MaplePrimes Questions

i have an example, u[t] = u[xx]^2+u[yy]^2+u[zz]^2 with subject to b.c. u[0](x,y,z,t):=2*sin(x)*sin(y)*sin(z)
i used adomian method to solve this P.D.E, but i failed to construct a code of 2D P.D.E.
kindly help me in this regard

Is there a maple routine or sequence of routines to minimize an energy functional (scalar energy with a function as an argument)?

I'd like to avoid applying calculus of variations/integration by parts by hand.

For example, I'm looking for something like:

E := int(diff(f(x),x)^2,x=0..1);
bc := f(0) = 0, f(1) = 1;
minimize(E,bc);

whose result would be:

       f(x) = x

Is there a way to use dsolve to do this?

Maple's online help pages render all of the inputs (and outputs) as fancy math (MathJax). I guess the assumption is that you're using the visual IDE. However, I only have access to a terminal with ASCII entry (e.g., via SSH).

How can I can convert the online help pages into something that I can enter directly via the command line?

For example, how do I convert the examples from the EulerLagrange help page into command line entry?

I'm looking for a procedural way or ideally a toggle "switch".

what do i call a homogenous  differential equation that is the linear sum of "N" differential of unique classification? ie, the implicit construction of a third homogenous differential by the summation of two known, is it the span of the solution sets of the first two or union? i prefer span because well that leaves the door open for multivariate differential basis definitions, non commutative groups like sets of square matrices and all of the other extra arousing subject content.

Hi,

When I type sin(pi/2) the result is sin(pi/2) (not "1.0)

What should I do to get "1.0" instead of replicating the sin(pi/2) ?!

I mean why the expression contating "pi" can not being simplified?

Is there any solution to this problem?

 

Thanks

Hi! I'm trying to find the way to plot the solution with series representation. I need some help to find the easiest way.

Note: I realized some typing errors, which do not change the question a lot ,and I corrected them.

plot.mw

Hi,

I am unable to see length of rigid body frame in MapleSim Examples - Physical Domain  - Multibody - 5 DOF robot? Is there a way to see them?

Thanks

Onder

If an expression is of the form x^3 + x^2 + x + z + y^3 + y^2 + y + xy=0 ,

How to represent it in the following form,

           x^3 + y^3 + x^2 + y^2 + xy + x + y + z=0 ?

I have exported a maple document to latex, but it only shows the output of the commands used. Rather than the commands, and the procedures.

How do I get both to export together? and show up together?

 

Is there a way to automatically convert and paste my clipboard contents as 2D math?

any assistence here will be much appreciated the website gave me a zip containing the template tex and other files, but for what ever reason its not working when i copy in output using the maple to latex conversion feature from inside the interface. literally im sick of having to work outside of the maple interface but yes believe it or not this is the one thing i use to procrastinate writting a formal publication yep i really need the first one of those to get this done and dusted.

hi..when i use rule [for] in maple code i encounter error'''''

Error, (in dsolve/numeric/process_input) input system must be an ODE system, found {f1(x), f2(x), f3(x), ApproximateInt(-4*cos(theta)^2, theta = 0. .. 1, method = simpson), ApproximateInt(4*cos(theta)^2, theta = 0. .. 1, method = simpson), ApproximateInt(8*cos(theta)^2, theta = 0. .. 1, method = simpson)}''''''''

please help me for remove it

99999999999999.mw

i want for different beta for example beta=0, 40 and 80 this lines will computed three times  

 ''with(Student[Calculus1]); a1 := ApproximateInt(g1*g1, theta = a .. 1, method = simpson); a2 := ApproximateInt(2*(g1*g1)+3*g1*(diff(g1, theta, theta)), theta = a .. 1, method = simpson).......................''          

 by {for i from 1 by 1 to 3 do } and final gain ''ITRA_1_W[m] := eval(fy33*g3, fixedparameter)'' that have 3 amount.

when i use  rule {for i from 1 by 1 to 3 do ...  }   integral not computed and showed for example:::

a1=ApproximateInt(4*cos(theta)^2, theta = 0. .. 1, method = simpson)!!!!!!!!

thanks..

another problem with itegral, again intergal is getting unevaluated answers or folated ( infinity )
what should i do ?

``

``

restart

with(LinearAlgebra):

Digits := 30;

30

(1)

``

N := 8;

8

 

proc (x, s) options operator, arrow; exp(x*s) end proc

 

proc (x) options operator, arrow; exp(2*x)+(exp(x*(x+2))-exp(-x-2))/(x+2) end proc

(2)

alpha := -1/2;

-1/2

 

-1/2

(3)

for n from 0 to N+1 do J[n] := unapply(simplify((-1)^n*(1-x)^(-alpha)*(1+x)^(-beta)*(diff((1-x)^(n+alpha)*(1+x)^(n+beta), [`$`(x, n)]))/(2^n*factorial(n))), x) end do;

proc (x) options operator, arrow; 1 end proc

 

proc (x) options operator, arrow; (1/2)*x end proc

 

proc (x) options operator, arrow; (3/4)*x^2-3/8 end proc

 

proc (x) options operator, arrow; (5/4)*x^3-(15/16)*x end proc

 

proc (x) options operator, arrow; (35/16)*x^4-(35/16)*x^2+35/128 end proc

 

proc (x) options operator, arrow; (315/256)*x+(63/16)*x^5-(315/64)*x^3 end proc

 

proc (x) options operator, arrow; (231/32)*x^6-231/1024-(693/64)*x^4+(2079/512)*x^2 end proc

 

proc (x) options operator, arrow; -(3003/2048)*x+(429/32)*x^7-(3003/128)*x^5+(3003/256)*x^3 end proc

 

proc (x) options operator, arrow; (6435/256)*x^8+6435/32768-(6435/128)*x^6+(32175/1024)*x^4-(6435/1024)*x^2 end proc

 

proc (x) options operator, arrow; (109395/65536)*x+(12155/256)*x^9-(109395/1024)*x^7+(328185/4096)*x^5-(182325/8192)*x^3 end proc

(4)

u := unapply(exp(2*x), x);

proc (x) options operator, arrow; exp(2*x) end proc

(5)

for i from 0 to N do phi[i] := J[i](x) end do

1

 

(1/2)*x

 

(3/4)*x^2-3/8

 

(5/4)*x^3-(15/16)*x

 

(35/16)*x^4-(35/16)*x^2+35/128

 

(315/256)*x+(63/16)*x^5-(315/64)*x^3

 

(231/32)*x^6-231/1024-(693/64)*x^4+(2079/512)*x^2

 

-(3003/2048)*x+(429/32)*x^7-(3003/128)*x^5+(3003/256)*x^3

 

(6435/256)*x^8+6435/32768-(6435/128)*x^6+(32175/1024)*x^4-(6435/1024)*x^2

(6)

w1 := (1-x)^alpha*(1+x)^beta;

1/((1-x)^(1/2)*(1+x)^(1/2))

(7)

for j from 0 to N do S[j] := simplify(evalf(int(k(x, s)*subs(x = s, phi[j]), s = -1 .. x))) end do;

(-1.*exp(-1.*x)+1.*exp(x^2))/x

 

.5*(exp(x^2)*x^2+exp(-1.*x)*x+exp(-1.*x)-exp(x^2))/x^2

 

((.75*x^4-1.875*x^2+1.5)*exp(x^2)-.375*(x+2.)^2*exp(-1.*x))/x^3

 

((1.25*x^6-4.6875*x^4+8.4375*x^2-7.5)*exp(x^2)+(.3125*x^3+2.8125*x^2+7.5*x+7.5)*exp(-1.*x))/x^4

 

((2.1875*x^8-10.9375*x^6+30.8984375*x^4-56.875*x^2+52.5)*exp(x^2)+(-.2734375*x^4-4.375*x^3-21.875*x^2-52.5*x-52.5)*exp(-1.*x))/x^5

 

((3.9375*x^10-24.609375*x^8+94.74609375*x^6-267.01171875*x^4+502.03125*x^2-472.5)*exp(x^2)+(.24609375*x^5+6.15234375*x^4+49.21875*x^3+206.71875*x^2+472.5*x+472.5)*exp(-1.*x))/x^6

 

((7.21875*x^12-54.140625*x^10+263.935546875*x^8-1004.5341796875*x^6+2866.74609375*x^4-5457.375*x^2+5197.5)*exp(x^2)+(-.2255859375*x^6-8.12109375*x^5-94.74609375*x^4-606.375*x^3-2338.875*x^2-5197.5*x-5197.5)*exp(-1.*x))/x^7

 

((13.40625*x^14-117.3046875*x^12+692.09765625*x^10-3321.18896484375*x^8+12740.75537109375*x^6-36669.4453125*x^4+70382.8125*x^2-67567.5)*exp(x^2)+(.20947265625*x^7+10.26416015625*x^6+164.2265625*x^5+1478.0390625*x^4+8445.9375*x^3+30968.4375*x^2+67567.5*x+67567.5)*exp(-1.*x))/x^8

 

((25.13671875*x^16-251.3671875*x^14+1740.7177734375*x^12-10086.1083984375*x^10+48652.315521240234375*x^8-187783.857421875*x^6+543707.2265625*x^4-1049709.375*x^2+1013512.5)*exp(x^2)+(-.196380615234375*x^8-12.568359375*x^7-263.935546875*x^6-3167.2265625*x^5-24885.3515625*x^4-132721.875*x^3-470559.375*x^2-1013512.5*x-1013512.5)*exp(-1.*x))/x^9

(8)

A := Matrix(N+1, N+1):

for i from 0 to N do for j from 0 to N do A[i+1, j+1] := evalf(Int(phi[i]*phi[j]*w1, x = -1 .. 1, epsilon = 0.1e-24)) end do end do;

A

Matrix([[3.14159265358979323846264338328, 0., 0.111111111111111111111111111111e-32, 0., -0.333333333333333333333333333333e-32, 0., -0.173333333333333333333333333333e-31, 0., -0.291851851851851851851851851852e-30], [0., .392699081698724154807830422910, 0., 0.370370370370370370370370370370e-33, 0., -0.370370370370370370370370370370e-33, 0., -0.718518518518518518518518518519e-32, 0.], [0.111111111111111111111111111111e-32, 0., .220893233455532337079404612887, 0., 0.407407407407407407407407407407e-33, 0., 0.666666666666666666666666666667e-32, 0., 0.966666666666666666666666666667e-31], [0., 0.370370370370370370370370370370e-33, 0., .153398078788564122971808758949, 0., 0.740740740740740740740740740741e-33, 0., 0.128888888888888888888888888889e-31, 0.], [-0.333333333333333333333333333333e-32, 0., 0.407407407407407407407407407407e-33, 0., .117445404072494406650291081070, 0., -0.429629629629629629629629629630e-32, 0., -0.459259259259259259259259259259e-31], [0., -0.370370370370370370370370370370e-33, 0., 0.740740740740740740740740740741e-33, 0., 0.951307772987204693867357756671e-1, 0., -0.135555555555555555555555555556e-31, 0.], [-0.173333333333333333333333333333e-31, 0., 0.666666666666666666666666666667e-32, 0., -0.429629629629629629629629629630e-32, 0., 0.799362781468415055263543670536e-1, 0., 0.157777777777777777777777777778e-31], [0., -0.718518518518518518518518518519e-32, 0., 0.128888888888888888888888888889e-31, 0., -0.135555555555555555555555555556e-31, 0., 0.689246479939602777242545307758e-1, 0.], [-0.291851851851851851851851851852e-30, 0., 0.966666666666666666666666666667e-31, 0., -0.459259259259259259259259259259e-31, 0., 0.157777777777777777777777777778e-31, 0., 0.605783039009416503435830836897e-1]])

(9)

B := Matrix(N+1, N+1):

for j from 0 to N do for i from 0 to N do B[i+1, j+1] := evalf(Int(simplify(phi[i]*S[j]*w1), x = -1 .. 1, epsilon = 0.1e-5), 15) end do end do;

B := Matrix(B)

B := Matrix(9, 9, {(1, 1) = 3.41340669637960, (1, 2) = -.219853801558141, (1, 3) = -.371445167328337, (1, 4) = -0.940736800940411e-2, (1, 5) = -0.845889943042008e-1, (1, 6) = 0.334727115780295e-1, (1, 7) = -0.257221402047336e84, (1, 8) = Float(infinity), (1, 9) = Float(undefined), (2, 1) = .765483256689808, (2, 2) = .141014141031686, (2, 3) = -.165532642864785, (2, 4) = -0.499428359428865e-1, (2, 5) = -0.73434901130578e-2, (2, 6) = -0.111757807839544e-1, (2, 7) = 0.123803381671991e68, (2, 8) = Float(undefined), (2, 9) = Float(-infinity), (3, 1) = 0.515972557667626e-1, (3, 2) = .125811948358948, (3, 3) = 0.408759073542022e-2, (3, 4) = -0.716662760034337e-1, (3, 5) = -0.51685004360437e-2, (3, 6) = 0.716801959003042e67, (3, 7) = Int((43.3125*(2.*x^2-1.)*(0.625e-1*x^12-.46875*x^10+2.28515625*x^8-8.697265625*x^6+24.8203125*x^4-47.25*x^2+45.)*exp(x^2)+43.3125*(2.*x^2-1.)*(-0.1953125e-2*x^6-0.703125e-1*x^5-.8203125*x^4-5.25*x^3-20.25*x^2-45.*x-45.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^7), x = -1. .. 1.), (3, 8) = Float(-infinity), (3, 9) = Float(infinity), (4, 1) = 0.899030920810901e-1, (4, 2) = 0.21384118669396e-2, (4, 3) = 0.393313755295959e-1, (4, 4) = -0.17596837269261e-3, (4, 5) = -0.341293873201944e-1, (4, 6) = -0.107499338429209e52, (4, 7) = 0.188236331912532e46, (4, 8) = Float(-infinity), (4, 9) = Int(0.625000000000000e-1*((-15202687.5+502.73437500*x^18-5404.39453125*x^16+38584.8632812500*x^14-227832.934570312*x^12+1124337.93640137*x^10-4485461.88125610*x^8+13690902.3925781*x^6-29149795.8984375*x^4+36015890.625*x^2)*exp(x^2)+5.*(4.*x^2-3.)*(-.196380615234375*x^8-12.568359375*x^7-263.935546875*x^6-3167.2265625*x^5-24885.3515625*x^4-132721.875*x^3-470559.375*x^2-1013512.5*x-1013512.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^8), x = -1. .. 1.), (5, 1) = 0.463651486782722e-3, (5, 2) = 0.157757505144122e-1, (5, 3) = 0.7529674755144e-4, (5, 4) = 0.205695133452456e-1, (5, 5) = 0.323627840089429e50, (5, 6) = -0.194229780735106e-1, (5, 7) = Int((31.58203125*(8.*x^4-8.*x^2+1.)*(0.625e-1*x^12-.46875*x^10+2.28515625*x^8-8.697265625*x^6+24.8203125*x^4-47.25*x^2+45.)*exp(x^2)+31.58203125*(8.*x^4-8.*x^2+1.)*(-0.1953125e-2*x^6-0.703125e-1*x^5-.8203125*x^4-5.25*x^3-20.25*x^2-45.*x-45.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^7), x = -1. .. 1.), (5, 8) = Float(infinity), (5, 9) = Float(-infinity), (6, 1) = 0.63086454697723e-2, (6, 2) = 0.148539925067e-4, (6, 3) = 0.678853225186884e-2, (6, 4) = 0.10778334378e-5, (6, 5) = 0.131282639565718e-1, (6, 6) = -0.271179086613e-5, (6, 7) = -0.124971422339580e-1, (6, 8) = -0.810764520616245e86, (6, 9) = 0.973719186742316e103, (7, 1) = 0.225892591375e-5, (7, 2) = 0.119535935984917e-2, (7, 3) = 0.47254024736e-6, (7, 4) = 0.406635846209016e-2, (7, 5) = -0.353102865787386e29, (7, 6) = 0.914224761911803e-2, (7, 7) = Int(0.976562500000000e-3*(231.*(32.*x^6-48.*x^4+18.*x^2-1.)*(7.21875*x^12-54.140625*x^10+263.935546875*x^8-1004.5341796875*x^6+2866.74609375*x^4-5457.375*x^2+5197.5)*exp(x^2)+231.*(32.*x^6-48.*x^4+18.*x^2-1.)*(-.2255859375*x^6-8.12109375*x^5-94.74609375*x^4-606.375*x^3-2338.875*x^2-5197.5*x-5197.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^7), x = -1. .. 1.), (7, 8) = Int(0.976562500000000e-3*(231.*(32.*x^6-48.*x^4+18.*x^2-1.)*(13.40625*x^14-117.3046875*x^12+692.09765625*x^10-3321.18896484375*x^8+12740.7553710938*x^6-36669.4453125*x^4+70382.8125*x^2-67567.5)*exp(x^2)+231.*(32.*x^6-48.*x^4+18.*x^2-1.)*(.20947265625*x^7+10.26416015625*x^6+164.2265625*x^5+1478.0390625*x^4+8445.9375*x^3+30968.4375*x^2+67567.5*x+67567.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^8), x = -1. .. 1.), (7, 9) = Int(0.976562500000000e-3*(231.*(32.*x^6-48.*x^4+18.*x^2-1.)*(25.13671875*x^16-251.3671875*x^14+1740.7177734375*x^12-10086.1083984375*x^10+48652.3155212402*x^8-187783.857421875*x^6+543707.2265625*x^4-1049709.375*x^2+1013512.5)*exp(x^2)+231.*(32.*x^6-48.*x^4+18.*x^2-1.)*(-.196380615234375*x^8-12.568359375*x^7-263.935546875*x^6-3167.2265625*x^5-24885.3515625*x^4-132721.875*x^3-470559.375*x^2-1013512.5*x-1013512.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^9), x = -1. .. 1.), (8, 1) = 0.340365610524644e-3, (8, 2) = 0.5813755404e-7, (8, 3) = 0.59941816605747e-3, (8, 4) = 0.1233441019e-7, (8, 5) = 0.275221040025479e-2, (8, 6) = -0.804784322e-8, (8, 7) = -0.187505962866890e33, (8, 8) = Int(0.488281250000000e-3*(429.*(64.*x^6-112.*x^4+56.*x^2-7.)*(13.40625*x^14-117.3046875*x^12+692.09765625*x^10-3321.18896484375*x^8+12740.7553710938*x^6-36669.4453125*x^4+70382.8125*x^2-67567.5)*exp(x^2)+429.*(64.*x^6-112.*x^4+56.*x^2-7.)*(.20947265625*x^7+10.26416015625*x^6+164.2265625*x^5+1478.0390625*x^4+8445.9375*x^3+30968.4375*x^2+67567.5*x+67567.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^7), x = -1. .. 1.), (8, 9) = Int(0.488281250000000e-3*(429.*(64.*x^6-112.*x^4+56.*x^2-7.)*(25.13671875*x^16-251.3671875*x^14+1740.7177734375*x^12-10086.1083984375*x^10+48652.3155212402*x^8-187783.857421875*x^6+543707.2265625*x^4-1049709.375*x^2+1013512.5)*exp(x^2)+429.*(64.*x^6-112.*x^4+56.*x^2-7.)*(-.196380615234375*x^8-12.568359375*x^7-263.935546875*x^6-3167.2265625*x^5-24885.3515625*x^4-132721.875*x^3-470559.375*x^2-1013512.5*x-1013512.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^8), x = -1. .. 1.), (9, 1) = 0.6793714722e-8, (9, 2) = 0.68406690337078e-4, (9, 3) = 0.1624492831e-8, (9, 4) = 0.386156856246160e-3, (9, 5) = 0.815546544069708e28, (9, 6) = -0.277132564813689e67, (9, 7) = Int(0.305175781250000e-4*(6435.*(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(7.21875*x^12-54.140625*x^10+263.935546875*x^8-1004.5341796875*x^6+2866.74609375*x^4-5457.375*x^2+5197.5)*exp(x^2)+6435.*(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(-.2255859375*x^6-8.12109375*x^5-94.74609375*x^4-606.375*x^3-2338.875*x^2-5197.5*x-5197.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^7), x = -1. .. 1.), (9, 8) = Int(0.305175781250000e-4*(6435.*(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(13.40625*x^14-117.3046875*x^12+692.09765625*x^10-3321.18896484375*x^8+12740.7553710938*x^6-36669.4453125*x^4+70382.8125*x^2-67567.5)*exp(x^2)+6435.*(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(.20947265625*x^7+10.26416015625*x^6+164.2265625*x^5+1478.0390625*x^4+8445.9375*x^3+30968.4375*x^2+67567.5*x+67567.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^8), x = -1. .. 1.), (9, 9) = Int(0.305175781250000e-4*(6435.*(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(25.13671875*x^16-251.3671875*x^14+1740.7177734375*x^12-10086.1083984375*x^10+48652.3155212402*x^8-187783.857421875*x^6+543707.2265625*x^4-1049709.375*x^2+1013512.5)*exp(x^2)+6435.*(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(-.196380615234375*x^8-12.568359375*x^7-263.935546875*x^6-3167.2265625*x^5-24885.3515625*x^4-132721.875*x^3-470559.375*x^2-1013512.5*x-1013512.5)*exp(-1.*x))/((1.+x)^(1/2)*(1.-1.*x)^(1/2)*x^9), x = -1. .. 1.)})

(10)

G := Vector(N+1):

for i from 0 to N do G[i+1] := evalf(Int(phi[i]*g(x)*w1, x = -1 .. 1, epsilon = 0.1e-24)) end do;

12.1371438004283064513879002531

 

4.46097069166807099930513349705

 

1.64462130209908212771492915391

 

.558865818865511551008391285165

 

.171719662671619385727054996451

 

0.517117975778639694922219536331e-1

 

0.149941760016965250201187504967e-1

 

0.424140250877931274184205530350e-2

 

0.114813711532765772695860143813e-2

(11)

G[1]

12.1371438004283064513879002531

(12)

C := simplify(Matrix(A+B))

C := Matrix(9, 9, {(1, 1) = 6.55499934996939323846264338328, (1, 2) = -.219853801558141, (1, 3) = -.371445167328337, (1, 4) = -0.940736800940411e-2, (1, 5) = -0.845889943042008000000000000000e-1, (1, 6) = 0.334727115780295e-1, (1, 7) = -0.257221402047336e84, (1, 8) = Float(infinity), (1, 9) = Float(undefined), (2, 1) = .765483256689808, (2, 2) = .533713222730410154807830422910, (2, 3) = -.165532642864785, (2, 4) = -0.499428359428865e-1, (2, 5) = -0.73434901130578e-2, (2, 6) = -0.111757807839544e-1, (2, 7) = 0.123803381671991e68, (2, 8) = Float(undefined), (2, 9) = Float(-infinity), (3, 1) = 0.515972557667626000000000000000e-1, (3, 2) = .125811948358948, (3, 3) = .224980824190952557079404612887, (3, 4) = -0.716662760034337e-1, (3, 5) = -0.516850043604370000000000000000e-2, (3, 6) = 0.716801959003042e67, (3, 7) = 0.666666666666666666666666666667e-32+43.3125*(Int(((-45.+.1250*x^14-1.00000*x^12+5.03906250*x^10-19.679687500*x^8+58.337890625*x^6-119.3203125*x^4+137.25*x^2)*exp(x^2)+(2.*x^2-1.)*(-0.1953125e-2*x^6-0.703125e-1*x^5-.8203125*x^4-5.25*x^3-20.25*x^2-45.*x-45.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^7), x = -1. .. 1.)), (3, 8) = Float(-infinity), (3, 9) = Float(infinity), (4, 1) = 0.899030920810901e-1, (4, 2) = 0.213841186693960000000000000000e-2, (4, 3) = 0.393313755295959e-1, (4, 4) = .153222110415871512971808758949, (4, 5) = -0.341293873201944e-1, (4, 6) = -0.107499338429209e52, (4, 7) = 0.188236331912532e46, (4, 8) = Float(-infinity), (4, 9) = 0.3125e-1*(Int(((-30405375.+1005.46875*x^18-10808.7890625*x^16+77169.7265625*x^14-455665.869140624*x^12+2248675.87280274*x^10-8970923.7625122*x^8+27381804.7851562*x^6-58299591.796875*x^4+72031781.25*x^2)*exp(x^2)+(-7.855224609375*x^10-502.734375*x^9-10551.53045654296875*x^8-126312.01171875*x^7-987495.99609375*x^6-5213858.203125*x^5-18075814.453125*x^4-36558843.75*x^3-26423718.75*x^2+30405375.*x+30405375.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^8), x = -1. .. 1.)), (5, 1) = 0.463651486782721999999999999997e-3, (5, 2) = 0.157757505144122e-1, (5, 3) = 0.752967475514400000000000000004e-4, (5, 4) = 0.205695133452456e-1, (5, 5) = 0.323627840089429e50, (5, 6) = -0.194229780735106e-1, (5, 7) = -0.429629629629629629629629629630e-32+31.58203125*(Int(((8.*x^4-8.*x^2+1.)*(0.625e-1*x^12-.46875*x^10+2.28515625*x^8-8.697265625*x^6+24.8203125*x^4-47.25*x^2+45.)*exp(x^2)+(8.*x^4-8.*x^2+1.)*(-0.1953125e-2*x^6-0.703125e-1*x^5-.8203125*x^4-5.25*x^3-20.25*x^2-45.*x-45.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^7), x = -1. .. 1.)), (5, 8) = Float(infinity), (5, 9) = Float(-infinity), (6, 1) = 0.63086454697723e-2, (6, 2) = 0.148539925066999999999999999996e-4, (6, 3) = 0.678853225186884e-2, (6, 4) = 0.107783343780000000000000000074e-5, (6, 5) = 0.131282639565718e-1, (6, 6) = 0.951280655078543393867357756671e-1, (6, 7) = -0.124971422339580e-1, (6, 8) = -0.810764520616245e86, (6, 9) = 0.973719186742316e103, (7, 1) = 0.225892591374999999999999998267e-5, (7, 2) = 0.119535935984917e-2, (7, 3) = 0.472540247360000000000000006667e-6, (7, 4) = 0.406635846209016e-2, (7, 5) = -0.353102865787386e29, (7, 6) = 0.914224761911803e-2, (7, 7) = 0.799362781468415055263543670536e-1+26.05517578125*(Int(((32.*x^6-48.*x^4+18.*x^2-1.)*(0.625e-1*x^12-.46875*x^10+2.28515625*x^8-8.697265625*x^6+24.8203125*x^4-47.25*x^2+45.)*exp(x^2)+(32.*x^6-48.*x^4+18.*x^2-1.)*(-0.1953125e-2*x^6-0.703125e-1*x^5-.8203125*x^4-5.25*x^3-20.25*x^2-45.*x-45.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^7), x = -1. .. 1.)), (7, 8) = .11279296875*(Int(((32.*x^6-48.*x^4+18.*x^2-1.)*(26.8125*x^14-234.609375*x^12+1384.1953125*x^10-6642.3779296875*x^8+25481.5107421876*x^6-73338.890625*x^4+140765.625*x^2-135135.)*exp(x^2)+(32.*x^6-48.*x^4+18.*x^2-1.)*(.4189453125*x^7+20.5283203125*x^6+328.453125*x^5+2956.078125*x^4+16891.875*x^3+61936.875*x^2+135135.*x+135135.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^8), x = -1. .. 1.)), (7, 9) = 0.157777777777777777777777777778e-31+1.24072265625*(Int(((32.*x^6-48.*x^4+18.*x^2-1.)*(4.5703125*x^16-45.703125*x^14+316.494140625*x^12-1833.837890625*x^10+8845.8755493164*x^8-34142.51953125*x^6+98855.859375*x^4-190856.25*x^2+184275.)*exp(x^2)+(32.*x^6-48.*x^4+18.*x^2-1.)*(-0.3570556640625e-1*x^8-2.28515625*x^7-47.98828125*x^6-575.859375*x^5-4524.609375*x^4-24131.25*x^3-85556.25*x^2-184275.*x-184275.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^9), x = -1. .. 1.)), (8, 1) = 0.340365610524644e-3, (8, 2) = 0.581375540399999999999999928148e-7, (8, 3) = 0.59941816605747e-3, (8, 4) = 0.123344101900000000000000128889e-7, (8, 5) = 0.275221040025479e-2, (8, 6) = -0.804784322000000000000001355556e-8, (8, 7) = -0.187505962866890e33, (8, 8) = 0.689246479939602777242545307758e-1+.104736328125*(Int(((64.*x^6-112.*x^4+56.*x^2-7.)*(26.8125*x^14-234.609375*x^12+1384.1953125*x^10-6642.3779296875*x^8+25481.5107421876*x^6-73338.890625*x^4+140765.625*x^2-135135.)*exp(x^2)+(64.*x^6-112.*x^4+56.*x^2-7.)*(.4189453125*x^7+20.5283203125*x^6+328.453125*x^5+2956.078125*x^4+16891.875*x^3+61936.875*x^2+135135.*x+135135.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^7), x = -1. .. 1.)), (8, 9) = 1.152099609375*(Int(((64.*x^6-112.*x^4+56.*x^2-7.)*(4.5703125*x^16-45.703125*x^14+316.494140625*x^12-1833.837890625*x^10+8845.8755493164*x^8-34142.51953125*x^6+98855.859375*x^4-190856.25*x^2+184275.)*exp(x^2)+(64.*x^6-112.*x^4+56.*x^2-7.)*(-0.3570556640625e-1*x^8-2.28515625*x^7-47.98828125*x^6-575.859375*x^5-4524.609375*x^4-24131.25*x^3-85556.25*x^2-184275.*x-184275.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^8), x = -1. .. 1.)), (9, 1) = 0.679371472199999999999970814815e-8, (9, 2) = 0.68406690337078e-4, (9, 3) = 0.162449283100000000000009666667e-8, (9, 4) = 0.386156856246160e-3, (9, 5) = 0.815546544069708e28, (9, 6) = -0.277132564813689e67, (9, 7) = 0.157777777777777777777777777778e-31+22.6819610595703125*(Int(((128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(0.625e-1*x^12-.46875*x^10+2.28515625*x^8-8.697265625*x^6+24.8203125*x^4-47.25*x^2+45.)*exp(x^2)+(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(-0.1953125e-2*x^6-0.703125e-1*x^5-.8203125*x^4-5.25*x^3-20.25*x^2-45.*x-45.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^7), x = -1. .. 1.)), (9, 8) = 0.196380615234375e-1*(Int(((128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(134.0625*x^14-1173.046875*x^12+6920.9765625*x^10-33211.8896484375*x^8+127407.553710938*x^6-366694.453125*x^4+703828.125*x^2-675675.)*exp(x^2)+(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(2.0947265625*x^7+102.6416015625*x^6+1642.265625*x^5+14780.390625*x^4+84459.375*x^3+309684.375*x^2+675675.*x+675675.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^8), x = -1. .. 1.)), (9, 9) = 0.605783039009416503435830836897e-1+.2160186767578125*(Int(((128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(22.8515625*x^16-228.515625*x^14+1582.470703125*x^12-9169.189453125*x^10+44229.377746582*x^8-170712.59765625*x^6+494279.296875*x^4-954281.25*x^2+921375.)*exp(x^2)+(128.*x^8-256.*x^6+160.*x^4-32.*x^2+1.)*(-.17852783203125*x^8-11.42578125*x^7-239.94140625*x^6-2879.296875*x^5-22623.046875*x^4-120656.25*x^3-427781.25*x^2-921375.*x-921375.)*exp(-1.*x))/((1.+x)^(1/2)*(1.-x)^(1/2)*x^9), x = -1. .. 1.))})

(13)

C1 := MatrixInverse(C)

Warning,  computation interrupted

 

``

t := C1.G

s[u] := add(subs(theta = sols[l+1], ((x+1)*(1/2))*k(x, ss(x, theta)))*u(ss(x, sols[l+1])), l = 0 .. N)

U := unapply(add(t[j+1].phi[j], j = 0 .. N), x)

``

with(numapprox)

E := infnorm(abs(u(x)-U(x)), x = -1 .. 1)

``

E[1] := (int((u(x)-U(x))^2, x = -1 .. .1))^(1/2)

``

plot([U(x), u(x)], x = -1 .. 1)

 

``

NULL

 

Download chebichef_cont.mw

 Hi all,

 Is there anyone who could help me with this error? I am sure there is at least one solution for the equation.

 Thanks

Maple Worksheet - Error

Failed to load the worksheet /maplenet/convert/EQ.mw .

Download EQ.mw

Typically sets are created like:

A:={a,b,c};

B:={c,q,w,e};

and then you can carryout A union B or B\A

 

what if  you wanted to create the set as

A:={values in some three dimensional space};

B:={volume, based on values taken from A};

Can these relationships be set up in Maple? If so, how? If there are commands that specifically handle these types of sets, what does maple call them?  I've seen the term 'set function' but what might Maple call them?

Note: I am not even sure i 'tagged' this correctly because it I am not sure the proper terms for these functions/sets.

Thanks in advance for any help.

First 1085 1086 1087 1088 1089 1090 1091 Last Page 1087 of 2428