Question: Real function defined by a implicitly equation

The real function y(x) is defined implicitly by the equation:

ln(1+x)*y) + e^((x^2)*(y^2)) = x + cos(x);

How can I find y(0) = 1 and the values of the first six derivatives y(k)(0), k=1, 2,..6 at x=0 to show the Taylorseries about x=0?

(I started by defining p:= ln(1+x)*y) + e^((x^2)*(y^2)) - x - cos(x), but that went wrong. 

Please Wait...