MaplePrimes Questions

I found useful to use the email address of a relative I live with, to create my own account on Maple Primes.
But I have just realized that his own account has disappeared.

Is there a way to have two differents accounts with the same email address ??? 

If not I will create my own account on my private email addresss

Sorry for the mess

I have several plots generated with geometry objects:

plt1 := draw(...); plt2 := draw(...)

I want to display all them with a reasonable window.  I have been looping and and using a rather dumb proc to find the window size. I use the view=[...] option with the values calculated to set the plot view.

I wanted to post the proc, but, really messed that up!  I will try the proc later.

 

Some of the plots I am working with have views like

> for itm in [relBrgLinePlot,relTgtPositPlot,relTgtLinePlot] do
    op(-1,itm);
end do;
                     VIEW(0. .. 95., -61.58179461 .. 16.)
                 VIEW(5.48225506 .. 95., -61.58179461 .. 16.)
                 VIEW(5.48225506 .. 95., -61.58179461 .. 16.)

> for itm in [geoSensPositPlot,geoSensLinePlot,\
            geoBrgLinePlot,geoTgtPositPlot,geoTgtLinePLot] do
    op(-1,itm);
end do;
                  VIEW(0. .. 35.35331852, 0. .. 87.13244438)
                  VIEW(0. .. 35.35331852, 0. .. 87.13244438)
                     VIEW(0. .. 95., 0. .. 87.13244438)
                 VIEW(40.83557358 .. 95., 16. .. 25.55064977)
                 VIEW(40.83557358 .. 95., 16. .. 25.55064977)

Is there an easier way to do this?

with(plots);

implicitplot3d((x+y+z)^2=0, x=-100..100,y=-100..100,z=-100..100)

can be plot, and only show me an empty box.

and i get the same empty box when i reduce the interval.

for example :

implicitplot3d((x+y+z)^2=0, x=-5..5,y=-5..5,z=-5..5)

and

implicitplot3d((x+y+z)^2=0, x=-0.1..0.1,y=-0.1..0.1,z=-0.1..0.1)

please help me.

thanks for reading this question, and i hope i get an answer.

Linux.  I want to put grid lines on an x11 device.

The x11 device is better for plotting because if the window is resized, the plot resizes with it.

restart;
plotsetup(x11);plot(sin(x),x=-1..1,gridlines = true); ## no gridlines

restart;
plotsetup(maplet);
plot(sin(x),x=-1..1,gridlines = true); ## have gridlines

Any way to get gridlines on x11 device?

Tom Dean

I have a Maple result presented in the first (top) formula which I would like to format as in the second (bottom) formula:

Can this be done? This is Maple 2016.1

Hi!

I am simulate the code for fractional differential equation. But the out put is not wright...
sir_(2).mw

``

S[0] := .8;

.8

(1)

V[0] := .2;

.2

(2)

R[0] := 0;

0

(3)

alpha := 1;

1

 

.4

 

.8

 

gamma = 0.3e-1

(4)

q := .9;

.9

(5)

T := 1;

1

(6)

N := 5;

5

(7)

h := T/N;

1/5

(8)

``

for i from 0 to N do for j from 0 to 0 do a[j, i+1] := i^(alpha+1)-(i-alpha)*(i+1)^alpha; b[j, i+1] := h^alpha*((i+1-j)^alpha-(i-j)^alpha)/alpha end do end do;

for n from 0 to N do Sp[n+1] = S[0]+(sum(b[d, n+1]*(mu*(1-q)-beta*S[d]*V[d]-mu*S[d]), d = 0 .. n))/GAMMA(alpha); Vp[n+1] = V[0]+(sum(b[d, n+1]*(beta*S[d]*V[d]-(mu+gamma)*S[d]), d = 0 .. n))/GAMMA(alpha); Rp[n+1] = R[0]+(sum(b[d, n+1]*(mu*q-mu*R[d]+gamma*V[d]), d = 0 .. n))/GAMMA(alpha); S[n+1] = S[0]+h^alpha*(mu*(1-q)-beta*Sp[n+1]*Vp[n+1]-mu*Sp[n+1])/GAMMA(alpha+2)+h^alpha*(sum(a[e, n+1]*(mu*(1-q)-beta*S[e]*V[e]-mu*S[e]), e = 0 .. n))/GAMMA(alpha+2); V[n+1] = V[0]+h^alpha*(beta*Sp[n+1]*Vp[n+1]-(mu+gamma)*Sp[n+1])/GAMMA(alpha+2)+h^alpha*(sum(a[e, n+1]*(beta*S[e]*V[e]-(mu+gamma)*S[e]), e = 0 .. n))/GAMMA(alpha+2); R[n+1] = R[0]+h^alpha*(mu*q-mu*Rp[n+1]-gamma*Vp[n+1])/GAMMA(alpha+2)+h^alpha*(sum(a[e, n+1]*(mu*q-mu*R[e]-gamma*V[e]), e = 0 .. n))/GAMMA(alpha+2) end do;

Sp[1] = .7184000000

 

Vp[1] = 0.692454936e-1

 

Rp[1] = 0.9508862660e-1

 

S[1] = .7632000000-0.8000000000e-1*Sp[1]*Vp[1]-0.4000000000e-1*Sp[1]

 

V[1] = .1346227468+0.8000000000e-1*Sp[1]*Vp[1]-(1/10)*(.4+gamma)*Sp[1]

 

R[1] = 0.6045568670e-1-(1/10)*gamma*Vp[1]-0.4000000000e-1*Rp[1]

 

Sp[2] = .7264000000-.1600000000*S[1]*V[1]-0.8000000000e-1*S[1]

 

Vp[2] = 0.692454936e-1+.1600000000*S[1]*V[1]-.1954431330*S[1]

 

Rp[2] = .1670886266+.1154431330*V[1]-0.8000000000e-1*R[1]

 

S[2] = .7712000000-0.8000000000e-1*Sp[2]*Vp[2]-0.4000000000e-1*Sp[2]-.1600000000*S[1]*V[1]-0.8000000000e-1*S[1]

 

V[2] = .1346227468+0.8000000000e-1*Sp[2]*Vp[2]-(1/10)*(.4+gamma)*Sp[2]+.1600000000*S[1]*V[1]-.1954431330*S[1]

 

R[2] = .1324556867-(1/10)*gamma*Vp[2]-0.4000000000e-1*Rp[2]-.1154431330*V[1]-0.8000000000e-1*R[1]

 

Sp[3] = .7344000000-.1600000000*S[1]*V[1]-0.8000000000e-1*S[1]-.1600000000*S[2]*V[2]-0.8000000000e-1*S[2]

 

Vp[3] = 0.692454936e-1+.1600000000*S[1]*V[1]-.1954431330*S[1]+.1600000000*S[2]*V[2]-.1954431330*S[2]

 

Rp[3] = .2390886266+.1154431330*V[1]-0.8000000000e-1*R[1]+.1154431330*V[2]-0.8000000000e-1*R[2]

 

S[3] = .7792000000-0.8000000000e-1*Sp[3]*Vp[3]-0.4000000000e-1*Sp[3]-.1600000000*S[1]*V[1]-0.8000000000e-1*S[1]-.1600000000*S[2]*V[2]-0.8000000000e-1*S[2]

 

V[3] = .1346227468+0.8000000000e-1*Sp[3]*Vp[3]-(1/10)*(.4+gamma)*Sp[3]+.1600000000*S[1]*V[1]-.1954431330*S[1]+.1600000000*S[2]*V[2]-.1954431330*S[2]

 

R[3] = .2044556867-(1/10)*gamma*Vp[3]-0.4000000000e-1*Rp[3]-.1154431330*V[1]-0.8000000000e-1*R[1]-.1154431330*V[2]-0.8000000000e-1*R[2]

 

Sp[4] = .7424000000-.1600000000*S[1]*V[1]-0.8000000000e-1*S[1]-.1600000000*S[2]*V[2]-0.8000000000e-1*S[2]-.1600000000*S[3]*V[3]-0.8000000000e-1*S[3]

 

Vp[4] = 0.692454936e-1+.1600000000*S[1]*V[1]-.1954431330*S[1]+.1600000000*S[2]*V[2]-.1954431330*S[2]+.1600000000*S[3]*V[3]-.1954431330*S[3]

 

Rp[4] = .3110886266+.1154431330*V[1]-0.8000000000e-1*R[1]+.1154431330*V[2]-0.8000000000e-1*R[2]+.1154431330*V[3]-0.8000000000e-1*R[3]

 

S[4] = .7872000000-0.8000000000e-1*Sp[4]*Vp[4]-0.4000000000e-1*Sp[4]-.1600000000*S[1]*V[1]-0.8000000000e-1*S[1]-.1600000000*S[2]*V[2]-0.8000000000e-1*S[2]-.1600000000*S[3]*V[3]-0.8000000000e-1*S[3]

 

V[4] = .1346227468+0.8000000000e-1*Sp[4]*Vp[4]-(1/10)*(.4+gamma)*Sp[4]+.1600000000*S[1]*V[1]-.1954431330*S[1]+.1600000000*S[2]*V[2]-.1954431330*S[2]+.1600000000*S[3]*V[3]-.1954431330*S[3]

 

R[4] = .2764556867-(1/10)*gamma*Vp[4]-0.4000000000e-1*Rp[4]-.1154431330*V[1]-0.8000000000e-1*R[1]-.1154431330*V[2]-0.8000000000e-1*R[2]-.1154431330*V[3]-0.8000000000e-1*R[3]

 

Sp[5] = .7504000000-.1600000000*S[1]*V[1]-0.8000000000e-1*S[1]-.1600000000*S[2]*V[2]-0.8000000000e-1*S[2]-.1600000000*S[3]*V[3]-0.8000000000e-1*S[3]-.1600000000*S[4]*V[4]-0.8000000000e-1*S[4]

 

Vp[5] = 0.692454936e-1+.1600000000*S[1]*V[1]-.1954431330*S[1]+.1600000000*S[2]*V[2]-.1954431330*S[2]+.1600000000*S[3]*V[3]-.1954431330*S[3]+.1600000000*S[4]*V[4]-.1954431330*S[4]

 

Rp[5] = .3830886266+.1154431330*V[1]-0.8000000000e-1*R[1]+.1154431330*V[2]-0.8000000000e-1*R[2]+.1154431330*V[3]-0.8000000000e-1*R[3]+.1154431330*V[4]-0.8000000000e-1*R[4]

 

S[5] = .7952000000-0.8000000000e-1*Sp[5]*Vp[5]-0.4000000000e-1*Sp[5]-.1600000000*S[1]*V[1]-0.8000000000e-1*S[1]-.1600000000*S[2]*V[2]-0.8000000000e-1*S[2]-.1600000000*S[3]*V[3]-0.8000000000e-1*S[3]-.1600000000*S[4]*V[4]-0.8000000000e-1*S[4]

 

V[5] = .1346227468+0.8000000000e-1*Sp[5]*Vp[5]-(1/10)*(.4+gamma)*Sp[5]+.1600000000*S[1]*V[1]-.1954431330*S[1]+.1600000000*S[2]*V[2]-.1954431330*S[2]+.1600000000*S[3]*V[3]-.1954431330*S[3]+.1600000000*S[4]*V[4]-.1954431330*S[4]

 

R[5] = .3484556867-(1/10)*gamma*Vp[5]-0.4000000000e-1*Rp[5]-.1154431330*V[1]-0.8000000000e-1*R[1]-.1154431330*V[2]-0.8000000000e-1*R[2]-.1154431330*V[3]-0.8000000000e-1*R[3]-.1154431330*V[4]-0.8000000000e-1*R[4]

 

Sp[6] = .7584000000-.1600000000*S[1]*V[1]-0.8000000000e-1*S[1]-.1600000000*S[2]*V[2]-0.8000000000e-1*S[2]-.1600000000*S[3]*V[3]-0.8000000000e-1*S[3]-.1600000000*S[4]*V[4]-0.8000000000e-1*S[4]-.1600000000*S[5]*V[5]-0.8000000000e-1*S[5]

 

Vp[6] = 0.692454936e-1+.1600000000*S[1]*V[1]-.1954431330*S[1]+.1600000000*S[2]*V[2]-.1954431330*S[2]+.1600000000*S[3]*V[3]-.1954431330*S[3]+.1600000000*S[4]*V[4]-.1954431330*S[4]+.1600000000*S[5]*V[5]-.1954431330*S[5]

 

Rp[6] = .4550886266+.1154431330*V[1]-0.8000000000e-1*R[1]+.1154431330*V[2]-0.8000000000e-1*R[2]+.1154431330*V[3]-0.8000000000e-1*R[3]+.1154431330*V[4]-0.8000000000e-1*R[4]+.1154431330*V[5]-0.8000000000e-1*R[5]

 

S[6] = .8032000000-0.8000000000e-1*Sp[6]*Vp[6]-0.4000000000e-1*Sp[6]-.1600000000*S[1]*V[1]-0.8000000000e-1*S[1]-.1600000000*S[2]*V[2]-0.8000000000e-1*S[2]-.1600000000*S[3]*V[3]-0.8000000000e-1*S[3]-.1600000000*S[4]*V[4]-0.8000000000e-1*S[4]-.1600000000*S[5]*V[5]-0.8000000000e-1*S[5]

 

V[6] = .1346227468+0.8000000000e-1*Sp[6]*Vp[6]-(1/10)*(.4+gamma)*Sp[6]+.1600000000*S[1]*V[1]-.1954431330*S[1]+.1600000000*S[2]*V[2]-.1954431330*S[2]+.1600000000*S[3]*V[3]-.1954431330*S[3]+.1600000000*S[4]*V[4]-.1954431330*S[4]+.1600000000*S[5]*V[5]-.1954431330*S[5]

 

R[6] = .4204556867-(1/10)*gamma*Vp[6]-0.4000000000e-1*Rp[6]-.1154431330*V[1]-0.8000000000e-1*R[1]-.1154431330*V[2]-0.8000000000e-1*R[2]-.1154431330*V[3]-0.8000000000e-1*R[3]-.1154431330*V[4]-0.8000000000e-1*R[4]-.1154431330*V[5]-0.8000000000e-1*R[5]

(9)

``

``

 

Download sir_(2).mw

 

Dear all,

I would like to find a way to make the reflection of a spherical wave inside a tube (a cylinder). You have herafter an exemple of a sphere increasing inside a tube, but without the reflections...

 

Any idea how to do this?

Thanks a lot for your help.

 

how i can calculate roots of the characteristic polynomial equations {dsys and dsys2}
and dsolve them with arbitrary initial condition for differennt amont of m and n?
thanks
Kr.mw

restart; a := 1; b := 2; Number := 10; q := 1; omega := 0.2e-1
``

Q1 := besselj(0, xi*b)*(eval(diff(bessely(0, xi*r), r), r = a))-(eval(diff(besselj(0, xi*r), r), r = a))*bessely(0, xi*b):

J := 0:

m := 0:

U1 := (int(r*K1[m]*(diff(K_01[m], r)+K_01[m]/r), r = a .. b))/(int(r*K1[m]^2, r = a .. b)); -1; U2 := -(int(r*K_01[m]*(diff(K1[m], r)), r = a .. b))/(int(r*K_01[m]^2, r = a .. b)); -1; U3 := (int(r^2*omega^2*K_01[m], r = a .. b))/(int(r*K_01[m]^2, r = a .. b))

0.6222222222e-3/K_01[12]

(1)

Q2 := besselj(1, eta*b)*(eval(diff(bessely(1, eta*r), r), r = a))-(eval(diff(besselj(1, eta*r), r), r = a))*bessely(1, eta*b):

E2 := unapply(Q2, eta):

m := 0:

 
dsys := {diff(S_mn(t), t, t, t)+xi[m]^2*(diff(S_mn(t), t, t))+(-U1*U2+eta__n^2)*(diff(S_mn(t), t))+xi[m]^2*eta__n^2*S_mn(t) = -(2*U2*b_m/(Pi*xi[m])*(-besselj(0, xi[m]*b)/besselj(1, xi[m]*a)))*q+xi[m]^2*U3}; 1; dsolve(dsys)

{S_mn(t) = (3111111111/5000000000000)/(K_01[12]*eta__n^2)+_C1*cos(eta__n*t)+_C2*sin(eta__n*t)+_C3*exp(-xi[12]^2*t)}

(2)

dsys2 := {diff(Q_mn(t), t, t, t)+xi[m]^2*(diff(Q_mn(t), t, t))+(-U1*U2+eta__n^2)*(diff(Q_mn(t), t))+xi[m]^2*eta__n^2*Q_mn(t) = -2*besselj(0, xi[m]*b)*U1*U2*b_m*(1-exp(-xi[m]^2*t))/(besselj(1, xi[m]*a)*Pi*xi[m]^3)}; 1; dsolve(dsys2)

{Q_mn(t) = _C1*exp(-xi[12]^2*t)+_C2*sin(eta__n*t)+_C3*cos(eta__n*t)}

(3)

``

 

``



Download Kr.mw

 

Hi all,

I start working with the Grid package.
To familiarize myself with it I ran the "primeChecker" example, which of course has worked perfectly well.

Next I did this (a priori harmless) simple modifications :

  1. within the primeChecker procedure :
    replace  myVal := userData[thisNode+1] :
    by         myVal := userData[thisNode+1, 1] :
  2. before launching the procedure with Grid[Launch] :
    replace  userData := [ .... ] :  #which is a list
    by         userData := [ .... ] :  # the same thing
                 userData := convert(userData, matrix): 


I get the following error message :
error, (in unknown) Matrix index out of range


What does it mean and how can I fix this ?

Thanks in advance

I have problem to get real answer in a simple equation. maple just give me complex answer.

how i can get parametric real answer? Ihave trid this two way but not applicaple.

with(RealDomain); assume(T::real)

My code is:
Qz := 7.39833755306637215940309264474*10^7*sqrt(1/T)*(T-297.2)/T-16242.7935852035929839431551189*sqrt(1/T)/T;

q := (.6096*(299.2-T))/(sqrt(1.60000000000000000000000000000*10^(-9)-r^2)-0.346410161513775458705489268300e-4);

with(RealDomain); assume(T::real);

e := simplify(solve({0 = q-Qz}, {T}))

and the result like:

e := {T = 1/RootOf(-609600000000000000000000000000000000000000000000000000000+(879515018020273730453559011332895956000000000000000000000000000*sqrt(-625000000*r^2+1)-761682348615485390130551939524898425387968750740910059296172487)*Z^5+(-2959335021226548863761237057896000000000000000000000000000000*sqrt(-625000000*r^2+1)+2562859306691152293409465394507279449380503585614734443742000)*_Z^3+182392320000000000000000000000000000000000000000000000000000*_Z^2)^2}

dose anyone hase any opinion?

Hello

I have experienced that maple does not save all of the varibles. But some it does.

I calculate with units, could that be the reason?

I have allso been thinking that it has something to do with saving the document online in onenote. But that works like the file is saved on the Pc's harddrive.

Are there anybody else that has experienced this?

I calculate with units, but as the varible does not appear in the calculation with units, I make one varible with the same result, to get the next calculation to work.   

Regards

Heide

Does `evala/toprof` still exist in newer Maple versions, or is there an equivalent?

Why won't this procedure Compile? All I get is a cryptic and ungrammatical error message.

    step:= proc(
          n::integer[4],
          XYZ::Matrix(datatype= float[8]),
          E::Vector(datatype=integer[4]), F::Vector(datatype=integer[4]),
          W::Matrix(datatype= float[8]), #3x2 scratch matrix
          mu::integer[4]
     )
     option autocompile;
     local
          i::integer[4], j::integer[4],
          ed::float[8],
          fd::float[8],
          p::float[8], t::float[8]       
     ;
          to mu do
               for i to n do
                    ed:= 0;  fd:= 0;
                    for j to 3 do
                          p:= XYZ[i,j];
                          t:= XYZ[E[i],j] - p;
                          ed:= ed+t^2;
                          W[j,1]:= t;
                          t:= XYZ[F[i],j] - p;
                          fd:= fd+t^2;
                          W[j,2]:= t
                    od;
                    ed:= sqrt(ed) + .01;  fd:= sqrt(fd) + .01;
                    for j to 3 do
                         XYZ[i,j]:= 0.995*XYZ[i,j] - 0.01*W[j,1]/ed + 0.02*W[j,2]/fd
                    od
               od
          od
     end proc;
Compiler:-Compile(step);

Error, (in Compiler:-Compile1) In memory compilation failed

Dear all,

I have somme difficulties to calculate this integral.

int(I*sqrt((R*exp(I*theta)+1)/(R*exp(I*theta)-a)), theta = 0 .. Pi);

Thanks

Hello guys,

I was just playing around with differential equations, when I noticed that symbolic solution is  different from the numerical.What is the reason for this strange behavior?


ODE := (diff(y(x), x))*(ln(y(x))+x) = 1

sol := dsolve({ODE, y(1) = 1}, y(x))

a := plot(op(2, sol), x = .75 .. 2, color = "Red");
sol2 := dsolve([ODE, y(1) = 1], numeric, range = .75 .. 2);

with(plots);
b := odeplot(sol2, .75 .. 2, thickness = 4);
display({a, b});

 

 

Strange_issue.mw

Mariusz Iwaniuk

First 1113 1114 1115 1116 1117 1118 1119 Last Page 1115 of 2428