MaplePrimes Questions

Hello.
Can I somehow print several matrices next to each other without getting the quotations marks printet too?
Attached what I currently have.


 

with(LinearAlgebra)

A := RandomMatrix(4); B := RandomMatrix(4); C := RandomMatrix(4); E := RandomMatrix(4)

print("A="*A, "   B="*B, "   C="*C, "   E="*E)

"A="*Matrix(%id = 18446746685123259198), "   B="*Matrix(%id = 18446746685123259438), "   C="*Matrix(%id = 18446746685123259678), "   E="*Matrix(%id = 18446746685123259918)

(1)

``


 

Download matrix_print_attempt.mw

 

 Hi,  

Is there a way of determining whether a function of two variables is continuous or not? Can we find the discontinuity points 

of such multivariable functions? (Considering the graphs of the function is not always helpful.)

Hi, I need to calculate some discrete variational problems, but it's a hard work just by hand.

Is there any toolboxes about the discrete variational computation? Or how to design a program to do that?

In particular, I need to realize the functions:

1. the linearized operator and the adjoint operator of some expressions.

       For example:

       the linearized operator of u(n,m+1)u(n+1,m) is u(n+1,m)Tm+u(n,m+1)Tn

       the adjoint operator is u(n+1,m-1)T^(-1)m+u(n-1,m+1)T^(-1)n,

       (The latter is just the discrete Euler operator.)

      Tm, Tn is the shift operator, T^(-1) is the inverse operator of T.

2. discrete Euler-Lagrange equation.

I am not familar with the maple, please help!

Thanks.

Hello

What is the fairest way to divide a shelf of books up between n people?

Partition_problem2.mw

Below is the output from test relation that seems contradictory.  All I did was swap the order of operation from summing an integral to taking the integral of the sum.  The summation and integration variables are independent so I would think the statement for S4 would yield a TRUE result.  Also, I got a FALSE return on a well known trig identity.

Am I missing something subtle or even obvious?

equivalence_discrepancy.mw

How do I introduce the first derivative of M when i<> k and aij when i <> j and aii in Maple?

 

 

How can i plot various 3 multiple graphs using Maple to Compare ADM, EXACT SOLUTION AND RKF45 using the table below:

 Time  ADM Solution                                   RKF45 Numerical Solution        EXACT Solution

               ADM Solution                     RKF45 Numerical Solution                EXACT Solution

 t           s               i              r                 s            i                r             s               i                   r

0.1     0.0769540597    0.1477783335     0.1393069312      0.0763361154   0.1477867626   0.1393072151   0.0763361266    0.1477867830     0.1393071934 

0.3     0.1093424148    0.1120401102     0.1509302274      0.1072278404   0.1121142033   0.1509369166   0.1072278479    0.1121142168     0.1509369024 

0.5     0.1392030568    0.0853083077     0.1558066181      0.1353291378   0.0855066806   0.1558355785   0.1353291558    0.08550671332   0.1558355439

0.7     0.1662374563    0.0652194693     0.1562235596      0.1604342222   0.0655908735   0.1562974878   0.1604342352    0.06559089617   0.1562974637 

0.9     0.1903821623    0.0500537619     0.1537887672      0.1825594352   0.0506356391   0.1539346707   0.1825594528    0.05063567192   0.1539346352

1.1     0.2117168860    0.0385555127     0.1496220815      0.2018541863   0.0393727175   0.1498707561   0.2018542024    0.03937274753   0.1498707234 

1.3     0.2303874000    0.0298096396     0.1444864012      0.2185409755   0.0308687065   0.1448804021   0.2185409880    0.03086872986   0.1448803765 

1.5     0.2465077820    0.0231661161     0.1388614678      0.2328759081   0.0244336214   0.1394893808   0.2328759200    0.02443364533   0.1394893543

 

 

 

Hello everyone.and complements

Please I am trying to obtain series expansion of the expression below in u but encounter difficulties particularly when b=0. I am very optimistic that when b=0 there will be a result not division by 0. Can I get help on the code?

Thank you in anticipation of your quick and positive responses and suggestions

# for k=2 CHEBY HYBRID WITH mu=(1-(1/2)*sqrt(2)))) AND v=(1+(1/2)*sqrt(2))))
restart:
omega:=u/h:
t:=(sum(a[j]*x^j,j=0..3)+a[4]*sin(omega*x)+a[5]*cos(omega*x)):
F:=diff(t,x):
G:=diff(t,x,x):
p1:=simplify(eval(t,x=q))=y[n]:
p2:=simplify(eval(t,x=q+(1-(1/2)*sqrt(2))*h))=y[n+mu]:
p3:=simplify(eval(t,x=q+h))=y[n+1]:
p4:=simplify(eval(t,x=q+(1+(1/2)*sqrt(2))*h))=y[n+v]:
p5:=simplify(eval(F,x=q+2*h))=f[n+2]:
p6:=simplify(eval(G,x=q+2*h))=g[n+2]:

vars:= seq(a[i],i=0..5):
Cc:=eval(<vars>, solve({p||(1..6)}, {vars})):
for i from 1 to 6 do
	a[i-1]:=Cc[i]:
end do:
Cf:=t:

K:=collect(combine(simplify(eval(Cf,x=q+2*h),size),trig),{y[n],y[n+mu],y[n+1],y[n+v],f[n+2], g[n+2]},factor):


Num := numer(K):
Den := denom(K):

N := 20:   # order of expansion
Num_N :=(convert(series(Num, u, N),polynom)):
Den_N := (convert(series(Den, u, N),polynom)):
b:=y[n+2]=(convert(series(Num_N/Den_N, u, N),polynom)):

eval(b,u=0); 

 

We have three vectors: position, velocity and accelleration

Then we calculate three unit vector of osculating plane and the center of curvature . Can you help me in creating a smart plot to show the idea

Es_1_1_2.mw

Thank's a lot and Regards

 

I am studying the sum below and am trying to write a procedure with Maple which I can use to efficiently evaluate the sum for large values of n.

sum((1/k^0.1)*sin(1/k), k=1..n)

I have read the section on procedures in my textbook for Maple but it only has very simple examples with nothing relevant to this situation and I am struggling to apply it here: can anyone assist?

 Ordinary and Partial Differential Equations..

(Driven damped simple pendulum, a nonlinear differential equation) The equation of motion of the damped simple pendulum   

driven by a harmonic force is given by

By an appropriate choice of the coefficients m, l, g, A, ω and the initial conditions. Write a

maple code to solve this equation using fourth-order Runge-Kutta method. Comment your

.results

I am considering a function y(x) which is defined implicitly such that:

y(x):= x-> ln((1+x)*y) + exp(x^(2)*y^(2))

I am attempting to show that the Taylor series about x = 0 is:

y(x) = 1 - x^2 - (1/3)x^3 + (55/24)x^4 + (4/5)x^5 - (439/80)x^6 + O(x^7)

This could be done by using Maple to take derivatives up to sixth order and then substituting into the formula for the Taylor series.  My initial idea for the Taylor series was to use the identity 

ln((1+x)*y) + exp(x^(2)*y^(2)) = x + cos(x)

but obviously the RHS does not give the required form for the Taylor series about x = 0 (although I can use it to show that y(0) = 1).  Would it be possible to use Maple to take six derivatives of the left-hand side instead and then use that to create the Taylor series as far as sixth order?

Hello

In my annuity recursion formula I have a payment at the beginning of the month.

How can I change the formula to reflect an addition made on a different day of the month?

This could be done in Excel of course, but I am looking for a single formula which rsolve supplies.

I had no joy with Finance:-growingannuity

Recurring_pmts.mw

 

First 885 886 887 888 889 890 891 Last Page 887 of 2428