MaplePrimes Questions

i have run higer order nonlinear ode bvp

but cant solve the error

please help me

NULL

restart

with(plots)

Pr := .71; beta := .5; alpha := .1; S := .1; Du := .1; Nb := .1; Nt := .1; Sc := .67; Sr := .1; omega := 1.0; Lb := 1.0; Pe := 1.0; delta := 1.0; Nc := 1.0; p := .1; q := 5; r := 5; s := 5; a := 1; b := 2; epsilon := .1

Eq1 := (101-100*lambda)*(diff(f(eta), `$`(eta, 3)))-theta(eta)*beta*(diff(f(eta), `$`(eta, 2)))/(1+theta(eta)*beta)+(1+theta(eta)*beta)*f(eta)*(diff(f(eta), `$`(eta, 2)))-(1+theta(eta)*beta)*(diff(f(eta), eta))^2-(M-alpha)*(1+theta(eta)*beta)*(diff(f(eta), eta))

(101-100*lambda)*(diff(diff(diff(f(eta), eta), eta), eta))-.5*theta(eta)*(diff(diff(f(eta), eta), eta))/(1+.5*theta(eta))+(1+.5*theta(eta))*f(eta)*(diff(diff(f(eta), eta), eta))-(1+.5*theta(eta))*(diff(f(eta), eta))^2-(M-.1)*(1+.5*theta(eta))*(diff(f(eta), eta))

(1)

Eq2 := (1+epsilon*theta(eta))*(diff(theta(eta), `$`(eta, 2)))+f(eta)*(diff(theta(eta), eta))+epsilon*(diff(theta(eta), eta))^2+Pr*S*theta(eta)+Pr*Du*(diff(phi(eta), `$`(eta, 2)))+Pr*Nb*(diff(theta(eta), eta))*(diff(phi(eta), eta))+Pr*Nt*(diff(theta(eta), eta))^2

(1+.1*theta(eta))*(diff(diff(theta(eta), eta), eta))+f(eta)*(diff(theta(eta), eta))+.171*(diff(theta(eta), eta))^2+0.71e-1*theta(eta)+0.71e-1*(diff(diff(phi(eta), eta), eta))+0.71e-1*(diff(theta(eta), eta))*(diff(phi(eta), eta))

(2)

Eq3 := (diff(phi(eta), `$`(eta, 2)))/Sc+f(eta)*(diff(phi(eta), eta))-omega*(diff(theta(eta), eta))*(diff(phi(eta), eta))-omega*(diff(theta(eta), `$`(eta, 2)))*phi(eta)-delta*phi(eta)+omega*Nc*(diff(theta(eta), `$`(eta, 2)))+Sr*(diff(theta(eta), `$`(eta, 2)))

1.492537313*(diff(diff(phi(eta), eta), eta))+f(eta)*(diff(phi(eta), eta))-1.0*(diff(theta(eta), eta))*(diff(phi(eta), eta))-1.0*(diff(diff(theta(eta), eta), eta))*phi(eta)-1.0*phi(eta)+1.10*(diff(diff(theta(eta), eta), eta))

(3)

Eq4 := diff(chi(eta), `$`(eta, 2))+Lb*f(eta)*(diff(chi(eta), eta))-Pe*(diff(phi(eta), eta))*(diff(chi(eta), eta))-Pe*(diff(phi(eta), `$`(eta, 2)))*chi(eta)

diff(diff(chi(eta), eta), eta)+1.0*f(eta)*(diff(chi(eta), eta))-1.0*(diff(phi(eta), eta))*(diff(chi(eta), eta))-1.0*(diff(diff(phi(eta), eta), eta))*chi(eta)

(4)

VM := [0., .5, 1.0]

etainf := 9

bcs := f(0) = 0, (D(f))(0) = p*(D@@2)(f)*0, theta(0) = 1+q*(D(theta))(0), phi(0) = 1+r*(D(phi))(0), chi(0) = 1+s*(D(chi))(0), D(f)*etainf = b/a, theta(etainf) = 0, phi(etainf) = 0, chi(etainf) = 0

f(0) = 0, (D(f))(0) = 0., theta(0) = 1+5*(D(theta))(0), phi(0) = 1+5*(D(phi))(0), chi(0) = 1+5*(D(chi))(0), 9*D(f) = 2, theta(9) = 0, phi(9) = 0, chi(9) = 0

(5)

dsys := {Eq1, Eq2, Eq3, Eq4, bcs}

for i to 3 do M := VM[i]; dsol[i] := dsolve(dsys, numeric, continuation = lambda); print(M); print(dsol[i](0)) end do

 

 

 

 

Hello,

I would like to build this piecewise function :

 

I try this manner :

f:=x->piecewise(x=>0 and x <= 1, x^2,x > 1 and x<=2, (2-x)^2);

But, it doesn't work. I receive the following error message :

Error, `>` unexpected

Do you have some ideas about my mistake?

Thank you for your help.

Hello;

I need some help to compute the series approximation of the modulus and argument of hankel function for large x. The code display

 Error, (in asympt) unable to compute series

Thanks  for helping me.

#We define the hankel function as
#HankelH1(v,x) = BesselJ(v,x) + I*BesselY(v,x), where BesselJ and BesselY are bessel function.
#In this question the parameter "v " is  fixed. "

# Code

restart:
with(MTM):
HankelH1(v, x);
# The modulus of Hankel function
Mn:=x->abs(HankelH1(v, x));
thetan:=x->argument(HankelH1(v, x));
phin:=x->argument(diff(HankelH1(v, x),x));
dervthetan:=x->diff(thetan(x),x);
dervphin:=x->diff(phin(x),x);
# Compute series
series(thetan(x),x=infinity,7);
series(phin(x),x=infinity,7);
series(Nn(x),x=infinity, 7);
series(Mn(x),x=infinity,7);
# I define the following function
f:=x->(Nm(x)/Mn(x))*exp(I*(phin(x)-thetan(x)));

# Series approximation
series(f(x),x=infinity, 7);



 

 

Dear all;

 

Hello everybody, I need your help to dispaly some values obtained using my function f. When I run the code there is no results obtained. Many thanks.

restart:

# The vectors e(i) satify the folowing conditions
e(0)*e(1)=e(n-1) assuming  1<n;
e(0)*e(0)=e(2):
e(1)*e(1)=e(n-1) assuming  1<n: :
e(2)*e(1)=e(n) assuming  1<n:
#
for i from 1  to n-1 do
e(i)*e(0)=e(i+1);
end do:

# We define the function f
f:=e(0)->e(0)+(n-3)*e(1);
f:=e(1)->(n-2)*e(1);
for i from 2  to 3 do
f:=e(i)->(n+i-3)*e(i)+(i-1)*(n-3)*e(n-3+i);
end do:

for i from 4 to n do
f:=e(i)->(n+i-3)*e(i)
end do:

# We define the two vectors
x:=sum(alpha(k)*e(k),k=0..n);
y:=sum(beta(k)*e(k),k=0..n);

#Question : I would like to compute the following  but there is no display of the solution. 
(x*y);
f(x*y);
f(x);
f(y);
x*f(y);
f(x)*y;
f(x*y)- f(x)*y-x*f(y);

After manually working out answer for problem 4-4 in Mathews & Walker's Mathematical Methods of Physics , I tried to check my solution with maple2015. Briefly the problem involves inputs periodic with period T, being transformed into outputs, through a kernal G.  The net result is that all input frequencies omega periodic in T are multiplied by (omega_0/omega)^2, except for constant frequency which transforms to zero.  The problem asks to evaluate the kernal G.

Maple2015 correctly evaluated the integral for a constant input, a cosine input, and a sine input, but gave undefined when I tried an exponential(i*x) input which is just a linear combination of the two previous inputs.  I found this interesting because the integral is finite, well defined, and only has an absolute function (in the kernal), which may cause Maple problems, as it correctly evaluated integral when I split it into two regions.  Interestingly if instead of working with a period of T, I used 2*pi, and redfined my G function accordingly, Maple evaluated the exp input integral without any problems.  So the problem appears to be with the T variable, but I correctly used assumptions of T>0, and 0<t<T, so I am not sure why it would work correctly when I use T=2*pi, but failed when using a general period T.  Any help would be welcome.

 

 

restart

assume(T > 0)

assume(0 < t and t < T)

about(T)

Originally T, renamed T~:

  Involved in the following expressions with properties
    T-t assumed RealRange(Open(0),infinity)
  is assumed to be: real
  also used in the following assumed objects
  [T-t] assumed RealRange(Open(0),infinity)

 

about(t)

Originally t, renamed t~:

  Involved in the following expressions with properties
    T-t assumed RealRange(Open(0),infinity)
  is assumed to be: RealRange(Open(0),infinity)
  also used in the following assumed objects
  [T-t] assumed RealRange(Open(0),infinity)

 

assume(n::integer, n > 0)

about(n)

Originally n, renamed n~:

  is assumed to be: AndProp(integer,RealRange(1,infinity))

 

G := proc (x) options operator, arrow; (1/2)*omega0^2*T^2*((1/6)*Pi^2-(1/2)*Pi*abs(2*Pi*x/T)+Pi^2*x^2/T^2)/Pi^2 end proc

proc (x) options operator, arrow; (1/2)*omega0^2*T^2*((1/6)*Pi^2-(1/2)*Pi*abs(2*Pi*x/T)+Pi^2*x^2/T^2)/Pi^2 end proc

(1)

(int(G(t-tp), tp = 0 .. T))/T

0

(2)

(int(G(t-tp)*sin(2*Pi*n*tp/T), tp = 0 .. T))/T

(1/2)*T^2*omega0^2*cos(t*Pi*n/T)*sin(t*Pi*n/T)/(Pi^2*n^2)

(3)

(int(G(t-tp)*cos(2*Pi*n*tp/T), tp = 0 .. T))/T

(1/4)*T^2*omega0^2*(2*cos(t*Pi*n/T)^2-1)/(Pi^2*n^2)

(4)

(int(G(t-tp)*exp((I*2)*Pi*n*tp/T), tp = 0 .. T))/T

undefined/T

(5)

(int(G(t-tp)*(cos(2*Pi*n*tp/T)+I*sin(2*Pi*n*tp/T)), tp = 0 .. T))/T

undefined/T

(6)

simplify((int(G(t-tp)*exp((I*2)*Pi*n*tp/T), tp = 0 .. t))/T+(int(G(t-tp)*exp((I*2)*Pi*n*tp/T), tp = t .. T))/T)

(1/4)*omega0^2*exp((2*I)*t*Pi*n/T)*T^2/(Pi^2*n^2)

(7)

assume(0 < t and t < 2*Pi)

G2 := proc (x) options operator, arrow; 2*omega0^2*((1/6)*Pi^2-(1/2)*Pi*abs(x)+(1/4)*x^2) end proc

proc (x) options operator, arrow; 2*omega0^2*((1/6)*Pi^2-(1/2)*Pi*abs(x)+(1/4)*x^2) end proc

(8)

(int(G2(t-tp)*exp(I*n*tp), tp = 0 .. 2*Pi))/(2*Pi)

omega0^2*exp(I*n*t)/n^2

(9)

 

Download MathewsWalkerProblem4-4.mwMathewsWalkerProblem4-4.mw

 

 

I'm trying to insert $(x_0,y_0)$ into a Maple plot (that's how LaTeX would be written). I want to do this with a Maple command rather than creating the plot then hand-tailoring with mouse clicks. This is what I've tried without success:

p1:=plot(sin, -Pi..Pi,-1..1):

t1:=textplot(Pi/2,0.9,something):

display(p1,t1)

For *something* I've tried such as

Typesetting:-typeset(try)

and

typeset(try)

where try is something like (x[0],y[0]) and [(x[0],y[0])] and similar forms.

No joy! Any help appreciated.

I have the following function

where A,B,Ψ, K1,K2,K3,α,β are all constants.

How to find the value of m for which the above expression is 0 or approximate to 0 for different values fo the constants.

e.g., Fixing all the parameters except A, I want to find the values of m for different values of A. How to do that in maple?

 

I hoped that Maple would return the value of 1 in all commands (see below). However, introducing a scaling parameter, sigma, yields the unevaluated expression. Why? I still think it should evaluate to the value of 1.

 

kind regards,

Harry (not a mathematician, but a psychologist)

 

 

 

integral.mw

Can anybody where I can find collection of third party Maple packages?

One site that I know is

http://cpc.cs.qub.ac.uk/

Regards

we have positive number from 1 to 1000. how many time we write number 3?

How to increase the size of toolbar icons in Maple 2015 32-bit Classic on Windows?

Hello everyone! I got some trouble in process a list. Hope you can help:

Assume i got a list like this:

 

{{k = k, l = RootOf(_Z^2+_Z*k+k^2-1), o = -k-RootOf(_Z^2+_Z*k+k^2-1)}, {k = k, l = RootOf(_Z^2+_Z*k+k^2+1), o = -k-RootOf(_Z^2+_Z*k+k^2+1)}, {k = 0, l = 1, o = -1}, {k = 0, l = -1, o = 1}, {k = 1, l = 0, o = -1}, {k = 1, l = -1, o = 0}, {k = -1, l = 0, o = 1}, {k = -1, l = 1, o = 0}, {k = RootOf(_Z^2+1), l = 0, o = -RootOf(_Z^2+1)}, {k = RootOf(_Z^2+1), l = -RootOf(_Z^2+1), o = 0}}

 

Now all i want is remove Complex and RootOf from this list, how can i do that?

Thank for your reading adn your help!

I have the following expression

f=u/(sqrt(u*(u-1)))

and I want to simplify it. Eventhough that I tell Maple that u is real and greater than 1 but it does not simplify the expression. What is wrong? Please see the attached file.

Radical.mw

How I can sketch the helix with parametric equations x=2cost  y=sint  z=t  and the line with parameric equation x=-2t  y=1  z=(pi/2)+t   on a three-dimensional coordinate system?

How I can graph parabolic cylinder y=x^2 and elipsoid x^2+4y^2+4z^2=16 on a three-dimensional coordinate system?

First 1171 1172 1173 1174 1175 1176 1177 Last Page 1173 of 2428