Question: iterative method convergence

I've got a function f(x_n) = (x_n-1)^3

and need to show that for the iterative method

x_(n+1)= x_n - f(x_n)/(sqrt(f'(x_n)^2-f(x_n)*f''(x_n), at a simple root we have cubic convergence while at a multiple root, it converges linearly.

I understand that the approach is to write either a recursive function or a sequence, but i'm confused about the structure since both x and n are being incremented

 

Please Wait...