# Question:How do I display a large matrix properly

## Question:How do I display a large matrix properly

Maple

Hello all,

I am presenting some results in a small meeting tomorrow and I have a rather large symbollic matrix that I was hoping to be able to view in a more readable form (once you see my code, you will see what I mean). This should be a simple fix. Furthermore, when I use the Latex command to recieve code to import into latex, its not working properly, which makes me think I made some kind of mistake. I am really just trying to get this matrix in its full for so that it is easy for other people to read. Thanks for any help.Turns_Latex.mw

 (1)

 \left[ \begin {array}{ccccc} 0&0&0&0&0\\ \noalign{\medskip}-\mu\,  \left( {\zeta_{x}}^{2}+{\zeta_{y}}^{2}+{\zeta_{z}}^{2}+\mbox {{\tt \#msup(mi("zeta}}_{\mbox {{\tt x"),mn("2"))}}}/3 \right) u-1/3\,\mu\, \zeta_{x}\,\zeta_{y}\,v-1/3\,\mu\,\zeta_{x}\,\zeta_{z}\,w&\mu\,  \left( {\zeta_{x}}^{2}+{\zeta_{y}}^{2}+{\zeta_{z}}^{2}+\mbox {{\tt \#msup(mi("zeta}}_{\mbox {{\tt x"),mn("2"))}}}/3 \right) &1/3\,\mu\, \zeta_{x}\,\zeta_{y}&1/3\,\mu\,\zeta_{x}\,\zeta_{z}&0 \\ \noalign{\medskip}-1/3\,\mu\,\zeta_{x}\,\zeta_{y}\,u-\mu\, \left( { \zeta_{x}}^{2}+{\zeta_{y}}^{2}+{\zeta_{z}}^{2}+\mbox {{\tt \#msup(mi("zeta}}_{\mbox {{\tt y"),mn("2"))}}}/3 \right) v-1/3\,\mu\, \zeta_{y}\,\zeta_{z}\,w&1/3\,\mu\,\zeta_{x}\,\zeta_{y}&\mu\, \left( { \zeta_{x}}^{2}+{\zeta_{y}}^{2}+{\zeta_{z}}^{2}+\mbox {{\tt \#msup(mi("zeta}}_{\mbox {{\tt y"),mn("2"))}}}/3 \right) &1/3\,\mu\, \zeta_{y}\,\zeta_{z}&0\\ \noalign{\medskip}-1/3\,\mu\,\zeta_{x}\,\zeta _{z}\,u-1/3\,\mu\,\zeta_{y}\,\zeta_{z}\,v-\mu\, \left( {\zeta_{x}}^{2} +{\zeta_{y}}^{2}+{\zeta_{z}}^{2}+\mbox {{\tt \#msup(mi("zeta}}_{\mbox {{\tt z"),mn("2"))}}}/3 \right) w&1/3\,\mu\,\zeta_{x}\,\zeta_{z}&1/3\, \mu\,\zeta_{y}\,\zeta_{z}&\mu\, \left( {\zeta_{x}}^{2}+{\zeta_{y}}^{2} +{\zeta_{z}}^{2}+\mbox {{\tt \#msup(mi("zeta}}_{\mbox {{\tt z"),mn("2"))}}}/3 \right) &0\\ \noalign{\medskip}-\mu\, \left( {\zeta_ {x}}^{2}+{\zeta_{y}}^{2}+{\zeta_{z}}^{2}+\mbox {{\tt \#msup(mi("zeta}} _{\mbox {{\tt x"),mn("2"))}}}/3 \right) {u}^{2}-\mu\, \left( {\zeta_{x }}^{2}+{\zeta_{y}}^{2}+{\zeta_{z}}^{2}+\mbox {{\tt \#msup(mi("zeta}}_{ \mbox {{\tt y"),mn("2"))}}}/3 \right) {v}^{2}-\mu\, \left( {\zeta_{x}} ^{2}+{\zeta_{y}}^{2}+{\zeta_{z}}^{2}+\mbox {{\tt \#msup(mi("zeta}}_{ \mbox {{\tt z"),mn("2"))}}}/3 \right) {w}^{2}-2/3\,\mu\,\zeta_{x}\, \zeta_{y}\,uv-2/3\,\mu\,\zeta_{x}\,\zeta_{z}\,uw-2/3\,\mu\,\zeta_{y}\, \zeta_{z}\,vw+{\frac { \left( -E+2\,{\it UVW} \right) \mu\,\gamma\,  \left( {\zeta_{x}}^{2}+{\zeta_{y}}^{2}+{\zeta_{z}}^{2} \right) }{\Pr} }&-{\frac {\mu\,\gamma\, \left( {\zeta_{x}}^{2}+{\zeta_{y}}^{2}+{\zeta _{z}}^{2} \right) u}{\Pr}}+\mu\, \left( {\zeta_{x}}^{2}+{\zeta_{y}}^{2 }+{\zeta_{z}}^{2}+\mbox {{\tt \#msup(mi("zeta}}_{\mbox {{\tt x"),mn("2"))}}}/3 \right) u+1/3\,\mu\,\zeta_{x}\,\zeta_{y}\,v+1/3\,\mu \,\zeta_{x}\,\zeta_{z}\,w&-{\frac {\mu\,\gamma\, \left( {\zeta_{x}}^{2 }+{\zeta_{y}}^{2}+{\zeta_{z}}^{2} \right) v}{\Pr}}+1/3\,\mu\,\zeta_{x} \,\zeta_{y}\,u+\mu\, \left( {\zeta_{x}}^{2}+{\zeta_{y}}^{2}+{\zeta_{z} }^{2}+\mbox {{\tt \#msup(mi("zeta}}_{\mbox {{\tt y"),mn("2"))}}}/3  \right) v+1/3\,\mu\,\zeta_{y}\,\zeta_{z}\,w&-{\frac {\mu\,\gamma\,  \left( {\zeta_{x}}^{2}+{\zeta_{y}}^{2}+{\zeta_{z}}^{2} \right) w}{\Pr }}+1/3\,\mu\,\zeta_{x}\,\zeta_{z}\,u+1/3\,\mu\,\zeta_{y}\,\zeta_{z}\,v +\mu\, \left( {\zeta_{x}}^{2}+{\zeta_{y}}^{2}+{\zeta_{z}}^{2}+\mbox {{ \tt \#msup(mi("zeta}}_{\mbox {{\tt z"),mn("2"))}}}/3 \right) w&{\frac {\mu\,\gamma\, \left( {\zeta_{x}}^{2}+{\zeta_{y}}^{2}+{\zeta_{z}}^{2}  \right) }{\Pr}}\end {array} \right]