+w^3)*(beta*w-alpha))*(beta*w-alpha)*U(xi) = 0))*denom(lhs((1/4)*((1/2)*(-beta^3+3*beta^2*lambda-3*beta+3*lambda)*alpha^2+beta*w*(beta-3*lambda)*alpha+beta*w^2)*((1/2)*(beta-3*lambda)*alpha+w)^2*(diff(diff(U(xi), xi), xi))+((1/2)*(-alpha*beta+w)*((1/2)*(beta-3*lambda)*alpha+w)^2*U(xi)^2+alpha*((1/2)*(-beta+lambda)*alpha^3+w*beta*alpha^2*lambda-(1/2)*w^2*(beta+3*lambda)*alpha+w^3)*(beta*w-alpha))*(beta*w-alpha)*U(xi) = 0))

-24*U(xi)^3*alpha^4*beta^2*lambda+36*U(xi)^3*alpha^4*beta*lambda^2-12*U(xi)^3*alpha^2*beta^3*w^2-16*U(xi)*alpha^4*beta^3*w^2-16*U(xi)*alpha^2*beta^3*w^4+9*(diff(diff(U(xi), xi), xi))*alpha^4*beta^4*lambda-27*(diff(diff(U(xi), xi), xi))*alpha^4*beta^3*lambda^2+27*(diff(diff(U(xi), xi), xi))*alpha^4*beta^2*lambda^3+12*U(xi)^3*alpha^3*beta^2*w-36*U(xi)^3*alpha^3*lambda^2*w+32*U(xi)*alpha^5*beta^2*w+32*U(xi)*alpha^3*beta^2*w^3+32*U(xi)*alpha*beta^2*w^5-2*(diff(diff(U(xi), xi), xi))*alpha^3*beta^4*w+48*U(xi)^3*alpha^2*lambda*w^2-16*U(xi)*alpha^4*beta*w^2-48*U(xi)*alpha^4*lambda*w^2-64*U(xi)*alpha^2*beta*w^4+21*(diff(diff(U(xi), xi), xi))*alpha^4*beta^2*lambda-45*(diff(diff(U(xi), xi), xi))*alpha^4*beta*lambda^2+6*(diff(diff(U(xi), xi), xi))*alpha^2*beta^3*w^2-12*(diff(diff(U(xi), xi), xi))*alpha^3*beta^2*w-36*(diff(diff(U(xi), xi), xi))*alpha^3*lambda^2*w+16*(diff(diff(U(xi), xi), xi))*alpha*beta^2*w^3-12*(diff(diff(U(xi), xi), xi))*alpha^2*beta*w^2+12*(diff(diff(U(xi), xi), xi))*alpha^2*lambda*w^2-4*U(xi)^3*alpha^3*beta^4*w+24*U(xi)^3*alpha^3*beta^3*lambda*w-36*U(xi)^3*alpha^3*beta^2*lambda^2*w+32*U(xi)*alpha^3*beta^3*lambda*w^3+24*U(xi)^3*alpha^2*beta^2*lambda*w^2+36*U(xi)^3*alpha^2*beta*lambda^2*w^2-48*U(xi)*alpha^4*beta^2*lambda*w^2-48*U(xi)*alpha^2*beta^2*lambda*w^4-24*U(xi)^3*alpha^3*beta*lambda*w-48*U(xi)^3*alpha*beta*lambda*w^3+96*U(xi)*alpha^3*beta*lambda*w^3+6*(diff(diff(U(xi), xi), xi))*alpha^3*beta^3*lambda*w+18*(diff(diff(U(xi), xi), xi))*alpha^3*beta^2*lambda^2*w-54*(diff(diff(U(xi), xi), xi))*alpha^3*beta*lambda^3*w-48*(diff(diff(U(xi), xi), xi))*alpha^2*beta^2*lambda*w^2+90*(diff(diff(U(xi), xi), xi))*alpha^2*beta*lambda^2*w^2+48*(diff(diff(U(xi), xi), xi))*alpha^3*beta*lambda*w-48*(diff(diff(U(xi), xi), xi))*alpha*beta*lambda*w^3+4*U(xi)^3*alpha^4*beta^3-(diff(diff(U(xi), xi), xi))*alpha^4*beta^5+16*U(xi)^3*beta*w^4-16*U(xi)*alpha^6*beta+16*U(xi)*alpha^6*lambda-3*(diff(diff(U(xi), xi), xi))*alpha^4*beta^3+27*(diff(diff(U(xi), xi), xi))*alpha^4*lambda^3-16*U(xi)^3*alpha*w^3+32*U(xi)*alpha^3*w^3+8*(diff(diff(U(xi), xi), xi))*beta*w^4 = 0

(15)

NULL

collect(PP, {U(xi), diff(U(xi), xi), diff(diff(U(xi), xi), xi)})

(-4*alpha^3*beta^4*w+24*alpha^3*beta^3*lambda*w-36*alpha^3*beta^2*lambda^2*w+4*alpha^4*beta^3-24*alpha^4*beta^2*lambda+36*alpha^4*beta*lambda^2-12*alpha^2*beta^3*w^2+24*alpha^2*beta^2*lambda*w^2+36*alpha^2*beta*lambda^2*w^2+12*alpha^3*beta^2*w-24*alpha^3*beta*lambda*w-36*alpha^3*lambda^2*w-48*alpha*beta*lambda*w^3+48*alpha^2*lambda*w^2+16*beta*w^4-16*alpha*w^3)*U(xi)^3+(32*alpha^3*beta^3*lambda*w^3-16*alpha^4*beta^3*w^2-48*alpha^4*beta^2*lambda*w^2-16*alpha^2*beta^3*w^4-48*alpha^2*beta^2*lambda*w^4+32*alpha^5*beta^2*w+32*alpha^3*beta^2*w^3+96*alpha^3*beta*lambda*w^3+32*alpha*beta^2*w^5-16*alpha^6*beta+16*alpha^6*lambda-16*alpha^4*beta*w^2-48*alpha^4*lambda*w^2-64*alpha^2*beta*w^4+32*alpha^3*w^3)*U(xi)+(-alpha^4*beta^5+9*alpha^4*beta^4*lambda-27*alpha^4*beta^3*lambda^2+27*alpha^4*beta^2*lambda^3-2*alpha^3*beta^4*w+6*alpha^3*beta^3*lambda*w+18*alpha^3*beta^2*lambda^2*w-54*alpha^3*beta*lambda^3*w-3*alpha^4*beta^3+21*alpha^4*beta^2*lambda-45*alpha^4*beta*lambda^2+27*alpha^4*lambda^3+6*alpha^2*beta^3*w^2-48*alpha^2*beta^2*lambda*w^2+90*alpha^2*beta*lambda^2*w^2-12*alpha^3*beta^2*w+48*alpha^3*beta*lambda*w-36*alpha^3*lambda^2*w+16*alpha*beta^2*w^3-48*alpha*beta*lambda*w^3-12*alpha^2*beta*w^2+12*alpha^2*lambda*w^2+8*beta*w^4)*(diff(diff(U(xi), xi), xi)) = 0

(16)
 

NULL

Download B-R.mw

How can we eliminate nonlinear terms involving two functions in a differential equation?

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(G(xi)); declare(Q(x, t)); declare(Q1(x, t))

G(xi)*`will now be displayed as`*G

 

Q(x, t)*`will now be displayed as`*Q

 

Q1(x, t)*`will now be displayed as`*Q1

(2)

NULL

q := (sqrt(P)+Q(x, t))*exp(I*gamma*P*t); B := (sqrt(P)+Q(x, t))*exp(-I*gamma*P*t); B1 := sqrt(P)+Q(x, t); P+sqrt(P)*(Q1(x, t)+Q(x, t))

GeF := I*(diff(q, t))+alpha[1]*(diff(q, x, x))+alpha[2]*(P+sqrt(P)*(Q1(x, t)+Q(x, t)))*q+alpha[3]*(P+sqrt(P)*(Q1(x, t)+Q(x, t)))^2*q+alpha[4]*(P+sqrt(P)*(Q1(x, t)+Q(x, t)))^3*q+alpha[5]*(diff(P+sqrt(P)*(Q1(x, t)+Q(x, t)), x, x))*q = 0

K := simplify(GeF*exp(-I*gamma*P*t))

(Q(x, t)^4*alpha[4]+3*Q(x, t)^3*Q1(x, t)*alpha[4]+3*(Q1(x, t)^2*alpha[4]+alpha[3])*Q(x, t)^2+Q1(x, t)*(Q1(x, t)^2*alpha[4]+4*alpha[3])*Q(x, t)+Q1(x, t)^2*alpha[3]+alpha[2]-gamma)*P^(3/2)+(6*Q(x, t)^2*alpha[4]+9*Q(x, t)*Q1(x, t)*alpha[4]+3*Q1(x, t)^2*alpha[4]+alpha[3])*P^(5/2)+(P^(1/2)*Q(x, t)*alpha[5]+P*alpha[5]+alpha[1])*(diff(diff(Q(x, t), x), x))+alpha[5]*(P^(1/2)*Q(x, t)+P)*(diff(diff(Q1(x, t), x), x))+P^(7/2)*alpha[4]+I*(diff(Q(x, t), t))+alpha[2]*(Q1(x, t)*Q(x, t)+Q(x, t)^2)*P^(1/2)+(4*P^2*alpha[4]+P*alpha[3])*Q(x, t)^3+(9*P^2*alpha[4]+2*P*alpha[3])*Q1(x, t)*Q(x, t)^2+((6*P^2*alpha[4]+P*alpha[3])*Q1(x, t)^2+4*alpha[4]*P^3+3*alpha[3]*P^2+(2*alpha[2]-gamma)*P)*Q(x, t)+P^2*Q1(x, t)^3*alpha[4]+(3*P^3*alpha[4]+2*P^2*alpha[3]+P*alpha[2])*Q1(x, t) = 0

(3)

remove(has, K, {Q(x, t)^2, Q(x, t)^3, Q(x, t)^4, Q1(x, t)^2, Q1(x, t)^3, Q1(x, t)^4})

() = 0

(4)

NULL

NULL

AA := (alpha[2]-gamma)*P^(3/2)+alpha[3]*P^(5/2)+(P*alpha[5]+alpha[1])*(diff(Q(x, t), x, x))+alpha[5]*P*(diff(Q1(x, t), x, x))+P^(7/2)*alpha[4]+I*(diff(Q(x, t), t))+(4*alpha[4]*P^3+3*alpha[3]*P^2+(2*alpha[2]-gamma)*P)*Q(x, t)+(3*P^3*alpha[4]+2*P^2*alpha[3]+P*alpha[2])*Q1(x, t) = 0

(alpha[2]-gamma)*P^(3/2)+P^(5/2)*alpha[3]+(P*alpha[5]+alpha[1])*(diff(diff(Q(x, t), x), x))+P*(diff(diff(Q1(x, t), x), x))*alpha[5]+P^(7/2)*alpha[4]+I*(diff(Q(x, t), t))+(4*alpha[4]*P^3+3*alpha[3]*P^2+(2*alpha[2]-gamma)*P)*Q(x, t)+(3*P^3*alpha[4]+2*P^2*alpha[3]+P*alpha[2])*Q1(x, t) = 0

(5)
 

test := (alpha[2]-gamma)*P^(3/2)+alpha[3]*P^(5/2)+(P*alpha[5]+alpha[1])*0+P*alpha[5]*0+P^(7/2)*alpha[4]+I*0 = 0

(alpha[2]-gamma)*P^(3/2)+P^(5/2)*alpha[3]+P^(7/2)*alpha[4] = 0

(6)
 

NULL

Download remove.mw

Hi!

Sorry if I am missing something or not following any implicit rules, I am really new to Maple and this forum.

For the sake of completeness, here the code that is given:

Ve := Vector([VeX, VeY, VeZ]);
with(LinearAlgebra);
Vh := Normalize(Vector([alphaX*Ve(1), alphaY*Ve(2), Ve(3)]), Euclidean, conjugate = false);
lensq := Vh(1)*Vh(1) + Vh(2)*Vh(2);
T1 := Vector([-Vh(2), Vh(1), 0])/sqrt(lensq);
T2 := CrossProduct(Vh, T1);
r := sqrt(x);
phi := 2*Pi*y;
t1 := r*cos(phi);
t2 := r*sin(phi);
s := 1/2*(1 + Vh(3));
t22 := (1 - s)*sqrt(1 - t1*t1) + s*t2;
Nh := t1*T1 + t22*T2 + sqrt(1 - t1*t1 - t22*t22)*Vh;
NULL;
Ne := Normalize(Vector([alphaX*Nh(1), alphaY*Nh(2), Nh(3)]), Euclidean, conjugate = false);
AV := (-1 + sqrt(1 + (alphaX^2*Ve(1)^2 + alphaY^2*Ve(2)^2)/Ve(3)^2))/2;
G1 := 1/(1 + AV);
DN := 1/(Pi*alphaX*alphaY*(Ne(1)^2/alphaX^2 + Ne(2)^2/alphaY^2 + Ne(3)^2)^2);

DVN := G1*DotProduct(Ve, Ne, conjugate = false)*DN/DotProduct(Ve, Vector([0, 0, 1]), conjugate = false);
PDF := DVN/(4*DotProduct(Ve, Ne, conjugate = false));

 

So far, so good. Now what I want to do is:

PDFint := int(PDF, [x = xInf .. xSup, y = yInf .. ySup]);

to calculate the symbolic integral of PDF over x and y. The issue is that I keep running out of memory after a few hours and my operating system (Linux Fedora) automatically shuts Maple down.

I am convinced that there must be a way to either preprocess PDF so that the int(...) command doesn't eat up all the RAM, or some different way to calculate an integral that maybe has a different structure?

I have tried codegen[optimize](PDF) and liked what it did, but I don't know how to progress with the result of it, if at all possible.

I know that there is also a way to calculate the integral numerically, but I need the analytic integral, so numerical solutions are of no use to me.

If there is really no way for me to obtain this integral, I would really appreciate an explanation of why, so that I can rest at night finally lol.

Thank you in advance,

Jane

I’ve successfully plotted this exercise, but I’m exploring ways to improve the visualization. Specifically, I’d like to know if it's possible to combine a 2D plot as a smaller inset within a 3D plot, positioned in a corner of the 3D graph.

Additionally, I’ve noticed that although the same data is plotted in different examples, the design and style of the plots can vary significantly, some look much more polished or professional. Are there recommended techniques, functions, or toolboxes in Maple that can help improve the visual design or aesthetic of the plots

Download plot.mw

Yes , i can ..a procedure for thiis?

restart; with(plots); printf("Step 1: Declare l and b as free variables for the 3D plot.\n"); l := 'l'; b := 'b'; printf("Step 2: Set fixed values for remaining parameters.\n"); a := 1; c := 1; d := .2; f := 1; epsilon := 1; printf("Step 3: Define the 3D gain function G(l,b) with fixed a,c,d and variable l,b.\n"); G := proc (l, b) options operator, arrow; 2*Im(sqrt(-a^2*f*d-a*b+(1/2)*l^2-3*a+(1/2)*sqrt(-48*a^3*f*d+4*epsilon*l^3*c-24*a*epsilon*l*c+l^4+4*l^2*c^2-48*a^2*b-12*a*l^2+36*a^2))) end proc; printf("Step 4: Create a 3D surface plot of G(l,b).\n"); gainPlot := plot3d(G(l, b), l = -6 .. 4, b = .1 .. 1.2, labels = ["Wave number l", "Parameter b", "Gain G(l,b)"], title = "3D MI Gain Spectrum over (l, b)", shading = zhue, axes = boxed, grid = [60, 60]); printf("Step 5: Display the 3D surface plot.\n"); gainPlot

Step 1: Declare l and b as free variables for the 3D plot.
Step 2: Set fixed values for remaining parameters.
Step 3: Define the 3D gain function G(l,b) with fixed a,c,d and variable l,b.
Step 4: Create a 3D surface plot of G(l,b).
Step 5: Display the 3D surface plot.

 

 
 

 

Download can_we_plotthisin_3Dshapemprimes5-5-2025.mw

in here How we can seperate the coefficent of conjugate this conjugate sign how remove from my equation ?

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, t)); declare(U(xi)); declare(V(xi)); declare(P(x, t)); declare(q(x, t))

u(x, t)*`will now be displayed as`*u

 

U(xi)*`will now be displayed as`*U

 

V(xi)*`will now be displayed as`*V

 

P(x, t)*`will now be displayed as`*P

 

q(x, t)*`will now be displayed as`*q

(2)

pde := I*(diff(u(x, t), t))+diff(u(x, t), `$`(x, 2))+abs(u(x, t))^2*u(x, t) = 0

I*(diff(u(x, t), t))+diff(diff(u(x, t), x), x)+abs(u(x, t))^2*u(x, t) = 0

(3)

S := u(x, t) = (sqrt(a)+P(x, t))*exp(I*a*t)

u(x, t) = (a^(1/2)+P(x, t))*exp(I*a*t)

(4)

S1 := conjugate(u(x, t)) = (sqrt(a)+conjugate(P(x, t)))*exp(-I*a*t)

conjugate(u(x, t)) = (a^(1/2)+conjugate(P(x, t)))*exp(-I*a*t)

(5)

Q := abs(u(x, t))^2 = u(x, t)*conjugate(u(x, t))

abs(u(x, t))^2 = u(x, t)*conjugate(u(x, t))

(6)

F1 := expand(simplify(subs({S, S1}, rhs(Q))))

a+a^(1/2)*P(x, t)+a^(1/2)*conjugate(P(x, t))+abs(P(x, t))^2

(7)

F2 := abs(u(x, t))^2 = remove(has, F1, abs(P(x, t))^2)

abs(u(x, t))^2 = a+a^(1/2)*P(x, t)+a^(1/2)*conjugate(P(x, t))

(8)

FF := collect(F2, sqrt(a))

abs(u(x, t))^2 = a+(P(x, t)+conjugate(P(x, t)))*a^(1/2)

(9)

F3 := abs(u(x, t))^2*u(x, t) = (a+(P(x, t)+conjugate(P(x, t)))*sqrt(a))*rhs(S)

abs(u(x, t))^2*u(x, t) = (a+(P(x, t)+conjugate(P(x, t)))*a^(1/2))*(a^(1/2)+P(x, t))*exp(I*a*t)

(10)

F4 := remove(has, F3, P(x, t)*conjugate(P(x, t)))

abs(u(x, t))^2*u(x, t) = (a+(P(x, t)+conjugate(P(x, t)))*a^(1/2))*(a^(1/2)+P(x, t))*exp(I*a*t)

(11)

expand(%)

abs(u(x, t))^2*u(x, t) = exp(I*a*t)*a^(3/2)+2*exp(I*a*t)*a*P(x, t)+exp(I*a*t)*a^(1/2)*P(x, t)^2+exp(I*a*t)*a*conjugate(P(x, t))+exp(I*a*t)*a^(1/2)*conjugate(P(x, t))*P(x, t)

(12)

pde_linear, pde_nonlinear := selectremove(proc (term) options operator, arrow; not has((eval(term, P(x, t) = T*P(x, t)))/T, T) end proc, expand(%))

() = (), abs(u(x, t))^2*u(x, t) = exp(I*a*t)*a^(3/2)+2*exp(I*a*t)*a*P(x, t)+exp(I*a*t)*a^(1/2)*P(x, t)^2+exp(I*a*t)*a*conjugate(P(x, t))+exp(I*a*t)*a^(1/2)*conjugate(P(x, t))*P(x, t)

(13)

F6 := abs(u(x, t))^2*u(x, t) = exp(I*a*t)*a^(3/2)+2*exp(I*a*t)*a*P(x, t)+exp(I*a*t)*a*conjugate(P(x, t))

abs(u(x, t))^2*u(x, t) = exp(a*t*I)*a^(3/2)+2*exp(a*t*I)*a*P(x, t)+exp(a*t*I)*a*conjugate(P(x, t))

(14)

subs({F6, S}, pde)

I*(diff((a^(1/2)+P(x, t))*exp(a*t*I), t))+diff(diff((a^(1/2)+P(x, t))*exp(a*t*I), x), x)+exp(a*t*I)*a^(3/2)+2*exp(a*t*I)*a*P(x, t)+exp(a*t*I)*a*conjugate(P(x, t)) = 0

(15)

eval(%)

I*((diff(P(x, t), t))*exp(a*t*I)+I*(a^(1/2)+P(x, t))*a*exp(a*t*I))+(diff(diff(P(x, t), x), x))*exp(a*t*I)+exp(a*t*I)*a^(3/2)+2*exp(a*t*I)*a*P(x, t)+exp(a*t*I)*a*conjugate(P(x, t)) = 0

(16)

expand(%)

I*(diff(P(x, t), t))*exp(a*t*I)+exp(a*t*I)*a*P(x, t)+(diff(diff(P(x, t), x), x))*exp(a*t*I)+exp(a*t*I)*a*conjugate(P(x, t)) = 0

(17)

expand(%/exp(I*a*t))

I*(diff(P(x, t), t))+a*P(x, t)+diff(diff(P(x, t), x), x)+a*conjugate(P(x, t)) = 0

(18)

PP := collect(%, a)

(P(x, t)+conjugate(P(x, t)))*a+I*(diff(P(x, t), t))+diff(diff(P(x, t), x), x) = 0

(19)

U1 := P(x, t) = r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))

P(x, t) = r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))

(20)

eval(subs(U1, PP))

(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))+conjugate(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))))*a+I*(-I*r[1]*m*exp(I*(l*x-m*t))+I*r[2]*m*exp(-I*(l*x-m*t)))-r[1]*l^2*exp(I*(l*x-m*t))-r[2]*l^2*exp(-I*(l*x-m*t)) = 0

(21)

simplify((r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))+conjugate(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))))*a+I*(-I*r[1]*m*exp(I*(l*x-m*t))+I*r[2]*m*exp(-I*(l*x-m*t)))-r[1]*l^2*exp(I*(l*x-m*t))-r[2]*l^2*exp(-I*(l*x-m*t)) = 0)

conjugate(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t)))*a+r[2]*(-l^2+a-m)*exp(-I*(l*x-m*t))+r[1]*exp(I*(l*x-m*t))*(-l^2+a+m) = 0

(22)

J := eval(%)

conjugate(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t)))*a+r[2]*(-l^2+a-m)*exp(-I*(l*x-m*t))+r[1]*exp(I*(l*x-m*t))*(-l^2+a+m) = 0

(23)

expand(%)

a*conjugate(r[1])*exp(I*conjugate(m)*conjugate(t))/exp(I*conjugate(l)*conjugate(x))+a*conjugate(r[2])*exp(I*conjugate(l)*conjugate(x))/exp(I*conjugate(m)*conjugate(t))-r[2]*exp(I*m*t)*l^2/exp(I*l*x)+r[2]*exp(I*m*t)*a/exp(I*l*x)-r[2]*exp(I*m*t)*m/exp(I*l*x)-r[1]*exp(I*l*x)*l^2/exp(I*m*t)+r[1]*exp(I*l*x)*a/exp(I*m*t)+r[1]*exp(I*l*x)*m/exp(I*m*t) = 0

(24)

indets(%)

{a, l, m, t, x, r[1], r[2], exp(I*l*x), exp(I*m*t), exp(I*conjugate(l)*conjugate(x)), exp(I*conjugate(m)*conjugate(t)), conjugate(l), conjugate(m), conjugate(t), conjugate(x), conjugate(r[1]), conjugate(r[2])}

(25)

subs({exp(-I*(l*x-m*t)) = Y, exp(I*(l*x-m*t)) = X}, J)

conjugate(X*r[1]+Y*r[2])*a+r[2]*(-l^2+a-m)*Y+r[1]*X*(-l^2+a+m) = 0

(26)

collect(%, {X, Y})

conjugate(X*r[1]+Y*r[2])*a+r[2]*(-l^2+a-m)*Y+r[1]*X*(-l^2+a+m) = 0

(27)

Download conjugate.mw

 

For a long time, triggered by a disagreement with one of my teachers, I wanted to demonstrate that Euler equations are not absolutely necessary to reproduce gyroscopic effects. Back then, there were no computer tools like Maple or programming languages with powerful libraries like Python. Propper calculations by hand (combining Newton’s equations and vector calculus) would have required days without guarantee of immediate success. Overall, costs and risks were too high to go into an academic argument with someone in charge of grading students.

Some years ago, I remembered the unfinished discussion with my teacher and simulated with MapleSim the simple gyroscope with two point masses that I had in mind at the time. It took only 10 minutes to demonstrate that I was right. At least I thought so. As I discovered recently when investigating the intermediate axis theorem, MapleSim derives behind the scenes Euler equations. This devalued the demonstration.

This post is about a second and successful attempt of a demonstration with Maple employing Lagrangian mechanics.  A rotating system of three point masses connected by rigid struts is used. The animation below from the attached Maple worksheet exactly reproduces a simulation of an equivalent T-shaped structure of three identical masses presented here.

 

Lagrangian Mechanics

The worksheet uses Lagrangian mechanics to derive equations of motion. Only translational energy terms are used in the Lagrangian to prevent Euler equations from being derived. To account for the bound motion of the three point masses, geometric constraints with Lagrange multipliers were added to the Lagrangian L of the system. This lead to a modified Lagrangian Lthat can be used with dedicated Maple commands to derive with little effort a set of Lagrange’s equations of the first kind and the corresponding constraints

Ein Bild, das Text, Schrift, weiß, Reihe enthält.

KI-generierte Inhalte können fehlerhaft sein.

     Ein Bild, das Schrift, Handschrift, Text, Typografie enthält.

KI-generierte Inhalte können fehlerhaft sein.

(source https://en.wikipedia.org/wiki/Lagrangian_mechanics)

For the system of three point masses the above equations lead to 9 coupled second-order ordinary differential equations (ODEs) and 3 algebraic constraints 

(Maple output from the command Physics,LagrangeEquations)

where xi, yi and zi are the components of the position vectors i of the masses 1 to 3 and the li,j are the constraints between the masses i and j, and b and h are the base and the height of the triangle.

The 12 equations together are also referred to as differential algebraic equations (DAEs). Maple has dedicated solvers for such systems which make implementation easy. The most difficult part is setting the initial conditions for all point masses. In this respect MapleSim is even easier to use since not all initial conditions have to be exactly defined by the user. MapleSim also detects constraints that allow for a simplification of the problem by reducing the number of variables to solve. This leads automatically to 3 instead of 12 equations to be solved. Computational effort is reduced in this way significantly.

 

Newtonian Mechanics

One could argue now that the above is a demonstration with Lagrangian mechanics and not with Newtonian mechanics. To treat the system in a Newtonian way, the masses must be isolated and internal forces acting on each mass via the struts are applied to each mass and effectively become external forces. This leads to 9 ODEs with 27 unknows

Ein Bild, das Text, Schrift, Screenshot enthält.

KI-generierte Inhalte können fehlerhaft sein.

Following actio=reactio for each of the (massless) struts reduces the number of unknows to 18

Ein Bild, das Text, Handschrift, Schrift enthält.

KI-generierte Inhalte können fehlerhaft sein.

To solve for the 18 unknows, 9 more relations are required. 3 algebraic constraints that keep the distance between the masses constant have already been listed in the previous section. 6 further algebraic constraints can be established from the fact that the force vectors point towards the opposing mass (see also below).
The effort to solve this system of equations will be even greater but with the benefit of having information about the internal forces in the system.
Before making this effort, it is advisable to take a closer look at the equations of motion derived so far.

 

Forces and the "mysterious" Lagrange Multipliers

Rearranging equations of motion from Lagrangian mechanics to

Ein Bild, das Text, Schrift, Screenshot, Electric Blue (Farbe) enthält.

KI-generierte Inhalte können fehlerhaft sein.

and comparing this to the equations of motion from Newtonian mechanics yields in vector notation 

or more general for the forces

Ein Bild, das Schrift, Handschrift, Reihe, Typografie enthält.

KI-generierte Inhalte können fehlerhaft sein.

where the i are the position vectors of the individual masses and the  are the constraint forces between them.  

In the case of a triangle formed by struts all internal forces must act in the direction of the edges of the triangle. If they would not act this way, opposing pairs of  and   would create a torque around the struts which would lead to an infinite angular acceleration of the massless struts. The above equation confirms this reasoning: The internal forces act in the direction of the difference vectors between the position vectors of the masses (which describe the edges) and scale with lij.

The beauty of the Lagrange multipliers in this case is that they hit 3 birds (three components of the vectors ) with one stone. This reduces the number of unknowns.

However, the Lagrange multipliers are somehow mysterious because they do not represent a physical quantity, but they can be used to calculate meaningful and correct physical results.

What makes them even more mysterious is the fact that positions constraints can be expressed in different ways. In the above example the square of the distance between the masses is kept constant instead of the distance. There are many more possibilities to formulate the constraint of constant distance and each of them results in different multipliers lij with different units. In principle they should all work equivalently but might not all be usable with dedicated solvers.

According to the above equation, the internal forces in a strut scale with the Lagrange multipliers and the length of the strut. During the back and forth flip of the triangle in the above animation the forces vary which can be appreciated from the lij in the following plot. 

Ein Bild, das Diagramm, Reihe enthält.

KI-generierte Inhalte können fehlerhaft sein.

Some observations:

  • At the start, only the strut between the red and the green masses is tensed by centrifugal forces. This would have been intuitively expected.
  • At the start, the broken symmetry in the initial conditions is already visible by the imbalance of the forces in the two other struts.
  • At no time two forces are zero
  • There is never compression in two struts at the same time. The existence of compression forces renders any attempt to replace the struts by cables useless
  • Plotted together in 3D the Lagrange multipliers describe a seemingly perfect circle.

Ein Bild, das Diagramm, Reihe, Kreis, Origami enthält.

KI-generierte Inhalte können fehlerhaft sein.

The last observation in particular shows that both the Lagrange multipliers and the IAT still hold some secrets that need to be clarified:

  • Is it an exact circle? How to prove that?
  • Does a circle appear for all initial conditions and geometries (obtuse isosceles triangles) when the intermediate axis theorem manifests?
  • What does the circle represent? Is it a kind of an invariant between the Lagrange multipliers that allows the calculation of one force when the two others are known?
  • Is there an analytical representation of the circle as a function of the geometry and the initial conditions?
  • What determines the center, the radius and the orientation of the circle?

 

Conclusion

Overall, the approach of adding non-physical terms that are zero to a physical quantity (the difference between kinetic and potential energy) to derive something meaningful is not obvious at all and underlines the genius of Lagrange. For a system of three bound masses it could be used to calculate internal forces as opposed to the more common use of calculating external constraint forces. Beyond the lack of fully satisfying intuitive explanations, the IAT still offers unanswered scientific questions.

 

PS.: 

  • The exercise was a nice cross-check of MapleSim and Maple.
  • dsolve and odeplot are awsome

 

IAT_without_Euler_equations.mw

according to what is new in Maple 2025, it says

  • Maple 2025 introduces several important improvements to simplify regarding expressions containing exponential, trigonometric, hyperbolic, and/or inverse trigonometric functions, resulting in more compact results. Other commands in the math library also provide simpler results due to these improvements.

But I still see weakness in simplify. (see also recent question).

Here is an example, A and B below are equivalent mathematically. But A is almost twice as big. So one would expect simplify(A) to return B. right? But it does not. Also using size option has no effect.  

Does one need more tricks in Maple to make it simplify this? Is this not something that a powerful CAS software like Maple should have been able to do?

interface(version);

`Standard Worksheet Interface, Maple 2025.0, Linux, March 24 2025 Build ID 1909157`


A:=(-8*x - 16)*exp(x/2) + x^2 + 4*x + 16*exp(x) + 4;
B:=(4*exp(x/2)-x-2)^2;

(-8*x-16)*exp((1/2)*x)+x^2+4*x+16*exp(x)+4

(4*exp((1/2)*x)-x-2)^2

#check leaf size
MmaTranslator:-Mma:-LeafCount(A);

22

MmaTranslator:-Mma:-LeafCount(B);

13

#check they are the same
simplify(A-B);

0

#then why Maple can not simplify A to B ??
simplify(A);
simplify(A,size);
simplify(A,size,exp);
simplify(A) assuming real;

(-8*x-16)*exp((1/2)*x)+x^2+4*x+16*exp(x)+4

(-8*x-16)*exp((1/2)*x)+x^2+4*x+16*exp(x)+4

(-8*x-16)*exp((1/2)*x)+x^2+4*x+16*exp(x)+4

(-8*x-16)*exp((1/2)*x)+x^2+4*x+16*exp(x)+4

Student:-Precalculus:-CompleteSquare(A)

(-8*x-16)*exp((1/2)*x)+x^2+4*x+16*exp(x)+4

 

 

Download why_can_not_simplify_may_4_2025.mw

Using another software, all what is needed is call to Simpify to do it:

I also tried my most power full_simplify() function in Maple, and it had no effect

full_simplify:=proc(e::anything)
   local result::list;
   local f:=proc(a,b)
      RETURN(MmaTranslator:-Mma:-LeafCount(a)<MmaTranslator:-Mma:-LeafCount(b))
   end proc;

   #add more methods as needed

   result:=[simplify(e),
            simplify(e,size),
            simplify(combine(e)),
            simplify(combine(e),size),
            radnormal(evala( combine(e) )),
            simplify(evala( combine(e) )),
            evala(radnormal( combine(e) )),
            simplify(radnormal( combine(e) )),
            evala(factor(e)),
            simplify(e,ln),
            simplify(e,power),
            simplify(e,RootOf),
            simplify(e,sqrt),
            simplify(e,trig),
            simplify(convert(e,trig)),
            simplify(convert(e,exp)),
            combine(e)
   ];   
   RETURN( sort(result,f)[1]);   

end proc:

Calling full_simplify(A) did not simplify it.

3 4 5 6 7 8 9 Last Page 5 of 2207