MaplePrimes Questions

I want to learn about why sometimes different algebraic expressions are ordered differently, and what would be the best way to instruct maple to chose a different "rule" for which a set of arithmetic functions are ordered, while still maintaining the axiom of uniqueness. 

 

I figured this would be accomplished on a case by case basis, and it may involve just using lists instead,defining a procedure to produce the desired ordering for any given set of functions, and using the "remove" command to replace the set "difference" operator and the Join command for the lists in place of the union operator. Then of course using the "Remove Duplicates" option from ListTools to impose the axiom of unique elements. 

 

Is this the best way to go about this, or is there a much simpler way, that includes an abstract algebra package that I'm unaware of thus far?

Hello everyone. Does anyone know how to display more than one rectangles on a single graph?

For example,

RECTANGLE 1:

 

RECTANGLE 2:

We wish to display both rectangles on a single graph without adjusting any of the coordinates. Look forward to anyone that familiar or even have any idea on this issue. Thanks in advanced:)

Dear sir, I hereby request you to suggest an appropriate method to plot phase portrait sketches for the above cited subject

in 2D and 3D for the problem  

 

 

With thanks and regards.

 

Mr M ANAND

Associate Profesoor in Mathematics.

This question is related to an answer I gave here:
So, please look at a simple worksheet containing only a few lines; the resuts are in the # comments.

restart;
evalf(frac(Pi^20));

#                              23.
restart;
printlevel:=40:
evalf(frac(Pi^20));

  ###  prinlevel stuff
#                              0.


And now the questions.
1. Why the first evalf(frac(Pi^20))  does not  call  `evalf/frac`?
     (the second does, trace(`evalf/frac`)  shows this  if inserted).
     Note that  `evalf/frac`(Pi^20)    returns  0.
2. Why evalf(frac(Pi^20))    depends on printlevel?
    Note that  if  printlevel is changed to 20 (say)  the result is again 23.
3. Why if we set interface(typesetting=standard)  in a fresh session
     the results are both 23?

 

I can't get a While do loop to work as expected.

For i from 2 while M[i,1]<>M[1,1] and i<25 do..   It doesn't catch row 15 where M[15,1] =M[1,1] but it does stop at i = 24 ok.
 

restart

``

M := Matrix(60, 3, {(1, 1) = Vector(2, {(1) = -3, (2) = 5}), (1, 2) = Vector(2, {(1) = -2, (2) = -2}), (1, 3) = Vector(2, {(1) = 0, (2) = 0}), (2, 1) = Vector(2, {(1) = -5, (2) = 3}), (2, 2) = Vector(2, {(1) = -1, (2) = -3}), (2, 3) = Vector(2, {(1) = 1, (2) = -1}), (3, 1) = Vector(2, {(1) = -6, (2) = 0}), (3, 2) = Vector(2, {(1) = 0, (2) = -3}), (3, 3) = Vector(2, {(1) = 1, (2) = 0}), (4, 1) = Vector(2, {(1) = -6, (2) = -3}), (4, 2) = Vector(2, {(1) = 1, (2) = -2}), (4, 3) = Vector(2, {(1) = 1, (2) = 1}), (5, 1) = Vector(2, {(1) = -5, (2) = -5}), (5, 2) = Vector(2, {(1) = 2, (2) = -1}), (5, 3) = Vector(2, {(1) = 1, (2) = 1}), (6, 1) = Vector(2, {(1) = -3, (2) = -6}), (6, 2) = Vector(2, {(1) = 3, (2) = 0}), (6, 3) = Vector(2, {(1) = 1, (2) = 1}), (7, 1) = Vector(2, {(1) = 0, (2) = -6}), (7, 2) = Vector(2, {(1) = 3, (2) = 1}), (7, 3) = Vector(2, {(1) = 0, (2) = 1}), (8, 1) = Vector(2, {(1) = 3, (2) = -5}), (8, 2) = Vector(2, {(1) = 2, (2) = 2}), (8, 3) = Vector(2, {(1) = -1, (2) = 1}), (9, 1) = Vector(2, {(1) = 5, (2) = -3}), (9, 2) = Vector(2, {(1) = 1, (2) = 3}), (9, 3) = Vector(2, {(1) = -1, (2) = 1}), (10, 1) = Vector(2, {(1) = 6, (2) = 0}), (10, 2) = Vector(2, {(1) = 0, (2) = 3}), (10, 3) = Vector(2, {(1) = -1, (2) = 0}), (11, 1) = Vector(2, {(1) = 6, (2) = 3}), (11, 2) = Vector(2, {(1) = -1, (2) = 2}), (11, 3) = Vector(2, {(1) = -1, (2) = -1}), (12, 1) = Vector(2, {(1) = 5, (2) = 5}), (12, 2) = Vector(2, {(1) = -2, (2) = 1}), (12, 3) = Vector(2, {(1) = -1, (2) = -1}), (13, 1) = Vector(2, {(1) = 3, (2) = 6}), (13, 2) = Vector(2, {(1) = -3, (2) = 0}), (13, 3) = Vector(2, {(1) = -1, (2) = -1}), (14, 1) = Vector(2, {(1) = 0, (2) = 6}), (14, 2) = Vector(2, {(1) = -3, (2) = -1}), (14, 3) = Vector(2, {(1) = 0, (2) = -1}), (15, 1) = Vector(2, {(1) = -3, (2) = 5}), (15, 2) = Vector(2, {(1) = -2, (2) = -2}), (15, 3) = Vector(2, {(1) = 1, (2) = -1}), (16, 1) = Vector(2, {(1) = -5, (2) = 3}), (16, 2) = Vector(2, {(1) = -1, (2) = -3}), (16, 3) = Vector(2, {(1) = 1, (2) = -1}), (17, 1) = Vector(2, {(1) = -6, (2) = 0}), (17, 2) = Vector(2, {(1) = 0, (2) = -3}), (17, 3) = Vector(2, {(1) = 1, (2) = 0}), (18, 1) = Vector(2, {(1) = -6, (2) = -3}), (18, 2) = Vector(2, {(1) = 1, (2) = -2}), (18, 3) = Vector(2, {(1) = 1, (2) = 1}), (19, 1) = Vector(2, {(1) = -5, (2) = -5}), (19, 2) = Vector(2, {(1) = 2, (2) = -1}), (19, 3) = Vector(2, {(1) = 1, (2) = 1}), (20, 1) = Vector(2, {(1) = -3, (2) = -6}), (20, 2) = Vector(2, {(1) = 3, (2) = 0}), (20, 3) = Vector(2, {(1) = 1, (2) = 1}), (21, 1) = Vector(2, {(1) = 0, (2) = -6}), (21, 2) = Vector(2, {(1) = 3, (2) = 1}), (21, 3) = Vector(2, {(1) = 0, (2) = 1}), (22, 1) = Vector(2, {(1) = 3, (2) = -5}), (22, 2) = Vector(2, {(1) = 2, (2) = 2}), (22, 3) = Vector(2, {(1) = -1, (2) = 1}), (23, 1) = Vector(2, {(1) = 5, (2) = -3}), (23, 2) = Vector(2, {(1) = 1, (2) = 3}), (23, 3) = Vector(2, {(1) = -1, (2) = 1}), (24, 1) = Vector(2, {(1) = 6, (2) = 0}), (24, 2) = Vector(2, {(1) = 0, (2) = 3}), (24, 3) = Vector(2, {(1) = -1, (2) = 0}), (25, 1) = Vector(2, {(1) = 6, (2) = 3}), (25, 2) = Vector(2, {(1) = -1, (2) = 2}), (25, 3) = Vector(2, {(1) = -1, (2) = -1}), (26, 1) = Vector(2, {(1) = 5, (2) = 5}), (26, 2) = Vector(2, {(1) = -2, (2) = 1}), (26, 3) = Vector(2, {(1) = -1, (2) = -1}), (27, 1) = Vector(2, {(1) = 3, (2) = 6}), (27, 2) = Vector(2, {(1) = -3, (2) = 0}), (27, 3) = Vector(2, {(1) = -1, (2) = -1}), (28, 1) = Vector(2, {(1) = 0, (2) = 6}), (28, 2) = Vector(2, {(1) = -3, (2) = -1}), (28, 3) = Vector(2, {(1) = 0, (2) = -1}), (29, 1) = Vector(2, {(1) = -3, (2) = 5}), (29, 2) = Vector(2, {(1) = -2, (2) = -2}), (29, 3) = Vector(2, {(1) = 1, (2) = -1}), (30, 1) = Vector(2, {(1) = -5, (2) = 3}), (30, 2) = Vector(2, {(1) = -1, (2) = -3}), (30, 3) = Vector(2, {(1) = 1, (2) = -1}), (31, 1) = Vector(2, {(1) = -6, (2) = 0}), (31, 2) = Vector(2, {(1) = 0, (2) = -3}), (31, 3) = Vector(2, {(1) = 1, (2) = 0}), (32, 1) = Vector(2, {(1) = -6, (2) = -3}), (32, 2) = Vector(2, {(1) = 1, (2) = -2}), (32, 3) = Vector(2, {(1) = 1, (2) = 1}), (33, 1) = Vector(2, {(1) = -5, (2) = -5}), (33, 2) = Vector(2, {(1) = 2, (2) = -1}), (33, 3) = Vector(2, {(1) = 1, (2) = 1}), (34, 1) = Vector(2, {(1) = -3, (2) = -6}), (34, 2) = Vector(2, {(1) = 3, (2) = 0}), (34, 3) = Vector(2, {(1) = 1, (2) = 1}), (35, 1) = Vector(2, {(1) = 0, (2) = -6}), (35, 2) = Vector(2, {(1) = 3, (2) = 1}), (35, 3) = Vector(2, {(1) = 0, (2) = 1}), (36, 1) = Vector(2, {(1) = 3, (2) = -5}), (36, 2) = Vector(2, {(1) = 2, (2) = 2}), (36, 3) = Vector(2, {(1) = -1, (2) = 1}), (37, 1) = Vector(2, {(1) = 5, (2) = -3}), (37, 2) = Vector(2, {(1) = 1, (2) = 3}), (37, 3) = Vector(2, {(1) = -1, (2) = 1}), (38, 1) = Vector(2, {(1) = 6, (2) = 0}), (38, 2) = Vector(2, {(1) = 0, (2) = 3}), (38, 3) = Vector(2, {(1) = -1, (2) = 0}), (39, 1) = Vector(2, {(1) = 6, (2) = 3}), (39, 2) = Vector(2, {(1) = -1, (2) = 2}), (39, 3) = Vector(2, {(1) = -1, (2) = -1}), (40, 1) = Vector(2, {(1) = 5, (2) = 5}), (40, 2) = Vector(2, {(1) = -2, (2) = 1}), (40, 3) = Vector(2, {(1) = -1, (2) = -1}), (41, 1) = Vector(2, {(1) = 3, (2) = 6}), (41, 2) = Vector(2, {(1) = -3, (2) = 0}), (41, 3) = Vector(2, {(1) = -1, (2) = -1}), (42, 1) = Vector(2, {(1) = 0, (2) = 6}), (42, 2) = Vector(2, {(1) = -3, (2) = -1}), (42, 3) = Vector(2, {(1) = 0, (2) = -1}), (43, 1) = Vector(2, {(1) = -3, (2) = 5}), (43, 2) = Vector(2, {(1) = -2, (2) = -2}), (43, 3) = Vector(2, {(1) = 1, (2) = -1}), (44, 1) = Vector(2, {(1) = -5, (2) = 3}), (44, 2) = Vector(2, {(1) = -1, (2) = -3}), (44, 3) = Vector(2, {(1) = 1, (2) = -1}), (45, 1) = Vector(2, {(1) = -6, (2) = 0}), (45, 2) = Vector(2, {(1) = 0, (2) = -3}), (45, 3) = Vector(2, {(1) = 1, (2) = 0}), (46, 1) = Vector(2, {(1) = -6, (2) = -3}), (46, 2) = Vector(2, {(1) = 1, (2) = -2}), (46, 3) = Vector(2, {(1) = 1, (2) = 1}), (47, 1) = Vector(2, {(1) = -5, (2) = -5}), (47, 2) = Vector(2, {(1) = 2, (2) = -1}), (47, 3) = Vector(2, {(1) = 1, (2) = 1}), (48, 1) = Vector(2, {(1) = -3, (2) = -6}), (48, 2) = Vector(2, {(1) = 3, (2) = 0}), (48, 3) = Vector(2, {(1) = 1, (2) = 1}), (49, 1) = Vector(2, {(1) = 0, (2) = -6}), (49, 2) = Vector(2, {(1) = 3, (2) = 1}), (49, 3) = Vector(2, {(1) = 0, (2) = 1}), (50, 1) = Vector(2, {(1) = 3, (2) = -5}), (50, 2) = Vector(2, {(1) = 2, (2) = 2}), (50, 3) = Vector(2, {(1) = -1, (2) = 1}), (51, 1) = Vector(2, {(1) = 5, (2) = -3}), (51, 2) = Vector(2, {(1) = 1, (2) = 3}), (51, 3) = Vector(2, {(1) = -1, (2) = 1}), (52, 1) = Vector(2, {(1) = 6, (2) = 0}), (52, 2) = Vector(2, {(1) = 0, (2) = 3}), (52, 3) = Vector(2, {(1) = -1, (2) = 0}), (53, 1) = Vector(2, {(1) = 6, (2) = 3}), (53, 2) = Vector(2, {(1) = -1, (2) = 2}), (53, 3) = Vector(2, {(1) = -1, (2) = -1}), (54, 1) = Vector(2, {(1) = 5, (2) = 5}), (54, 2) = Vector(2, {(1) = -2, (2) = 1}), (54, 3) = Vector(2, {(1) = -1, (2) = -1}), (55, 1) = Vector(2, {(1) = 3, (2) = 6}), (55, 2) = Vector(2, {(1) = -3, (2) = 0}), (55, 3) = Vector(2, {(1) = -1, (2) = -1}), (56, 1) = Vector(2, {(1) = 0, (2) = 6}), (56, 2) = Vector(2, {(1) = -3, (2) = -1}), (56, 3) = Vector(2, {(1) = 0, (2) = -1}), (57, 1) = Vector(2, {(1) = -3, (2) = 5}), (57, 2) = Vector(2, {(1) = -2, (2) = -2}), (57, 3) = Vector(2, {(1) = 1, (2) = -1}), (58, 1) = Vector(2, {(1) = -5, (2) = 3}), (58, 2) = Vector(2, {(1) = -1, (2) = -3}), (58, 3) = Vector(2, {(1) = 1, (2) = -1}), (59, 1) = Vector(2, {(1) = -6, (2) = 0}), (59, 2) = Vector(2, {(1) = 0, (2) = -3}), (59, 3) = Vector(2, {(1) = 1, (2) = 0}), (60, 1) = Vector(2, {(1) = -6, (2) = -3}), (60, 2) = Vector(2, {(1) = 1, (2) = -2}), (60, 3) = Vector(2, {(1) = 1, (2) = 1})})

M := Matrix(60, 3, {(1, 1) = Vector(2, {(1) = -3, (2) = 5}), (1, 2) = Vector(2, {(1) = -2, (2) = -2}), (1, 3) = Vector(2, {(1) = 0, (2) = 0}), (2, 1) = Vector(2, {(1) = -5, (2) = 3}), (2, 2) = Vector(2, {(1) = -1, (2) = -3}), (2, 3) = Vector(2, {(1) = 1, (2) = -1}), (3, 1) = Vector(2, {(1) = -6, (2) = 0}), (3, 2) = Vector(2, {(1) = 0, (2) = -3}), (3, 3) = Vector(2, {(1) = 1, (2) = 0}), (4, 1) = Vector(2, {(1) = -6, (2) = -3}), (4, 2) = Vector(2, {(1) = 1, (2) = -2}), (4, 3) = Vector(2, {(1) = 1, (2) = 1}), (5, 1) = Vector(2, {(1) = -5, (2) = -5}), (5, 2) = Vector(2, {(1) = 2, (2) = -1}), (5, 3) = Vector(2, {(1) = 1, (2) = 1}), (6, 1) = Vector(2, {(1) = -3, (2) = -6}), (6, 2) = Vector(2, {(1) = 3, (2) = 0}), (6, 3) = Vector(2, {(1) = 1, (2) = 1}), (7, 1) = Vector(2, {(1) = 0, (2) = -6}), (7, 2) = Vector(2, {(1) = 3, (2) = 1}), (7, 3) = Vector(2, {(1) = 0, (2) = 1}), (8, 1) = Vector(2, {(1) = 3, (2) = -5}), (8, 2) = Vector(2, {(1) = 2, (2) = 2}), (8, 3) = Vector(2, {(1) = -1, (2) = 1}), (9, 1) = Vector(2, {(1) = 5, (2) = -3}), (9, 2) = Vector(2, {(1) = 1, (2) = 3}), (9, 3) = Vector(2, {(1) = -1, (2) = 1}), (10, 1) = Vector(2, {(1) = 6, (2) = 0}), (10, 2) = Vector(2, {(1) = 0, (2) = 3}), (10, 3) = Vector(2, {(1) = -1, (2) = 0}), (11, 1) = Vector(2, {(1) = 6, (2) = 3}), (11, 2) = Vector(2, {(1) = -1, (2) = 2}), (11, 3) = Vector(2, {(1) = -1, (2) = -1}), (12, 1) = Vector(2, {(1) = 5, (2) = 5}), (12, 2) = Vector(2, {(1) = -2, (2) = 1}), (12, 3) = Vector(2, {(1) = -1, (2) = -1}), (13, 1) = Vector(2, {(1) = 3, (2) = 6}), (13, 2) = Vector(2, {(1) = -3, (2) = 0}), (13, 3) = Vector(2, {(1) = -1, (2) = -1}), (14, 1) = Vector(2, {(1) = 0, (2) = 6}), (14, 2) = Vector(2, {(1) = -3, (2) = -1}), (14, 3) = Vector(2, {(1) = 0, (2) = -1}), (15, 1) = Vector(2, {(1) = -3, (2) = 5}), (15, 2) = Vector(2, {(1) = -2, (2) = -2}), (15, 3) = Vector(2, {(1) = 1, (2) = -1}), (16, 1) = Vector(2, {(1) = -5, (2) = 3}), (16, 2) = Vector(2, {(1) = -1, (2) = -3}), (16, 3) = Vector(2, {(1) = 1, (2) = -1}), (17, 1) = Vector(2, {(1) = -6, (2) = 0}), (17, 2) = Vector(2, {(1) = 0, (2) = -3}), (17, 3) = Vector(2, {(1) = 1, (2) = 0}), (18, 1) = Vector(2, {(1) = -6, (2) = -3}), (18, 2) = Vector(2, {(1) = 1, (2) = -2}), (18, 3) = Vector(2, {(1) = 1, (2) = 1}), (19, 1) = Vector(2, {(1) = -5, (2) = -5}), (19, 2) = Vector(2, {(1) = 2, (2) = -1}), (19, 3) = Vector(2, {(1) = 1, (2) = 1}), (20, 1) = Vector(2, {(1) = -3, (2) = -6}), (20, 2) = Vector(2, {(1) = 3, (2) = 0}), (20, 3) = Vector(2, {(1) = 1, (2) = 1}), (21, 1) = Vector(2, {(1) = 0, (2) = -6}), (21, 2) = Vector(2, {(1) = 3, (2) = 1}), (21, 3) = Vector(2, {(1) = 0, (2) = 1}), (22, 1) = Vector(2, {(1) = 3, (2) = -5}), (22, 2) = Vector(2, {(1) = 2, (2) = 2}), (22, 3) = Vector(2, {(1) = -1, (2) = 1}), (23, 1) = Vector(2, {(1) = 5, (2) = -3}), (23, 2) = Vector(2, {(1) = 1, (2) = 3}), (23, 3) = Vector(2, {(1) = -1, (2) = 1}), (24, 1) = Vector(2, {(1) = 6, (2) = 0}), (24, 2) = Vector(2, {(1) = 0, (2) = 3}), (24, 3) = Vector(2, {(1) = -1, (2) = 0}), (25, 1) = Vector(2, {(1) = 6, (2) = 3}), (25, 2) = Vector(2, {(1) = -1, (2) = 2}), (25, 3) = Vector(2, {(1) = -1, (2) = -1}), (26, 1) = Vector(2, {(1) = 5, (2) = 5}), (26, 2) = Vector(2, {(1) = -2, (2) = 1}), (26, 3) = Vector(2, {(1) = -1, (2) = -1}), (27, 1) = Vector(2, {(1) = 3, (2) = 6}), (27, 2) = Vector(2, {(1) = -3, (2) = 0}), (27, 3) = Vector(2, {(1) = -1, (2) = -1}), (28, 1) = Vector(2, {(1) = 0, (2) = 6}), (28, 2) = Vector(2, {(1) = -3, (2) = -1}), (28, 3) = Vector(2, {(1) = 0, (2) = -1}), (29, 1) = Vector(2, {(1) = -3, (2) = 5}), (29, 2) = Vector(2, {(1) = -2, (2) = -2}), (29, 3) = Vector(2, {(1) = 1, (2) = -1}), (30, 1) = Vector(2, {(1) = -5, (2) = 3}), (30, 2) = Vector(2, {(1) = -1, (2) = -3}), (30, 3) = Vector(2, {(1) = 1, (2) = -1}), (31, 1) = Vector(2, {(1) = -6, (2) = 0}), (31, 2) = Vector(2, {(1) = 0, (2) = -3}), (31, 3) = Vector(2, {(1) = 1, (2) = 0}), (32, 1) = Vector(2, {(1) = -6, (2) = -3}), (32, 2) = Vector(2, {(1) = 1, (2) = -2}), (32, 3) = Vector(2, {(1) = 1, (2) = 1}), (33, 1) = Vector(2, {(1) = -5, (2) = -5}), (33, 2) = Vector(2, {(1) = 2, (2) = -1}), (33, 3) = Vector(2, {(1) = 1, (2) = 1}), (34, 1) = Vector(2, {(1) = -3, (2) = -6}), (34, 2) = Vector(2, {(1) = 3, (2) = 0}), (34, 3) = Vector(2, {(1) = 1, (2) = 1}), (35, 1) = Vector(2, {(1) = 0, (2) = -6}), (35, 2) = Vector(2, {(1) = 3, (2) = 1}), (35, 3) = Vector(2, {(1) = 0, (2) = 1}), (36, 1) = Vector(2, {(1) = 3, (2) = -5}), (36, 2) = Vector(2, {(1) = 2, (2) = 2}), (36, 3) = Vector(2, {(1) = -1, (2) = 1}), (37, 1) = Vector(2, {(1) = 5, (2) = -3}), (37, 2) = Vector(2, {(1) = 1, (2) = 3}), (37, 3) = Vector(2, {(1) = -1, (2) = 1}), (38, 1) = Vector(2, {(1) = 6, (2) = 0}), (38, 2) = Vector(2, {(1) = 0, (2) = 3}), (38, 3) = Vector(2, {(1) = -1, (2) = 0}), (39, 1) = Vector(2, {(1) = 6, (2) = 3}), (39, 2) = Vector(2, {(1) = -1, (2) = 2}), (39, 3) = Vector(2, {(1) = -1, (2) = -1}), (40, 1) = Vector(2, {(1) = 5, (2) = 5}), (40, 2) = Vector(2, {(1) = -2, (2) = 1}), (40, 3) = Vector(2, {(1) = -1, (2) = -1}), (41, 1) = Vector(2, {(1) = 3, (2) = 6}), (41, 2) = Vector(2, {(1) = -3, (2) = 0}), (41, 3) = Vector(2, {(1) = -1, (2) = -1}), (42, 1) = Vector(2, {(1) = 0, (2) = 6}), (42, 2) = Vector(2, {(1) = -3, (2) = -1}), (42, 3) = Vector(2, {(1) = 0, (2) = -1}), (43, 1) = Vector(2, {(1) = -3, (2) = 5}), (43, 2) = Vector(2, {(1) = -2, (2) = -2}), (43, 3) = Vector(2, {(1) = 1, (2) = -1}), (44, 1) = Vector(2, {(1) = -5, (2) = 3}), (44, 2) = Vector(2, {(1) = -1, (2) = -3}), (44, 3) = Vector(2, {(1) = 1, (2) = -1}), (45, 1) = Vector(2, {(1) = -6, (2) = 0}), (45, 2) = Vector(2, {(1) = 0, (2) = -3}), (45, 3) = Vector(2, {(1) = 1, (2) = 0}), (46, 1) = Vector(2, {(1) = -6, (2) = -3}), (46, 2) = Vector(2, {(1) = 1, (2) = -2}), (46, 3) = Vector(2, {(1) = 1, (2) = 1}), (47, 1) = Vector(2, {(1) = -5, (2) = -5}), (47, 2) = Vector(2, {(1) = 2, (2) = -1}), (47, 3) = Vector(2, {(1) = 1, (2) = 1}), (48, 1) = Vector(2, {(1) = -3, (2) = -6}), (48, 2) = Vector(2, {(1) = 3, (2) = 0}), (48, 3) = Vector(2, {(1) = 1, (2) = 1}), (49, 1) = Vector(2, {(1) = 0, (2) = -6}), (49, 2) = Vector(2, {(1) = 3, (2) = 1}), (49, 3) = Vector(2, {(1) = 0, (2) = 1}), (50, 1) = Vector(2, {(1) = 3, (2) = -5}), (50, 2) = Vector(2, {(1) = 2, (2) = 2}), (50, 3) = Vector(2, {(1) = -1, (2) = 1}), (51, 1) = Vector(2, {(1) = 5, (2) = -3}), (51, 2) = Vector(2, {(1) = 1, (2) = 3}), (51, 3) = Vector(2, {(1) = -1, (2) = 1}), (52, 1) = Vector(2, {(1) = 6, (2) = 0}), (52, 2) = Vector(2, {(1) = 0, (2) = 3}), (52, 3) = Vector(2, {(1) = -1, (2) = 0}), (53, 1) = Vector(2, {(1) = 6, (2) = 3}), (53, 2) = Vector(2, {(1) = -1, (2) = 2}), (53, 3) = Vector(2, {(1) = -1, (2) = -1}), (54, 1) = Vector(2, {(1) = 5, (2) = 5}), (54, 2) = Vector(2, {(1) = -2, (2) = 1}), (54, 3) = Vector(2, {(1) = -1, (2) = -1}), (55, 1) = Vector(2, {(1) = 3, (2) = 6}), (55, 2) = Vector(2, {(1) = -3, (2) = 0}), (55, 3) = Vector(2, {(1) = -1, (2) = -1}), (56, 1) = Vector(2, {(1) = 0, (2) = 6}), (56, 2) = Vector(2, {(1) = -3, (2) = -1}), (56, 3) = Vector(2, {(1) = 0, (2) = -1}), (57, 1) = Vector(2, {(1) = -3, (2) = 5}), (57, 2) = Vector(2, {(1) = -2, (2) = -2}), (57, 3) = Vector(2, {(1) = 1, (2) = -1}), (58, 1) = Vector(2, {(1) = -5, (2) = 3}), (58, 2) = Vector(2, {(1) = -1, (2) = -3}), (58, 3) = Vector(2, {(1) = 1, (2) = -1}), (59, 1) = Vector(2, {(1) = -6, (2) = 0}), (59, 2) = Vector(2, {(1) = 0, (2) = -3}), (59, 3) = Vector(2, {(1) = 1, (2) = 0}), (60, 1) = Vector(2, {(1) = -6, (2) = -3}), (60, 2) = Vector(2, {(1) = 1, (2) = -2}), (60, 3) = Vector(2, {(1) = 1, (2) = 1})})

(1)

M[1, 1]; for i from 2 while M[i, 1] <> M[1, 1] and i < 25 do print(i, M[i, 1]) end do

24, Vector[column](%id = 18446745366646139710)

(2)

``


 

Download Test_While_do_loop.mw

I'm currently wondering about the cut I'm looking for in the following worksheet.

I evaluate it in 2 ways but get different answers. Any idea what the problem here is?

Thanks


 

restart; dIs := sqrt(Pi/(I*s))*exp(I*s*t-I*s*omega0^2); Is1 := `assuming`([simplify(int(dIs, s))], [s > 0]); dIs := `assuming`([int(exp(-I*(omega^2+omega0^2-t)*s), omega = -infinity .. infinity)], [s > 0]); Is2 := int(%, s); plot3d(Im(eval(Is1, [t = x+I*y, s = 1, omega0 = 1])), x = -3 .. 3, y = -3 .. 3)

(-I*Pi/s)^(1/2)*exp(I*s*t-I*s*omega0^2)

 

(1/2-(1/2)*I)*Pi*2^(1/2)*erf(s^(1/2)*(I*(omega0^2-t))^(1/2))/(I*(omega0^2-t))^(1/2)

 

exp(I*s*t-I*s*omega0^2)*Pi^(1/2)/(I*s)^(1/2)

 

-I*Pi*erf((omega0^2-t)^(1/2)*(I*s)^(1/2))/(omega0^2-t)^(1/2)

 

 

``


 

Download CutErrorFunction.mw

restart; with(plots);
[animate, animate3d, animatecurve, arrow, changecoords, 

  complexplot, complexplot3d, conformal, conformal3d, 

  contourplot, contourplot3d, coordplot, coordplot3d, 

  densityplot, display, dualaxisplot, fieldplot, fieldplot3d, 

  gradplot, gradplot3d, implicitplot, implicitplot3d, inequal, 

  interactive, interactiveparams, intersectplot, listcontplot, 

  listcontplot3d, listdensityplot, listplot, listplot3d, 

  loglogplot, logplot, matrixplot, multiple, odeplot, pareto, 

  plotcompare, pointplot, pointplot3d, polarplot, polygonplot, 

  polygonplot3d, polyhedra_supported, polyhedraplot, rootlocus, 

  semilogplot, setcolors, setoptions, setoptions3d, spacecurve, 

  sparsematrixplot, surfdata, textplot, textplot3d, tubeplot]


fixedparameter1 := [n = .3, W[e] = .3, M = .2, gamma = 1, delta = -1, N[r] = .8, Pr = .72, Nb = .5, Nt = .5, Bi = 2, Pr = .72, Le = 5];
[n = 0.3, W[e] = 0.3, M = 0.2, gamma = 1, delta = -1, N[r] = 0.8, 

  Pr = 0.72, Nb = 0.5, Nt = 0.5, Bi = 2, Pr = 0.72, Le = 5]


eq1 := (1-n)*(diff(f(eta), eta, eta, eta))+f(eta)*(diff(f(eta), eta, eta))-M*(diff(f(eta), eta))+n*W[e]*(diff(f(eta), eta, eta, eta))*(diff(f(eta), eta, eta)) = 0;
        /  d   /  d   /  d         \\\
(1 - n) |----- |----- |----- f(eta)|||
        \ deta \ deta \ deta       ///

            /  d   /  d         \\     /  d         \
   + f(eta) |----- |----- f(eta)|| - M |----- f(eta)|
            \ deta \ deta       //     \ deta       /

            /  d   /  d   /  d         \\\ /  d   /  d         \\   
   + n W[e] |----- |----- |----- f(eta)||| |----- |----- f(eta)|| = 
            \ deta \ deta \ deta       /// \ deta \ deta       //   

  0
deq1; eval(eq1, fixedparameter1);
    /  d   /  d   /  d         \\\
0.7 |----- |----- |----- f(eta)|||
    \ deta \ deta \ deta       ///

            /  d   /  d         \\       /  d         \
   + f(eta) |----- |----- f(eta)|| - 0.2 |----- f(eta)|
            \ deta \ deta       //       \ deta       /

          /  d   /  d   /  d         \\\ /  d   /  d         \\   
   + 0.09 |----- |----- |----- f(eta)||| |----- |----- f(eta)|| = 
          \ deta \ deta \ deta       /// \ deta \ deta       //   

  0
eq2 := (1+(4/3)*N[r])*(diff(theta(eta), eta, eta))+Pr*f(eta)*(diff(theta(eta), eta))+Nb*(diff(phi(eta), eta))*(diff(theta(eta), eta))+Nt*(diff(theta(eta), eta))*(diff(theta(eta), eta)) = 0;
          /    4     \ /  d   /  d             \\
          |1 + - N[r]| |----- |----- theta(eta)||
          \    3     / \ deta \ deta           //

                         /  d             \
             + Pr f(eta) |----- theta(eta)|
                         \ deta           /

                  /  d           \ /  d             \
             + Nb |----- phi(eta)| |----- theta(eta)|
                  \ deta         / \ deta           /

                                    2    
                  /  d             \     
             + Nt |----- theta(eta)|  = 0
                  \ deta           /     
deq2; eval(eq2, fixedparameter1);
                      /  d   /  d             \\
          2.066666667 |----- |----- theta(eta)||
                      \ deta \ deta           //

                           /  d             \
             + 0.72 f(eta) |----- theta(eta)|
                           \ deta           /

                   /  d           \ /  d             \
             + 0.5 |----- phi(eta)| |----- theta(eta)|
                   \ deta         / \ deta           /

                                     2    
                   /  d             \     
             + 0.5 |----- theta(eta)|  = 0
                   \ deta           /     
eq3 := diff(phi(eta), eta, eta)+Pr*Le*f(eta)*(diff(phi(eta), eta))+Nt*(diff(theta(eta), eta, eta))/Nb = 0;
    /  d   /  d           \\                /  d           \
    |----- |----- phi(eta)|| + Pr Le f(eta) |----- phi(eta)|
    \ deta \ deta         //                \ deta         /

            /  d   /  d             \\    
         Nt |----- |----- theta(eta)||    
            \ deta \ deta           //    
       + ----------------------------- = 0
                      Nb                  
deq3 := eval(eq3, fixedparameter1);
    /  d   /  d           \\               /  d           \
    |----- |----- phi(eta)|| + 3.60 f(eta) |----- phi(eta)|
    \ deta \ deta         //               \ deta         /

                     /  d   /  d             \\    
       + 1.000000000 |----- |----- theta(eta)|| = 0
                     \ deta \ deta           //    
bcs1 := f(0) = 0, D(f)(0) = 1+gamma*(D@D)(F)(0)+delta*(D@D@D)(f)(0), D(f)(8) = 0;
 f(0) = 0, 

   D(f)(0) = 1 + gamma @@(D, 2)(F)(0) + delta @@(D, 3)(f)(0), 

   D(f)(8) = 0
bc1 := eval(bcs1, fixedparameter1);
   f(0) = 0, D(f)(0) = 1 + @@(D, 2)(F)(0) - @@(D, 3)(f)(0), 

     D(f)(8) = 0
bcs2 := D(theta)(0) = Bi*(theta(0)-1), theta(8) = 0;
         D(theta)(0) = Bi (theta(0) - 1), theta(8) = 0
bc2 := eval(bcs2, fixedparameter1);
           D(theta)(0) = 2 theta(0) - 2, theta(8) = 0
bcs3 := Nb*D(phi)(0)+Nt*D(theta)(0) = 0, Nb*D(phi)(0)+Nt*D(theta)(0) = 0, phi(8) = 0;
        Nb D(phi)(0) + Nt D(theta)(0) = 0, 

          Nb D(phi)(0) + Nt D(theta)(0) = 0, phi(8) = 0
bc3 := eval(bcs3, fixedparameter1);
       0.5 D(phi)(0) + 0.5 D(theta)(0) = 0, 

         0.5 D(phi)(0) + 0.5 D(theta)(0) = 0, phi(8) = 0
R := dsolve({bc1, bc2, bc3, deq1, deq2, deq3}, [f(eta), theta(eta), phi(eta)], numeric, output = listprocedure);
Error, (in dsolve/numeric/process_input) system must be entered as a set/list of expressions/equations


 

Hello! I am trying to make an if statement that is IF a bound is not equal to NULL, it does things, and if it IS equal to NULL, the bounds are set to zero. When a bound is null, they say 

bound1:=()

My first if statement will not work, please help!

 

bound1:=solve(tau(x)=(Intv||j)[1],x,useassumptions) assuming (Intv||i)[1]<=x<=(Intv||i)[2] ;  

bound2:=solve(tau(x)=(Intv||j)[2],x,useassumptions) assuming (Intv||i)[1]<=x<=(Intv||i)[2];

if bound1<>NULL;bound2<>NULL;  then

if bound1<=bound2   then  

lower:=bound1;  upper:=bound2  

else lower:=bound2;   upper:=bound1 end if;

else lower:=0; upper:=0 end if;

Let be given tetrahedron ABCD, where AB = BC = AC = a, AD = d, AD = e, CD = f. I know that, If the measure of angle of AB and CD equal to Pi/3, then we have d^2 - e^2 - a*f = 0. I tried:
ListTools[Categorize];
L := []; 
for a to 30 do for d to 30 do
for e to 30 do for f to 30 do
if abs(d-e) < a and a < d+e and abs(a-e) < d and d < a+e and abs(d-a) < e and e < d+a and abs(d-f) < a and a < d+f and abs(a-f) < d and d < a+f and abs(d-a) < f and f < d+a and abs(e-f) < a and a < e+f and abs(a-f) < e and e < a+f and abs(a-e) < a and a < a+e and -a*f+d^2-e^2 = 0 and igcd(a, d, e, f) = 1 and nops({a, d, e, f}) = 4
then L := [op(L), [a, d, e, f]] end if end do end do end do end do; 
nops(L); 
L;


Another way to find the length of edges of a tetrahedron knowing that the mesure angle of two opposite?


evalf[100](frac(exp(19*Pi)-19*Pi));

0.32853457802957784855876405976954586639886249604033514784046998713819112593


evalf[10](frac(exp(19*Pi)-19*Pi));

 

0.

Hello Friends

I have a critical problem that I wish to solve it with maple

suppose we have a list like following: y_obs=(2,4,8,7,9,52,35,478,52) and corresponding variance σy=(.2,.3,.5,.87,.1.2,.22,.78,.99,1.5)
we know y as the function of x described such as y_theoric=x+p and minimizing X is

X=Sigma [(y_theoric-y_obs)^2]/σy which includes the sum of nine numbers...

the question is:

How we can find p from likelihood function and plot general behavior of y versus of x through two above series?

for example this solution used in article under the names Hubble parameter data constraints on dark energy by Yun Chen and Bhatra Ratra (Physics Letters B)

Thank you

 

Hello everyone! I am currently solving on a basic coordinates points for my final year project. This is a part of my coding in maple.


ans := solve({eq5, eq6}, {P2, Q2});
             {P2 = 3.222860033, Q2 = 3.170614592}, 

               {P2 = 1.572224939, Q2 = 5.670614592}

 

I am finding the points of P2 and Q2. From there after solving for eq5 and 6 it will gives two points for P2 and two points for Q2. So how am i going to choose the points using maple coding without copy paste the answer?

Really appreciate if any of us can help me. Thank you in advanced :)

 

Consider for instance the following equation:

Eq:=(a-4)*exp(4*x)+(b+1)*exp(2*x)+(c-2)=0

How can I list the coefficients of the exponential functions and also solve the equation for the constant parameters 

a, b, and c?

I tried 

[coeffs(collect(lhs(EQ), exp), exp)] =~ 0;

but it did not work. Thank you for your help.

I mean 

restart;
 plots:-implicitplot(sqrt(b)*sqrt(1-4*p/b)-2*arctan(sqrt((9*p/b-22201/10000)/(9/4-9*p/b))) = 0, b = 0 .. 5,
 p = 0 .. 5, gridrefine = 2, rational);

I find the above result unsatisfactory.

Hi, my problem is that I have a set of variables stored in a list, then when I try to sum with differentiation inside the sum, Maple immediately tries to differentiate before summing, thus returning zero.

 

So I define a list coords := [t, r, theta, varphi], then call sum(diff(r^2, coords[k]), k = 1 .. 4), however Maple does the differentiation first, so it becomes 0 instead of 8r.

 

I attached the maple worksheet with what I did, on the first line I define the list with variables, on the second line I show that maple evaluates diff(r^2, coords[k]) to zero before doing the sum, where k is what is being summed over, on the third line I show that it copes fine if a specific element of the list is called, on the fourth line I show that summation over elements of the list is fine, and the last two lines show an example of the kind of thing I would like to do

 

Is there a way to make this work?

First 823 824 825 826 827 828 829 Last Page 825 of 2443