MaplePrimes Questions

Hello,

In the creation of a list, I would like to use the assume function twice.

Here it is a print screen of my issue.

The second part of the list is not taken into account.

Do you have ideas so that my list takes into account the second term ?

Thanks a lot for your feedback

Hello! Hope every is fine. I want to expand all expression of exp of the attached file like this

exp(c[1]*t+d[1]*n-d) = exp(c[1]*t+d[1]*n)*exp(-d)

waiting your kind response.

Help.mw

 

 

Mob #: 0086-13001903838

 

Hello! Hope everything fine with you. Please share the command to find the max and min values of the attached function, I had tried but I was only for one variable. I am waiting your quick response.

Examples.pdf

Mob #: 0086-13001903838

Hello,

I would like to solve this equation :

tan(gamma0(t)) = tan(gamma[1](t)-theta[1](t)-psi[1](t)

I would like to select the solution of arctan by assuming the domain of variation of some variables. In my case, if -Pi/2 < gamma[1](t) - theta[1](t) - psi[1](t) < Pi/2, the arctan gives only one solution.

Can you help me to solve this equation ? 

eq:=tan(gamma0(t)) = tan(gamma[1](t)-theta[1](t)-psi[1](t))
solve(eq,gamma0(t)) assuming -Pi/2 < gamma[1](t) - theta[1](t) - psi[1](t) < Pi/2

I guess that I don't use properly the "assume" function.

The result that I would like to obain is quiet simple :

gamma0(t)) = gamma[1](t)-theta[1](t)-psi[1](t)

Thanks a lot for your help

 

Here is my Maple 16 code:

 I expected to get outuput

a [a,b,c]

a [a,c,b]

But I get no output.

Why?

 

 

 

 

2*t*exp(t) + 2*t

would like to apply op recurively 

and output list

[2,t,exp(t),2,t]

 

not the same ordering every time of monomials after determinant and map sign positive and op in maple 15

sometimes i need to use Reverse or Rotate List to adjust.

why ordering is different in list of monomials?

is it caused by virus?

 

Hi!

 

I wonder how is it possible to numerically evaluate two-dimensional sum, something like this:

sum

Hi my dear friends, I am haunted by a problem of how to convert a very very very long equation to Latex or Word properly?

Thank you for taking a look at the following 'long and boring' equation and sharing your brilliant idea.

 

"1/12*R^2*h^3*rho*diff(diff(alpha(t),t),t)*cos(beta(t))^2*Pi+1/2*R^4*h*rho*sin(gamma(t))*diff(diff(phi(t),t),t)*Pi-1/4*R^4*h*rho*Pi*cos(beta(t))^2*diff(diff(alpha(t),t),t)-1/4*R^4*h*rho*cos(alpha(t))*diff(beta(t),t)*diff(gamma(t),t)*Pi-1/12*R^2*h^3*rho*cos(alpha(t))*diff(beta(t),t)*diff(gamma(t),t)*Pi+1/2*R^4*h*rho*diff(gamma(t),t)*cos(gamma(t))*diff(phi(t),t)*Pi+1/12*R^2*h^3*rho*sin(gamma(t))*cos(beta(t))^2*diff(diff(phi(t),t),t)*Pi+1/2*R^4*h*rho*cos(gamma(t))*diff(diff(theta(t),t),t)*cos(phi(t))*Pi-1/4*R^4*h*rho*Pi*sin(gamma(t))*cos(beta(t))^2*diff(diff(phi(t),t),t)+1/2*R^4*h*rho*sin(gamma(t))*diff(diff(psi(t),t),t)*sin(theta(t))*Pi-1/12*R^2*h^3*rho*cos(beta(t))^2*cos(gamma(t))*diff(diff(psi(t),t),t)*cos(theta(t))*sin(phi(t))*Pi-1/4*R^4*h*rho*cos(beta(t))^2*sin(alpha(t))*diff(beta(t),t)*cos(gamma(t))*diff(phi(t),t)*Pi+1/4*R^4*h*rho*cos(alpha(t))*cos(beta(t))^2*diff(beta(t),t)*diff(theta(t),t)*sin(phi(t))*Pi-1/12*R^2*h^3*rho*cos(alpha(t))*cos(beta(t))^2*diff(beta(t),t)*diff(theta(t),t)*sin(phi(t))*Pi+1/4*R^4*h*rho*cos(alpha(t))*cos(beta(t))*sin(beta(t))*diff(diff(theta(t),t),t)*sin(phi(t))*Pi-1/4*R^4*h*rho*cos(alpha(t))*diff(beta(t),t)*sin(beta(t))^2*diff(theta(t),t)*sin(phi(t))*Pi-1/12*R^2*h^3*rho*cos(alpha(t))*cos(beta(t))*sin(beta(t))*diff(diff(theta(t),t),t)*sin(phi(t))*Pi+1/12*R^2*h^3*rho*cos(alpha(t))*diff(beta(t),t)*sin(beta(t))^2*diff(theta(t),t)*sin(phi(t))*Pi-1/6*R^2*h^3*rho*sin(gamma(t))*cos(beta(t))*diff(phi(t),t)*Pi*diff(beta(t),t)*sin(beta(t))+1/2*R^4*h*rho*Pi*sin(gamma(t))*cos(beta(t))*diff(phi(t),t)*diff(beta(t),t)*sin(beta(t))-1/12*R^2*h^3*rho*cos(beta(t))^2*diff(gamma(t),t)*sin(gamma(t))*diff(theta(t),t)*cos(phi(t))*Pi-1/4*R^4*h*rho*cos(beta(t))*sin(alpha(t))*sin(beta(t))*cos(gamma(t))*diff(diff(phi(t),t),t)*Pi+1/4*R^4*h*rho*diff(beta(t),t)*sin(beta(t))^2*sin(alpha(t))*cos(gamma(t))*diff(phi(t),t)*Pi+1/12*R^2*h^3*rho*cos(beta(t))*sin(alpha(t))*sin(beta(t))*cos(gamma(t))*diff(diff(phi(t),t),t)*Pi-1/12*R^2*h^3*rho*diff(beta(t),t)*sin(beta(t))^2*sin(alpha(t))*cos(gamma(t))*diff(phi(t),t)*Pi-1/12*R^2*h^3*rho*cos(alpha(t))^2*cos(beta(t))^2*diff(gamma(t),t)*cos(gamma(t))*diff(psi(t),t)*sin(theta(t))*Pi-1/12*R^2*h^3*rho*cos(alpha(t))^2*cos(beta(t))^2*cos(gamma(t))*diff(theta(t),t)*diff(phi(t),t)*sin(phi(t))*Pi-1/12*R^2*h^3*rho*cos(alpha(t))*cos(beta(t))^2*diff(beta(t),t)*diff(psi(t),t)*cos(phi(t))*cos(theta(t))*Pi+1/4*R^4*h*rho*sin(gamma(t))*cos(beta(t))^2*sin(alpha(t))*diff(beta(t),t)*diff(theta(t),t)*cos(phi(t))*Pi-1/4*R^4*h*rho*cos(beta(t))^2*sin(alpha(t))*diff(beta(t),t)*cos(gamma(t))*diff(psi(t),t)*sin(theta(t))*Pi+1/12*R^2*h^3*rho*cos(beta(t))^2*diff(gamma(t),t)*sin(gamma(t))*diff(psi(t),t)*cos(theta(t))*sin(phi(t))*Pi+1/12*R^2*h^3*rho*cos(beta(t))^2*cos(gamma(t))*diff(psi(t),t)*diff(theta(t),t)*sin(theta(t))*sin(phi(t))*Pi-1/12*R^2*h^3*rho*cos(beta(t))^2*cos(gamma(t))*diff(psi(t),t)*cos(theta(t))*diff(phi(t),t)*cos(phi(t))*Pi-1/6*R^2*h^3*rho*cos(beta(t))*cos(gamma(t))*diff(theta(t),t)*cos(phi(t))*Pi*diff(beta(t),t)*sin(beta(t))-1/12*R^2*h^3*rho*sin(gamma(t))*cos(beta(t))*cos(alpha(t))*sin(beta(t))*cos(gamma(t))*diff(phi(t),t)^2*Pi+1/4*R^4*h*rho*diff(theta(t),t)*Pi*sin(gamma(t))*cos(beta(t))^2*cos(alpha(t))^2*diff(psi(t),t)*cos(theta(t))+1/4*R^4*h*rho*sin(gamma(t))*sin(alpha(t))*diff(beta(t),t)*diff(psi(t),t)*cos(theta(t))*sin(phi(t))*Pi-1/4*R^4*h*rho*diff(theta(t),t)*Pi*sin(gamma(t))*cos(beta(t))^2*sin(alpha(t))^2*diff(psi(t),t)*cos(theta(t))+1/12*R^2*h^3*rho*sin(alpha(t))^2*cos(beta(t))^2*cos(gamma(t))*diff(theta(t),t)*diff(phi(t),t)*sin(phi(t))*Pi+1/12*R^2*h^3*rho*sin(gamma(t))*sin(alpha(t))^2*cos(beta(t))^2*diff(psi(t),t)*diff(theta(t),t)*cos(theta(t))*Pi+1/12*R^2*h^3*rho*sin(alpha(t))^2*cos(beta(t))^2*diff(gamma(t),t)*cos(gamma(t))*diff(psi(t),t)*sin(theta(t))*Pi-1/12*R^2*h^3*rho*sin(gamma(t))*sin(alpha(t))^2*cos(beta(t))^2*diff(gamma(t),t)*diff(theta(t),t)*cos(phi(t))*Pi-1/4*R^4*h*rho*diff(theta(t),t)*Pi*cos(beta(t))^2*sin(alpha(t))^2*sin(phi(t))*diff(phi(t),t)*cos(gamma(t))+1/12*R^2*h^3*rho*sin(gamma(t))*cos(alpha(t))^2*cos(beta(t))^2*diff(theta(t),t)^2*cos(phi(t))*sin(phi(t))*Pi+1/4*R^4*h*rho*diff(theta(t),t)*Pi*cos(beta(t))^2*cos(alpha(t))^2*sin(phi(t))*diff(phi(t),t)*cos(gamma(t))+1/12*R^2*h^3*rho*sin(gamma(t))*cos(alpha(t))^2*cos(beta(t))^2*diff(gamma(t),t)*diff(theta(t),t)*cos(phi(t))*Pi+1/4*R^4*h*rho*sin(gamma(t))*cos(beta(t))*cos(alpha(t))*sin(beta(t))*cos(gamma(t))*diff(phi(t),t)^2*Pi+1/12*R^2*h^3*rho*sin(gamma(t))*sin(alpha(t))*diff(beta(t),t)*diff(psi(t),t)*cos(theta(t))*sin(phi(t))*Pi-1/12*R^2*h^3*rho*sin(gamma(t))*cos(alpha(t))^2*cos(beta(t))^2*diff(psi(t),t)*diff(theta(t),t)*cos(theta(t))*Pi+1/6*R^2*h^3*rho*cos(alpha(t))*cos(beta(t))*sin(beta(t))*diff(psi(t),t)*cos(phi(t))*diff(theta(t),t)*sin(theta(t))*Pi+1/2*R^4*h*rho*diff(gamma(t),t)*cos(gamma(t))*cos(beta(t))*sin(alpha(t))*sin(beta(t))*diff(theta(t),t)*cos(phi(t))*Pi+1/2*R^4*h*rho*cos(beta(t))*sin(alpha(t))*sin(beta(t))*diff(gamma(t),t)*sin(gamma(t))*diff(psi(t),t)*sin(theta(t))*Pi-1/2*R^4*h*rho*cos(beta(t))*sin(alpha(t))*sin(beta(t))*cos(gamma(t))*diff(psi(t),t)*diff(theta(t),t)*cos(theta(t))*Pi-1/6*R^2*h^3*rho*cos(beta(t))*cos(alpha(t))*sin(beta(t))*cos(gamma(t))^2*diff(theta(t),t)*cos(phi(t))*diff(phi(t),t)*Pi-1/2*R^4*h*rho*sin(gamma(t))*cos(beta(t))*cos(alpha(t))*sin(beta(t))*cos(gamma(t))*diff(psi(t),t)^2*cos(theta(t))^2*Pi+1/4*R^4*h*rho*sin(alpha(t))*cos(beta(t))*sin(beta(t))*cos(gamma(t))*diff(theta(t),t)^2*cos(phi(t))*sin(phi(t))*Pi-1/2*R^4*h*rho*diff(theta(t),t)*Pi*sin(gamma(t))*cos(beta(t))^2*cos(alpha(t))^2*diff(psi(t),t)*cos(phi(t))^2*cos(theta(t))-1/12*R^2*h^3*rho*cos(alpha(t))^2*cos(beta(t))^2*cos(gamma(t))*diff(psi(t),t)*diff(theta(t),t)*sin(theta(t))*sin(phi(t))*Pi+1/6*R^2*h^3*rho*sin(gamma(t))*cos(alpha(t))^2*cos(beta(t))^2*diff(psi(t),t)*diff(theta(t),t)*cos(phi(t))^2*cos(theta(t))*Pi-1/12*R^2*h^3*rho*cos(alpha(t))^2*cos(beta(t))^2*cos(gamma(t))*diff(psi(t),t)*cos(phi(t))*cos(theta(t))*diff(phi(t),t)*Pi-1/12*R^2*h^3*rho*cos(alpha(t))^2*cos(beta(t))^2*cos(gamma(t))*diff(psi(t),t)^2*sin(theta(t))*cos(phi(t))*cos(theta(t))*Pi-1/12*R^2*h^3*rho*sin(gamma(t))*cos(alpha(t))^2*cos(beta(t))^2*diff(gamma(t),t)*diff(psi(t),t)*cos(theta(t))*sin(phi(t))*Pi+1/12*R^2*h^3*rho*diff(theta(t),t)^2*sin(beta(t))*Pi*sin(gamma(t))*cos(beta(t))*cos(alpha(t))*cos(phi(t))^2*cos(gamma(t))+1/6*R^2*h^3*rho*sin(gamma(t))*cos(beta(t))*cos(alpha(t))*sin(beta(t))*cos(gamma(t))*diff(psi(t),t)^2*cos(theta(t))^2*Pi+1/2*R^4*h*rho*sin(gamma(t))*cos(beta(t))*sin(alpha(t))*sin(beta(t))*diff(psi(t),t)*diff(theta(t),t)*sin(theta(t))*sin(phi(t))*Pi+1/6*R^2*h^3*rho*diff(gamma(t),t)*cos(gamma(t))*cos(beta(t))*sin(alpha(t))*sin(beta(t))*diff(psi(t),t)*cos(theta(t))*sin(phi(t))*Pi-1/6*R^2*h^3*rho*sin(gamma(t))*cos(beta(t))*sin(alpha(t))*sin(beta(t))*diff(psi(t),t)*diff(theta(t),t)*sin(theta(t))*sin(phi(t))*Pi+1/12*R^2*h^3*rho*sin(beta(t))*Pi*cos(beta(t))*diff(psi(t),t)^2*sin(phi(t))*cos(phi(t))*sin(alpha(t))*cos(theta(t))^2*cos(gamma(t))+1/2*R^4*h*rho*diff(theta(t),t)*Pi*sin(gamma(t))*cos(beta(t))^2*cos(phi(t))*diff(phi(t),t)*cos(alpha(t))*cos(gamma(t))*sin(alpha(t))-1/2*R^4*h*rho*cos(beta(t))*cos(alpha(t))*sin(beta(t))*cos(gamma(t))^2*diff(psi(t),t)^2*sin(theta(t))*cos(theta(t))*sin(phi(t))*Pi+1/2*R^4*h*rho*sin(alpha(t))*cos(beta(t))*sin(beta(t))*cos(gamma(t))*diff(psi(t),t)*diff(theta(t),t)*cos(phi(t))^2*cos(theta(t))*Pi+1/2*R^4*h*rho*sin(gamma(t))*cos(beta(t))*cos(alpha(t))*sin(beta(t))*cos(gamma(t))*diff(psi(t),t)*sin(theta(t))*diff(phi(t),t)*Pi+1/4*R^4*h*rho*sin(gamma(t))*sin(alpha(t))*cos(beta(t))*sin(beta(t))*diff(psi(t),t)^2*sin(theta(t))*cos(phi(t))*cos(theta(t))*Pi-1/6*R^2*h^3*rho*diff(theta(t),t)*Pi*sin(gamma(t))*cos(beta(t))^2*cos(phi(t))*diff(phi(t),t)*cos(alpha(t))*cos(gamma(t))*sin(alpha(t))+1/2*R^4*h*rho*cos(beta(t))*cos(alpha(t))*sin(beta(t))*cos(gamma(t))^2*diff(psi(t),t)*diff(theta(t),t)*sin(theta(t))*cos(phi(t))*Pi-1/2*R^4*h*rho*cos(beta(t))*cos(alpha(t))*sin(beta(t))*cos(gamma(t))^2*diff(psi(t),t)*cos(theta(t))*diff(phi(t),t)*sin(phi(t))*Pi-1/6*R^2*h^3*rho*sin(alpha(t))*cos(beta(t))*sin(beta(t))*cos(gamma(t))*diff(psi(t),t)*diff(theta(t),t)*cos(phi(t))^2*cos(theta(t))*Pi-1/12*R^2*h^3*rho*sin(gamma(t))*sin(alpha(t))*cos(beta(t))*sin(beta(t))*diff(psi(t),t)^2*sin(theta(t))*cos(phi(t))*cos(theta(t))*Pi-1/6*R^2*h^3*rho*cos(beta(t))*cos(alpha(t))*sin(beta(t))*cos(gamma(t))^2*diff(psi(t),t)*diff(theta(t),t)*sin(theta(t))*cos(phi(t))*Pi+1/6*R^2*h^3*rho*cos(beta(t))*cos(alpha(t))*sin(beta(t))*cos(gamma(t))^2*diff(psi(t),t)*cos(theta(t))*diff(phi(t),t)*sin(phi(t))*Pi-1/12*R^2*h^3*rho*sin(beta(t))*Pi*sin(gamma(t))*cos(beta(t))*cos(alpha(t))*diff(psi(t),t)^2*cos(phi(t))^2*cos(theta(t))^2*cos(gamma(t))-1/6*R^2*h^3*rho*sin(gamma(t))*cos(beta(t))*cos(alpha(t))*sin(beta(t))*cos(gamma(t))*diff(psi(t),t)*sin(theta(t))*diff(phi(t),t)*Pi-1/2*R^4*h*rho*diff(gamma(t),t)*cos(gamma(t))*cos(beta(t))*sin(alpha(t))*sin(beta(t))*diff(psi(t),t)*cos(theta(t))*sin(phi(t))*Pi+1/2*R^4*h*rho*diff(diff(alpha(t),t),t)*Pi-1/2*R^4*h*rho*cos(gamma(t))*diff(diff(psi(t),t),t)*cos(theta(t))*sin(phi(t))*Pi-1/4*R^4*h*rho*Pi*sin(gamma(t))*cos(beta(t))^2*sin(theta(t))*diff(diff(psi(t),t),t)-1/4*R^4*h*rho*diff(diff(theta(t),t),t)*Pi*cos(beta(t))^2*cos(phi(t))*cos(gamma(t))+1/12*R^2*h^3*rho*sin(gamma(t))*cos(beta(t))^2*diff(diff(psi(t),t),t)*sin(theta(t))*Pi-1/12*R^2*h^3*rho*cos(alpha(t))*cos(beta(t))^2*diff(beta(t),t)*diff(gamma(t),t)*Pi+1/4*R^4*h*rho*cos(alpha(t))*cos(beta(t))^2*diff(beta(t),t)*diff(gamma(t),t)*Pi+1/4*R^4*h*rho*Pi*cos(beta(t))^2*diff(gamma(t),t)^2*cos(alpha(t))*sin(alpha(t))+1/4*R^4*h*rho*diff(theta(t),t)^2*Pi*cos(beta(t))^2*cos(alpha(t))*sin(alpha(t))-1/12*R^2*h^3*rho*diff(theta(t),t)^2*Pi*cos(beta(t))^2*cos(alpha(t))*sin(alpha(t))-1/12*R^2*h^3*rho*cos(alpha(t))*diff(beta(t),t)*diff(theta(t),t)*sin(phi(t))*Pi+1/12*R^2*h^3*rho*sin(alpha(t))*diff(beta(t),t)*cos(gamma(t))*diff(phi(t),t)*Pi-1/4*R^4*h*rho*cos(alpha(t))*diff(beta(t),t)*diff(theta(t),t)*sin(phi(t))*Pi+1/4*R^4*h*rho*sin(alpha(t))*diff(beta(t),t)*cos(gamma(t))*diff(phi(t),t)*Pi-1/12*R^2*h^3*rho*Pi*cos(beta(t))^2*diff(gamma(t),t)^2*cos(alpha(t))*sin(alpha(t))+1/2*R^4*h*rho*Pi*cos(beta(t))*diff(alpha(t),t)*diff(beta(t),t)*sin(beta(t))-1/6*R^2*h^3*rho*diff(alpha(t),t)*cos(beta(t))*Pi*diff(beta(t),t)*sin(beta(t))+1/12*R^2*h^3*rho*diff(gamma(t),t)*cos(gamma(t))*cos(beta(t))^2*diff(phi(t),t)*Pi-1/2*R^4*h*rho*diff(gamma(t),t)*sin(gamma(t))*diff(theta(t),t)*cos(phi(t))*Pi-1/2*R^4*h*rho*cos(gamma(t))*diff(theta(t),t)*diff(phi(t),t)*sin(phi(t))*Pi-1/4*R^4*h*rho*Pi*diff(gamma(t),t)*cos(gamma(t))*cos(beta(t))^2*diff(phi(t),t)+1/2*R^4*h*rho*diff(gamma(t),t)*cos(gamma(t))*diff(psi(t),t)*sin(theta(t))*Pi+1/2*R^4*h*rho*sin(gamma(t))*diff(psi(t),t)*diff(theta(t),t)*cos(theta(t))*Pi+1/12*R^2*h^3*rho*cos(beta(t))^2*cos(gamma(t))*diff(diff(theta(t),t),t)*cos(phi(t))*Pi-1/12*R^2*h^3*rho*cos(alpha(t))*cos(beta(t))*sin(beta(t))*diff(diff(gamma(t),t),t)*Pi+1/12*R^2*h^3*rho*cos(alpha(t))*diff(beta(t),t)*sin(beta(t))^2*diff(gamma(t),t)*Pi+1/4*R^4*h*rho*cos(alpha(t))*cos(beta(t))*sin(beta(t))*diff(diff(gamma(t),t),t)*Pi-1/4*R^4*h*rho*cos(alpha(t))*diff(beta(t),t)*sin(beta(t))^2*diff(gamma(t),t)*Pi+1/2*R^4*h*rho*cos(beta(t))*cos(alpha(t))*sin(beta(t))*cos(gamma(t))^2*diff(theta(t),t)*cos(phi(t))*diff(phi(t),t)*Pi+1/4*R^4*h*rho*Pi*sin(gamma(t))*cos(beta(t))^2*cos(alpha(t))^2*diff(psi(t),t)^2*sin(phi(t))*cos(phi(t))*cos(theta(t))^2+1/4*R^4*h*rho*diff(theta(t),t)*Pi*cos(beta(t))^2*sin(theta(t))*cos(alpha(t))^2*diff(psi(t),t)*sin(phi(t))*cos(gamma(t))+1/4*R^4*h*rho*cos(beta(t))*cos(alpha(t))*sin(beta(t))*diff(psi(t),t)^2*sin(theta(t))*cos(theta(t))*sin(phi(t))*Pi-1/4*R^4*h*rho*diff(theta(t),t)*Pi*cos(beta(t))^2*sin(theta(t))*sin(alpha(t))^2*diff(psi(t),t)*sin(phi(t))*cos(gamma(t))-1/4*R^4*h*rho*Pi*sin(gamma(t))*cos(beta(t))^2*sin(alpha(t))^2*diff(psi(t),t)^2*sin(phi(t))*cos(phi(t))*cos(theta(t))^2-1/4*R^4*h*rho*Pi*sin(gamma(t))*cos(beta(t))^2*diff(gamma(t),t)*sin(alpha(t))^2*diff(psi(t),t)*sin(phi(t))*cos(theta(t))-1/4*R^4*h*rho*Pi*cos(beta(t))^2*sin(theta(t))*sin(alpha(t))^2*diff(psi(t),t)^2*cos(phi(t))*cos(theta(t))*cos(gamma(t))-1/4*R^4*h*rho*Pi*cos(beta(t))^2*sin(alpha(t))^2*diff(psi(t),t)*cos(phi(t))*diff(phi(t),t)*cos(theta(t))*cos(gamma(t))-1/12*R^2*h^3*rho*sin(alpha(t))*cos(beta(t))*sin(beta(t))*cos(gamma(t))*diff(theta(t),t)^2*cos(phi(t))*sin(phi(t))*Pi+1/4*R^4*h*rho*Pi*cos(beta(t))^2*cos(alpha(t))^2*diff(psi(t),t)*cos(phi(t))*diff(phi(t),t)*cos(theta(t))*cos(gamma(t))+1/4*R^4*h*rho*Pi*cos(beta(t))^2*sin(theta(t))*cos(alpha(t))^2*diff(psi(t),t)^2*cos(phi(t))*cos(theta(t))*cos(gamma(t))+1/4*R^4*h*rho*Pi*sin(gamma(t))*cos(beta(t))^2*diff(gamma(t),t)*cos(alpha(t))^2*diff(psi(t),t)*sin(phi(t))*cos(theta(t))-1/12*R^2*h^3*rho*Pi*sin(gamma(t))*cos(beta(t))^2*cos(alpha(t))^2*diff(psi(t),t)^2*sin(phi(t))*cos(phi(t))*cos(theta(t))^2+1/6*R^2*h^3*rho*Pi*cos(beta(t))^2*sin(theta(t))*diff(psi(t),t)*diff(phi(t),t)*cos(alpha(t))*cos(gamma(t))^2*sin(alpha(t))-1/2*R^4*h*rho*Pi*cos(beta(t))^2*sin(theta(t))*diff(psi(t),t)*diff(phi(t),t)*cos(alpha(t))*cos(gamma(t))^2*sin(alpha(t))+1/12*R^2*h^3*rho*Pi*cos(beta(t))^2*diff(psi(t),t)^2*cos(phi(t))^2*cos(alpha(t))*cos(theta(t))^2*cos(gamma(t))^2*sin(alpha(t))-1/6*R^2*h^3*rho*Pi*cos(beta(t))^2*diff(gamma(t),t)*diff(psi(t),t)*cos(phi(t))*cos(alpha(t))*cos(theta(t))*sin(alpha(t))-1/4*R^4*h*rho*Pi*cos(beta(t))^2*diff(psi(t),t)^2*cos(phi(t))^2*cos(alpha(t))*cos(theta(t))^2*cos(gamma(t))^2*sin(alpha(t))-1/2*R^4*h*rho*cos(alpha(t))*cos(beta(t))*sin(beta(t))*diff(psi(t),t)*cos(phi(t))*diff(theta(t),t)*sin(theta(t))*Pi-1/6*R^2*h^3*rho*cos(beta(t))*sin(alpha(t))*sin(beta(t))*diff(gamma(t),t)*sin(gamma(t))*diff(psi(t),t)*sin(theta(t))*Pi+1/6*R^2*h^3*rho*cos(beta(t))*sin(alpha(t))*sin(beta(t))*cos(gamma(t))*diff(psi(t),t)*diff(theta(t),t)*cos(theta(t))*Pi-1/6*R^2*h^3*rho*diff(gamma(t),t)*cos(gamma(t))*cos(beta(t))*sin(alpha(t))*sin(beta(t))*diff(theta(t),t)*cos(phi(t))*Pi-1/4*R^4*h*rho*diff(theta(t),t)^2*sin(beta(t))*Pi*sin(gamma(t))*cos(beta(t))*cos(alpha(t))*cos(phi(t))^2*cos(gamma(t))-1/12*R^2*h^3*rho*cos(beta(t))*cos(alpha(t))*sin(beta(t))*diff(psi(t),t)^2*sin(theta(t))*cos(theta(t))*sin(phi(t))*Pi+1/2*R^4*h*rho*Pi*cos(beta(t))^2*diff(gamma(t),t)*diff(psi(t),t)*cos(phi(t))*cos(alpha(t))*cos(theta(t))*sin(alpha(t))+1/12*R^2*h^3*rho*Pi*sin(gamma(t))*cos(beta(t))^2*sin(alpha(t))^2*diff(psi(t),t)^2*sin(phi(t))*cos(phi(t))*cos(theta(t))^2+1/12*R^2*h^3*rho*sin(gamma(t))*sin(alpha(t))^2*cos(beta(t))^2*diff(gamma(t),t)*diff(psi(t),t)*cos(theta(t))*sin(phi(t))*Pi+1/12*R^2*h^3*rho*sin(alpha(t))^2*cos(beta(t))^2*cos(gamma(t))*diff(psi(t),t)^2*sin(theta(t))*cos(phi(t))*cos(theta(t))*Pi+1/12*R^2*h^3*rho*sin(alpha(t))^2*cos(beta(t))^2*cos(gamma(t))*diff(psi(t),t)*cos(phi(t))*cos(theta(t))*diff(phi(t),t)*Pi+1/12*R^2*h^3*rho*sin(alpha(t))^2*cos(beta(t))^2*cos(gamma(t))*diff(psi(t),t)*diff(theta(t),t)*sin(theta(t))*sin(phi(t))*Pi-1/6*R^2*h^3*rho*sin(gamma(t))*sin(alpha(t))^2*cos(beta(t))^2*diff(psi(t),t)*diff(theta(t),t)*cos(phi(t))^2*cos(theta(t))*Pi+1/2*R^4*h*rho*diff(theta(t),t)*Pi*sin(gamma(t))*cos(beta(t))^2*sin(alpha(t))^2*diff(psi(t),t)*cos(phi(t))^2*cos(theta(t))-1/4*R^4*h*rho*sin(gamma(t))*cos(beta(t))^2*sin(alpha(t))*diff(beta(t),t)*diff(psi(t),t)*cos(theta(t))*sin(phi(t))*Pi+1/12*R^2*h^3*rho*sin(gamma(t))*cos(beta(t))^2*sin(alpha(t))*diff(beta(t),t)*diff(psi(t),t)*cos(theta(t))*sin(phi(t))*Pi+1/4*R^4*h*rho*sin(gamma(t))*diff(beta(t),t)*sin(beta(t))^2*sin(alpha(t))*diff(psi(t),t)*cos(theta(t))*sin(phi(t))*Pi+1/12*R^2*h^3*rho*sin(gamma(t))*cos(beta(t))*sin(alpha(t))*sin(beta(t))*diff(diff(psi(t),t),t)*cos(theta(t))*sin(phi(t))*Pi-1/12*R^2*h^3*rho*sin(gamma(t))*diff(beta(t),t)*sin(beta(t))^2*sin(alpha(t))*diff(psi(t),t)*cos(theta(t))*sin(phi(t))*Pi+1/6*R^2*h^3*rho*cos(beta(t))*cos(gamma(t))*diff(psi(t),t)*cos(theta(t))*sin(phi(t))*Pi*diff(beta(t),t)*sin(beta(t))-1/4*R^4*h*rho*sin(gamma(t))*cos(beta(t))*sin(alpha(t))*sin(beta(t))*diff(diff(psi(t),t),t)*cos(theta(t))*sin(phi(t))*Pi-1/2*R^4*h*rho*Pi*cos(beta(t))*diff(psi(t),t)*sin(phi(t))*cos(theta(t))*cos(gamma(t))*diff(beta(t),t)*sin(beta(t))-1/6*R^2*h^3*rho*Pi*cos(beta(t))^2*diff(psi(t),t)^2*cos(phi(t))^2*cos(alpha(t))*cos(theta(t))^2*sin(alpha(t))-1/6*R^2*h^3*rho*diff(theta(t),t)*Pi*cos(beta(t))^2*diff(gamma(t),t)*sin(phi(t))*cos(alpha(t))*sin(alpha(t))+1/12*R^2*h^3*rho*cos(beta(t))^2*sin(alpha(t))*diff(beta(t),t)*cos(gamma(t))*diff(psi(t),t)*sin(theta(t))*Pi-1/12*R^2*h^3*rho*sin(gamma(t))*cos(beta(t))^2*sin(alpha(t))*diff(beta(t),t)*diff(theta(t),t)*cos(phi(t))*Pi+1/2*R^4*h*rho*Pi*cos(beta(t))^2*diff(psi(t),t)^2*cos(alpha(t))*cos(theta(t))^2*cos(gamma(t))^2*sin(alpha(t))-1/12*R^2*h^3*rho*diff(theta(t),t)^2*Pi*cos(beta(t))^2*cos(phi(t))^2*cos(alpha(t))*cos(gamma(t))^2*sin(alpha(t))-1/6*R^2*h^3*rho*Pi*cos(beta(t))^2*diff(psi(t),t)^2*cos(alpha(t))*cos(theta(t))^2*cos(gamma(t))^2*sin(alpha(t))+1/4*R^4*h*rho*Pi*cos(beta(t))^2*diff(gamma(t),t)*sin(theta(t))*cos(alpha(t))^2*diff(psi(t),t)*cos(gamma(t))+1/4*R^4*h*rho*sin(gamma(t))*cos(beta(t))*cos(alpha(t))*sin(beta(t))*cos(gamma(t))*diff(psi(t),t)^2*Pi-1/12*R^2*h^3*rho*sin(gamma(t))*sin(alpha(t))^2*cos(beta(t))^2*diff(theta(t),t)^2*cos(phi(t))*sin(phi(t))*Pi+1/4*R^4*h*rho*diff(theta(t),t)*Pi*sin(gamma(t))*cos(beta(t))^2*diff(gamma(t),t)*sin(alpha(t))^2*cos(phi(t))+1/4*R^4*h*rho*diff(theta(t),t)^2*Pi*sin(gamma(t))*cos(beta(t))^2*sin(alpha(t))^2*sin(phi(t))*cos(phi(t))-1/4*R^4*h*rho*Pi*cos(beta(t))^2*diff(gamma(t),t)*sin(theta(t))*sin(alpha(t))^2*diff(psi(t),t)*cos(gamma(t))+1/2*R^4*h*rho*Pi*cos(beta(t))^2*diff(psi(t),t)^2*cos(phi(t))^2*cos(alpha(t))*cos(theta(t))^2*sin(alpha(t))+1/2*R^4*h*rho*diff(theta(t),t)*Pi*cos(beta(t))^2*diff(gamma(t),t)*sin(phi(t))*cos(alpha(t))*sin(alpha(t))+1/4*R^4*h*rho*diff(theta(t),t)^2*Pi*cos(beta(t))^2*cos(phi(t))^2*cos(alpha(t))*cos(gamma(t))^2*sin(alpha(t))-1/4*R^4*h*rho*diff(theta(t),t)^2*Pi*sin(gamma(t))*cos(beta(t))^2*cos(alpha(t))^2*sin(phi(t))*cos(phi(t))-1/4*R^4*h*rho*diff(theta(t),t)*Pi*sin(gamma(t))*cos(beta(t))^2*diff(gamma(t),t)*cos(alpha(t))^2*cos(phi(t))-1/12*R^2*h^3*rho*sin(gamma(t))*cos(beta(t))*cos(alpha(t))*sin(beta(t))*cos(gamma(t))*diff(psi(t),t)^2*Pi+1/4*R^4*h*rho*Pi*cos(beta(t))^2*diff(psi(t),t)*diff(phi(t),t)*cos(phi(t))*cos(theta(t))*cos(gamma(t))-1/4*R^4*h*rho*Pi*cos(beta(t))^2*diff(psi(t),t)*sin(phi(t))*diff(theta(t),t)*sin(theta(t))*cos(gamma(t))-1/4*R^4*h*rho*Pi*cos(beta(t))^2*diff(psi(t),t)*sin(phi(t))*cos(theta(t))*diff(gamma(t),t)*sin(gamma(t))+1/2*R^4*h*rho*cos(beta(t))*sin(alpha(t))*sin(beta(t))*diff(gamma(t),t)*sin(gamma(t))*diff(phi(t),t)*Pi-1/6*R^2*h^3*rho*cos(beta(t))*sin(alpha(t))*sin(beta(t))*diff(gamma(t),t)*sin(gamma(t))*diff(phi(t),t)*Pi-1/4*R^4*h*rho*cos(beta(t))*sin(alpha(t))*sin(beta(t))*cos(gamma(t))*diff(diff(psi(t),t),t)*sin(theta(t))*Pi+1/4*R^4*h*rho*diff(beta(t),t)*sin(beta(t))^2*sin(alpha(t))*cos(gamma(t))*diff(psi(t),t)*sin(theta(t))*Pi-1/12*R^2*h^3*rho*cos(alpha(t))*cos(beta(t))*sin(beta(t))*diff(diff(psi(t),t),t)*cos(phi(t))*cos(theta(t))*Pi+1/12*R^2*h^3*rho*cos(alpha(t))*diff(beta(t),t)*sin(beta(t))^2*diff(psi(t),t)*cos(phi(t))*cos(theta(t))*Pi+1/4*R^4*h*rho*sin(gamma(t))*cos(beta(t))*sin(alpha(t))*sin(beta(t))*diff(diff(theta(t),t),t)*cos(phi(t))*Pi-1/4*R^4*h*rho*sin(gamma(t))*diff(beta(t),t)*sin(beta(t))^2*sin(alpha(t))*diff(theta(t),t)*cos(phi(t))*Pi-1/4*R^4*h*rho*cos(alpha(t))*diff(beta(t),t)*sin(beta(t))^2*diff(psi(t),t)*cos(phi(t))*cos(theta(t))*Pi+1/12*R^2*h^3*rho*cos(beta(t))*sin(alpha(t))*sin(beta(t))*cos(gamma(t))*diff(diff(psi(t),t),t)*sin(theta(t))*Pi-1/12*R^2*h^3*rho*diff(beta(t),t)*sin(beta(t))^2*sin(alpha(t))*cos(gamma(t))*diff(psi(t),t)*sin(theta(t))*Pi-1/12*R^2*h^3*rho*sin(gamma(t))*cos(beta(t))*sin(alpha(t))*sin(beta(t))*diff(diff(theta(t),t),t)*cos(phi(t))*Pi+1/12*R^2*h^3*rho*sin(gamma(t))*diff(beta(t),t)*sin(beta(t))^2*sin(alpha(t))*diff(theta(t),t)*cos(phi(t))*Pi+1/2*R^4*h*rho*Pi*sin(gamma(t))*cos(beta(t))*sin(theta(t))*diff(psi(t),t)*diff(beta(t),t)*sin(beta(t))+1/2*R^4*h*rho*diff(theta(t),t)*Pi*cos(beta(t))*cos(phi(t))*cos(gamma(t))*diff(beta(t),t)*sin(beta(t))-1/6*R^2*h^3*rho*sin(gamma(t))*cos(beta(t))*diff(psi(t),t)*sin(theta(t))*Pi*diff(beta(t),t)*sin(beta(t))+1/4*R^4*h*rho*cos(alpha(t))*cos(beta(t))*sin(beta(t))*diff(diff(psi(t),t),t)*cos(phi(t))*cos(theta(t))*Pi+1/4*R^4*h*rho*cos(alpha(t))*cos(beta(t))^2*diff(beta(t),t)*diff(psi(t),t)*cos(phi(t))*cos(theta(t))*Pi-1/6*R^2*h^3*rho*sin(gamma(t))*cos(beta(t))*cos(alpha(t))*sin(beta(t))*cos(gamma(t))*diff(psi(t),t)*diff(theta(t),t)*cos(phi(t))*cos(theta(t))*sin(phi(t))*Pi+1/2*R^4*h*rho*sin(gamma(t))*cos(beta(t))*cos(alpha(t))*sin(beta(t))*cos(gamma(t))*diff(psi(t),t)*diff(theta(t),t)*cos(phi(t))*cos(theta(t))*sin(phi(t))*Pi+1/12*R^2*h^3*rho*cos(beta(t))^2*sin(alpha(t))*diff(beta(t),t)*cos(gamma(t))*diff(phi(t),t)*Pi+1/4*R^4*h*rho*diff(theta(t),t)*Pi*cos(beta(t))^2*diff(phi(t),t)*sin(phi(t))*cos(gamma(t))+1/4*R^4*h*rho*diff(theta(t),t)*Pi*cos(beta(t))^2*cos(phi(t))*diff(gamma(t),t)*sin(gamma(t))+1/12*R^2*h^3*rho*diff(gamma(t),t)*cos(gamma(t))*cos(beta(t))^2*diff(psi(t),t)*sin(theta(t))*Pi+1/12*R^2*h^3*rho*sin(gamma(t))*cos(beta(t))^2*diff(psi(t),t)*diff(theta(t),t)*cos(theta(t))*Pi-1/12*R^2*h^3*rho*cos(beta(t))^2*cos(gamma(t))*diff(theta(t),t)*diff(phi(t),t)*sin(phi(t))*Pi+1/2*R^4*h*rho*diff(gamma(t),t)*sin(gamma(t))*diff(psi(t),t)*cos(theta(t))*sin(phi(t))*Pi+1/2*R^4*h*rho*cos(gamma(t))*diff(psi(t),t)*diff(theta(t),t)*sin(theta(t))*sin(phi(t))*Pi-1/2*R^4*h*rho*cos(gamma(t))*diff(psi(t),t)*cos(theta(t))*diff(phi(t),t)*cos(phi(t))*Pi-1/4*R^4*h*rho*Pi*diff(gamma(t),t)*cos(gamma(t))*cos(beta(t))^2*sin(theta(t))*diff(psi(t),t)-1/4*R^4*h*rho*Pi*sin(gamma(t))*cos(beta(t))^2*diff(theta(t),t)*cos(theta(t))*diff(psi(t),t)-1/12*R^2*h^3*rho*sin(gamma(t))*sin(alpha(t))*diff(beta(t),t)*diff(theta(t),t)*cos(phi(t))*Pi-1/4*R^4*h*rho*Pi*cos(beta(t))^2*diff(phi(t),t)^2*cos(alpha(t))*cos(gamma(t))^2*sin(alpha(t))-1/2*R^4*h*rho*diff(theta(t),t)^2*Pi*cos(beta(t))^2*cos(phi(t))^2*cos(alpha(t))*sin(alpha(t))+1/12*R^2*h^3*rho*Pi*cos(beta(t))^2*diff(psi(t),t)^2*cos(alpha(t))*cos(theta(t))^2*sin(alpha(t))+1/12*R^2*h^3*rho*Pi*cos(beta(t))^2*diff(psi(t),t)^2*cos(alpha(t))*cos(gamma(t))^2*sin(alpha(t))-1/4*R^4*h*rho*Pi*cos(beta(t))^2*diff(psi(t),t)^2*cos(alpha(t))*cos(theta(t))^2*sin(alpha(t))-1/4*R^4*h*rho*Pi*cos(beta(t))^2*diff(psi(t),t)^2*cos(alpha(t))*cos(gamma(t))^2*sin(alpha(t))+1/12*R^2*h^3*rho*Pi*cos(beta(t))^2*diff(phi(t),t)^2*cos(alpha(t))*cos(gamma(t))^2*sin(alpha(t))+1/6*R^2*h^3*rho*cos(alpha(t))*cos(beta(t))^2*diff(theta(t),t)^2*cos(phi(t))^2*Pi*sin(alpha(t))+1/4*R^4*h*rho*Pi*cos(beta(t))^2*diff(gamma(t),t)*cos(alpha(t))^2*diff(phi(t),t)*cos(gamma(t))-1/12*R^2*h^3*rho*cos(alpha(t))*diff(beta(t),t)*diff(psi(t),t)*cos(phi(t))*cos(theta(t))*Pi+1/12*R^2*h^3*rho*sin(alpha(t))^2*cos(beta(t))^2*diff(gamma(t),t)*cos(gamma(t))*diff(phi(t),t)*Pi-1/4*R^4*h*rho*Pi*cos(beta(t))^2*diff(gamma(t),t)*sin(alpha(t))^2*diff(phi(t),t)*cos(gamma(t))-1/12*R^2*h^3*rho*cos(alpha(t))^2*cos(beta(t))^2*diff(gamma(t),t)*cos(gamma(t))*diff(phi(t),t)*Pi-1/4*R^4*h*rho*sin(gamma(t))*sin(alpha(t))*diff(beta(t),t)*diff(theta(t),t)*cos(phi(t))*Pi+1/4*R^4*h*rho*sin(alpha(t))*diff(beta(t),t)*cos(gamma(t))*diff(psi(t),t)*sin(theta(t))*Pi-1/4*R^4*h*rho*cos(alpha(t))*diff(beta(t),t)*diff(psi(t),t)*cos(phi(t))*cos(theta(t))*Pi+1/12*R^2*h^3*rho*sin(alpha(t))*diff(beta(t),t)*cos(gamma(t))*diff(psi(t),t)*sin(theta(t))*Pi+1/4*R^4*h*rho*Pi*cos(beta(t))^2*diff(diff(psi(t),t),t)*sin(phi(t))*cos(theta(t))*cos(gamma(t))-1/3*R^2*h^3*rho*cos(alpha(t))*cos(beta(t))^2*diff(psi(t),t)*diff(theta(t),t)*cos(phi(t))*cos(theta(t))*sin(phi(t))*Pi*sin(alpha(t))+1/4*R^4*h*rho*sin(beta(t))*Pi*sin(gamma(t))*cos(beta(t))*cos(alpha(t))*diff(psi(t),t)^2*cos(phi(t))^2*cos(theta(t))^2*cos(gamma(t))-1/4*R^4*h*rho*sin(beta(t))*Pi*cos(beta(t))*diff(psi(t),t)^2*sin(phi(t))*cos(phi(t))*sin(alpha(t))*cos(theta(t))^2*cos(gamma(t))+1/6*R^2*h^3*rho*cos(beta(t))*cos(alpha(t))*sin(beta(t))*cos(gamma(t))^2*diff(psi(t),t)^2*sin(theta(t))*cos(theta(t))*sin(phi(t))*Pi+R^4*h*rho*diff(theta(t),t)*Pi*cos(beta(t))^2*diff(psi(t),t)*sin(phi(t))*cos(phi(t))*cos(alpha(t))*cos(theta(t))*sin(alpha(t))+1/6*R^2*h^3*rho*Pi*sin(gamma(t))*cos(beta(t))^2*sin(theta(t))*diff(psi(t),t)^2*sin(phi(t))*cos(alpha(t))*cos(theta(t))*cos(gamma(t))*sin(alpha(t))-1/2*R^4*h*rho*diff(theta(t),t)*Pi*cos(beta(t))^2*diff(psi(t),t)*sin(phi(t))*cos(phi(t))*cos(alpha(t))*cos(theta(t))*cos(gamma(t))^2*sin(alpha(t))-1/2*R^4*h*rho*Pi*sin(gamma(t))*cos(beta(t))^2*sin(theta(t))*diff(psi(t),t)^2*sin(phi(t))*cos(alpha(t))*cos(theta(t))*cos(gamma(t))*sin(alpha(t))-1/2*R^4*h*rho*Pi*sin(gamma(t))*cos(beta(t))^2*diff(psi(t),t)*sin(phi(t))*diff(phi(t),t)*cos(alpha(t))*cos(theta(t))*cos(gamma(t))*sin(alpha(t))+1/2*R^4*h*rho*diff(theta(t),t)*Pi*sin(gamma(t))*cos(beta(t))^2*sin(theta(t))*diff(psi(t),t)*cos(phi(t))*cos(alpha(t))*cos(gamma(t))*sin(alpha(t))-1/6*R^2*h^3*rho*diff(theta(t),t)*Pi*sin(gamma(t))*cos(beta(t))^2*sin(theta(t))*diff(psi(t),t)*cos(phi(t))*cos(alpha(t))*cos(gamma(t))*sin(alpha(t))+1/6*R^2*h^3*rho*Pi*sin(gamma(t))*cos(beta(t))^2*diff(psi(t),t)*sin(phi(t))*diff(phi(t),t)*cos(alpha(t))*cos(theta(t))*cos(gamma(t))*sin(alpha(t))+1/6*R^2*h^3*rho*diff(theta(t),t)*Pi*cos(beta(t))^2*diff(psi(t),t)*sin(phi(t))*cos(phi(t))*cos(alpha(t))*cos(theta(t))*cos(gamma(t))^2*sin(alpha(t)) = 0"

I was trying to make a function (or procedure) that uses the simplify command and outputed all the different types of simplify that are in the right click menu.  I never know which one to chose so until I get the hang of what they are, I wanted to see all of them at once.  Can someone set me off on the right path?

Hello,

I would like to simplify a trigonometric equation that I obtain with a vectorial closure (in mechanics)

Here the equation that I would like to simplify 

eq_liaison :=(-sin(p(t)+g(t))*cos(a(t))-sin(b(t))*sin(a(t))*cos(p(t)+g(t)))*l2[1]+((-sin(p(t)+g(t))*cos(a(t))-sin(b(t))*sin(a(t))*cos(p(t)+g(t)))*cos(th(t))+(-cos(p(t)+g(t))*cos(a(t))+sin(a(t))*sin(b(t))*sin(p(t)+g(t)))*sin(th(t)))*l3[1] = 0

Do you have ideas so as to simplify again this expression ?

This expression can still be simplified. You can find here the result expected :

I find surprising that I have so many difficulties to make trigonometric simplications with the trigonometric functions.

Thank you for your help

PS : Sorry for duplicating posts. As I didn't receive any answer, I have tried to simplified my post to isolate the difficulty.

I am looking for a quick implementation in Maple to approximate a solution to the travelling salesman problem in a graph of several thousand vertices randomly placed in the unit square. I've tried TravelingSaleman in the GraphTheory package; it bogs down with just a handful (say, twelve) of vertices. I also tried Bruno Buerrier's implementation of the two-opt algorithm; on my machine that took more than a day for 2048 vertices. 

Is anyone aware of a quicker implementation in Maple?

Hi there. 

I have a equation following:

with letters {a,b,c,d,k} is missing all solutions ,but with {z,u,w,t} letters works fine.

--------------------------------------------------------------------------------

 

Bug_maple.mw

 

I_Mariusz

Hello,

 

i want a plot with labels = ["x values", "y values"] but without displaying y-axis

 

thanks in advance!

First 1154 1155 1156 1157 1158 1159 1160 Last Page 1156 of 2434