MaplePrimes Questions

Hi,
How can I simplify this relation(See uploaded .mw file)?
For example, the second term is simplified as: 

deltae*(1-phi0/(kappa-3/2))^(-kappa+1/2)+(1/2)*deltab*(1-sqrt(2)*sqrt(1/(m*ub^2))*sqrt(-phi0));

di1.mw

In Latest Maple 2024.2, I found that when doing z:=%  where % is result on integration, causes internal error 

          Error, unexpected result from Typesetting

But when the interface is set to standard, no such error.

This not only happen in worksheet, but also when code is run in command line!

Worksheet below.

interface(version);

`Standard Worksheet Interface, Maple 2024.2, Windows 10, October 29 2024 Build ID 1872373`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1837 and is the same as the version installed in this computer, created 2024, December 2, 10:11 hours Pacific Time.`

Example using extended

 

restart;

interface(typesetting=extended):

int(exp(-int(b(t),t))*t^4*csc(t)^2,t);

int(exp(-(int(b(t), t)))*t^4*csc(t)^2, t)

z:=%;

Error, (in Risch:-Norman) too many levels of recursion

` `

Error, unexpected result from Typesetting

 

Example using standard

 

restart;

interface(typesetting=standard):

int(exp(-int(b(t),t))*t^4*csc(t)^2,t);

int(exp(-(int(b(t), t)))*t^4*csc(t)^2, t)

z:=%;

int(exp(-(int(b(t), t)))*t^4*csc(t)^2, t)

 

 

Example using direct assignment also

 

restart;

interface(typesetting=extended):

z:=int(exp(-int(b(t),t))*t^4*csc(t)^2,t);

Error, (in Risch:-Norman) too many levels of recursion

` `

Error, unexpected result from Typesetting

Download extended_interface_causes_internal_bug_dec_13_2024.mw

ps. also reported to Maple support

I was rejected because the editor said my equation is too long. My question is: Is there a way to rewrite the equation in a more concise form? Additionally, is there a package in Maple that allows for automatic simplification or collection of terms without using specific commands? Any suggestions for addressing this issue would be appreciated.

restart

``

eq3 := -6*lambda*beta[0]^2*alpha[1]^2*a[3]-2*lambda*beta[0]^2*a[5]*alpha[0]+6*mu*beta[0]*alpha[1]^2*a[2]+3*mu*beta[0]*a[5]*alpha[0]^2+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]^3*a[4]+(6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]^2*a[3]+(4*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^2*a[5]*alpha[0]-12*mu^2*alpha[1]^2*a[5]*alpha[0]+(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]*a[2]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*k^2*a[1]*alpha[1]^2+(1/2)*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[1]+(5*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^4*alpha[0]*a[4]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*lambda*a[5]*alpha[0]-k^2*a[1]*beta[0]^2+10*beta[0]^2*alpha[0]^3*a[4]+6*beta[0]^2*alpha[0]^2*a[3]+3*beta[0]^2*alpha[0]*a[2]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*w*alpha[1]^2-(1/4)*lambda*beta[0]^2*a[1]-9*mu^2*alpha[1]^2*a[1]*(1/4)+3*mu*a[1]*alpha[0]*beta[0]*(1/2)+(1/4)*(3*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^2*a[1]+(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2)*alpha[1]^4*a[3]-w*beta[0]^2-30*lambda*beta[0]^2*alpha[1]^2*alpha[0]*a[4]-20*mu*beta[0]*lambda*alpha[1]^4*a[4]-7*mu*beta[0]*lambda*a[5]*alpha[1]^2+24*mu*beta[0]*alpha[1]^2*alpha[0]*a[3]+60*mu*beta[0]*alpha[1]^2*alpha[0]^2*a[4] = 0

-k^2*a[1]*beta[0]^2+4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[5]*alpha[0]-30*lambda*beta[0]^2*alpha[1]^2*alpha[0]*a[4]-20*mu*beta[0]*lambda*alpha[1]^4*a[4]+60*mu*beta[0]*alpha[1]^2*alpha[0]^2*a[4]-7*mu*beta[0]*lambda*a[5]*alpha[1]^2+24*mu*beta[0]*alpha[1]^2*alpha[0]*a[3]-w*beta[0]^2-(9/4)*mu^2*alpha[1]^2*a[1]+6*beta[0]^2*alpha[0]^2*a[3]-(1/4)*lambda*beta[0]^2*a[1]+3*beta[0]^2*alpha[0]*a[2]+(3/4)*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^2*a[1]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*w*alpha[1]^2+10*beta[0]^2*alpha[0]^3*a[4]+(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^4*a[3]+6*mu*beta[0]*alpha[1]^2*a[2]+3*mu*beta[0]*a[5]*alpha[0]^2+(3/2)*mu*a[1]*alpha[0]*beta[0]-6*lambda*beta[0]^2*alpha[1]^2*a[3]-2*lambda*beta[0]^2*a[5]*alpha[0]-12*mu^2*alpha[1]^2*a[5]*alpha[0]+3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]*a[2]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*k^2*a[1]*alpha[1]^2+(1/2)*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[1]+5*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^4*alpha[0]*a[4]+10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]^3*a[4]+6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]^2*a[3]+4*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^2*a[5]*alpha[0] = 0

(1)

numer(lhs(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]*a[2]+5*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^4*alpha[0]*a[4]+10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]^3*a[4]+6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]^2*a[3]+4*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^2*a[5]*alpha[0]-6*lambda*beta[0]^2*alpha[1]^2*a[3]-2*lambda*beta[0]^2*a[5]*alpha[0]+6*mu*beta[0]*alpha[1]^2*a[2]+3*mu*beta[0]*a[5]*alpha[0]^2+(3/2)*mu*a[1]*alpha[0]*beta[0]-12*mu^2*alpha[1]^2*a[5]*alpha[0]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*k^2*a[1]*alpha[1]^2+(1/2)*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[1]-w*beta[0]^2+4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[5]*alpha[0]-30*lambda*beta[0]^2*alpha[1]^2*alpha[0]*a[4]-20*mu*beta[0]*lambda*alpha[1]^4*a[4]-7*mu*beta[0]*lambda*a[5]*alpha[1]^2+24*mu*beta[0]*alpha[1]^2*alpha[0]*a[3]+60*mu*beta[0]*alpha[1]^2*alpha[0]^2*a[4]+(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^4*a[3]+(3/4)*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^2*a[1]-k^2*a[1]*beta[0]^2+10*beta[0]^2*alpha[0]^3*a[4]+6*beta[0]^2*alpha[0]^2*a[3]+3*beta[0]^2*alpha[0]*a[2]-(9/4)*mu^2*alpha[1]^2*a[1]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*w*alpha[1]^2-(1/4)*lambda*beta[0]^2*a[1] = 0))*denom(rhs(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]*a[2]+5*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^4*alpha[0]*a[4]+10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]^3*a[4]+6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]^2*a[3]+4*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^2*a[5]*alpha[0]-6*lambda*beta[0]^2*alpha[1]^2*a[3]-2*lambda*beta[0]^2*a[5]*alpha[0]+6*mu*beta[0]*alpha[1]^2*a[2]+3*mu*beta[0]*a[5]*alpha[0]^2+(3/2)*mu*a[1]*alpha[0]*beta[0]-12*mu^2*alpha[1]^2*a[5]*alpha[0]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*k^2*a[1]*alpha[1]^2+(1/2)*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[1]-w*beta[0]^2+4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[5]*alpha[0]-30*lambda*beta[0]^2*alpha[1]^2*alpha[0]*a[4]-20*mu*beta[0]*lambda*alpha[1]^4*a[4]-7*mu*beta[0]*lambda*a[5]*alpha[1]^2+24*mu*beta[0]*alpha[1]^2*alpha[0]*a[3]+60*mu*beta[0]*alpha[1]^2*alpha[0]^2*a[4]+(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^4*a[3]+(3/4)*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^2*a[1]-k^2*a[1]*beta[0]^2+10*beta[0]^2*alpha[0]^3*a[4]+6*beta[0]^2*alpha[0]^2*a[3]+3*beta[0]^2*alpha[0]*a[2]-(9/4)*mu^2*alpha[1]^2*a[1]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*w*alpha[1]^2-(1/4)*lambda*beta[0]^2*a[1] = 0)) = numer(rhs(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]*a[2]+5*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^4*alpha[0]*a[4]+10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]^3*a[4]+6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]^2*a[3]+4*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^2*a[5]*alpha[0]-6*lambda*beta[0]^2*alpha[1]^2*a[3]-2*lambda*beta[0]^2*a[5]*alpha[0]+6*mu*beta[0]*alpha[1]^2*a[2]+3*mu*beta[0]*a[5]*alpha[0]^2+(3/2)*mu*a[1]*alpha[0]*beta[0]-12*mu^2*alpha[1]^2*a[5]*alpha[0]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*k^2*a[1]*alpha[1]^2+(1/2)*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[1]-w*beta[0]^2+4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[5]*alpha[0]-30*lambda*beta[0]^2*alpha[1]^2*alpha[0]*a[4]-20*mu*beta[0]*lambda*alpha[1]^4*a[4]-7*mu*beta[0]*lambda*a[5]*alpha[1]^2+24*mu*beta[0]*alpha[1]^2*alpha[0]*a[3]+60*mu*beta[0]*alpha[1]^2*alpha[0]^2*a[4]+(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^4*a[3]+(3/4)*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^2*a[1]-k^2*a[1]*beta[0]^2+10*beta[0]^2*alpha[0]^3*a[4]+6*beta[0]^2*alpha[0]^2*a[3]+3*beta[0]^2*alpha[0]*a[2]-(9/4)*mu^2*alpha[1]^2*a[1]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*w*alpha[1]^2-(1/4)*lambda*beta[0]^2*a[1] = 0))*denom(lhs(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]*a[2]+5*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^4*alpha[0]*a[4]+10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]^3*a[4]+6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]^2*a[3]+4*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^2*a[5]*alpha[0]-6*lambda*beta[0]^2*alpha[1]^2*a[3]-2*lambda*beta[0]^2*a[5]*alpha[0]+6*mu*beta[0]*alpha[1]^2*a[2]+3*mu*beta[0]*a[5]*alpha[0]^2+(3/2)*mu*a[1]*alpha[0]*beta[0]-12*mu^2*alpha[1]^2*a[5]*alpha[0]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*k^2*a[1]*alpha[1]^2+(1/2)*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[1]-w*beta[0]^2+4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[5]*alpha[0]-30*lambda*beta[0]^2*alpha[1]^2*alpha[0]*a[4]-20*mu*beta[0]*lambda*alpha[1]^4*a[4]-7*mu*beta[0]*lambda*a[5]*alpha[1]^2+24*mu*beta[0]*alpha[1]^2*alpha[0]*a[3]+60*mu*beta[0]*alpha[1]^2*alpha[0]^2*a[4]+(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^4*a[3]+(3/4)*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^2*a[1]-k^2*a[1]*beta[0]^2+10*beta[0]^2*alpha[0]^3*a[4]+6*beta[0]^2*alpha[0]^2*a[3]+3*beta[0]^2*alpha[0]*a[2]-(9/4)*mu^2*alpha[1]^2*a[1]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*w*alpha[1]^2-(1/4)*lambda*beta[0]^2*a[1] = 0))

-40*lambda^3*B[1]^2*a[4]*alpha[0]*alpha[1]^4+40*lambda^3*B[2]^2*a[4]*alpha[0]*alpha[1]^4-8*lambda^3*B[1]^2*a[3]*alpha[1]^4+8*lambda^3*B[2]^2*a[3]*alpha[1]^4+40*lambda^2*B[1]^2*a[4]*alpha[0]^3*alpha[1]^2-40*lambda^2*B[2]^2*a[4]*alpha[0]^3*alpha[1]^2-4*k^2*lambda^2*B[1]^2*a[1]*alpha[1]^2+4*k^2*lambda^2*B[2]^2*a[1]*alpha[1]^2-16*lambda^3*B[1]^2*a[5]*alpha[0]*alpha[1]^2+16*lambda^3*B[2]^2*a[5]*alpha[0]*alpha[1]^2-80*lambda^2*mu*a[4]*alpha[1]^4*beta[0]+24*lambda^2*B[1]^2*a[3]*alpha[0]^2*alpha[1]^2-24*lambda^2*B[2]^2*a[3]*alpha[0]^2*alpha[1]^2+120*lambda*mu^2*a[4]*alpha[0]*alpha[1]^4-4*lambda^3*B[1]^2*a[1]*alpha[1]^2+4*lambda^3*B[2]^2*a[1]*alpha[1]^2+12*lambda^2*B[1]^2*a[2]*alpha[0]*alpha[1]^2-12*lambda^2*B[2]^2*a[2]*alpha[0]*alpha[1]^2-120*lambda^2*a[4]*alpha[0]*alpha[1]^2*beta[0]^2+24*lambda*mu^2*a[3]*alpha[1]^4+240*lambda*mu*a[4]*alpha[0]^2*alpha[1]^2*beta[0]-40*mu^2*a[4]*alpha[0]^3*alpha[1]^2+4*k^2*mu^2*a[1]*alpha[1]^2-28*lambda^2*mu*a[5]*alpha[1]^2*beta[0]-4*lambda^2*w*B[1]^2*alpha[1]^2+4*lambda^2*w*B[2]^2*alpha[1]^2-24*lambda^2*a[3]*alpha[1]^2*beta[0]^2+32*lambda*mu^2*a[5]*alpha[0]*alpha[1]^2+96*lambda*mu*a[3]*alpha[0]*alpha[1]^2*beta[0]+40*lambda*a[4]*alpha[0]^3*beta[0]^2-24*mu^2*a[3]*alpha[0]^2*alpha[1]^2-4*k^2*lambda*a[1]*beta[0]^2-8*lambda^2*a[5]*alpha[0]*beta[0]^2+7*lambda*mu^2*a[1]*alpha[1]^2+24*lambda*mu*a[2]*alpha[1]^2*beta[0]+12*lambda*mu*a[5]*alpha[0]^2*beta[0]+24*lambda*a[3]*alpha[0]^2*beta[0]^2-12*mu^2*a[2]*alpha[0]*alpha[1]^2-lambda^2*a[1]*beta[0]^2+6*lambda*mu*a[1]*alpha[0]*beta[0]+12*lambda*a[2]*alpha[0]*beta[0]^2+4*mu^2*w*alpha[1]^2-4*lambda*w*beta[0]^2 = 0

(2)

simplify(-40*lambda^3*B[1]^2*a[4]*alpha[0]*alpha[1]^4+40*lambda^3*B[2]^2*a[4]*alpha[0]*alpha[1]^4-8*lambda^3*B[1]^2*a[3]*alpha[1]^4+8*lambda^3*B[2]^2*a[3]*alpha[1]^4+40*lambda^2*B[1]^2*a[4]*alpha[0]^3*alpha[1]^2-40*lambda^2*B[2]^2*a[4]*alpha[0]^3*alpha[1]^2-4*k^2*lambda^2*B[1]^2*a[1]*alpha[1]^2+4*k^2*lambda^2*B[2]^2*a[1]*alpha[1]^2-16*lambda^3*B[1]^2*a[5]*alpha[0]*alpha[1]^2+16*lambda^3*B[2]^2*a[5]*alpha[0]*alpha[1]^2-80*lambda^2*mu*a[4]*alpha[1]^4*beta[0]+24*lambda^2*B[1]^2*a[3]*alpha[0]^2*alpha[1]^2-24*lambda^2*B[2]^2*a[3]*alpha[0]^2*alpha[1]^2+120*lambda*mu^2*a[4]*alpha[0]*alpha[1]^4-4*lambda^3*B[1]^2*a[1]*alpha[1]^2+4*lambda^3*B[2]^2*a[1]*alpha[1]^2+12*lambda^2*B[1]^2*a[2]*alpha[0]*alpha[1]^2-12*lambda^2*B[2]^2*a[2]*alpha[0]*alpha[1]^2-120*lambda^2*a[4]*alpha[0]*alpha[1]^2*beta[0]^2+24*lambda*mu^2*a[3]*alpha[1]^4+240*lambda*mu*a[4]*alpha[0]^2*alpha[1]^2*beta[0]-40*mu^2*a[4]*alpha[0]^3*alpha[1]^2+4*k^2*mu^2*a[1]*alpha[1]^2-28*lambda^2*mu*a[5]*alpha[1]^2*beta[0]-4*lambda^2*w*B[1]^2*alpha[1]^2+4*lambda^2*w*B[2]^2*alpha[1]^2-24*lambda^2*a[3]*alpha[1]^2*beta[0]^2+32*lambda*mu^2*a[5]*alpha[0]*alpha[1]^2+96*lambda*mu*a[3]*alpha[0]*alpha[1]^2*beta[0]+40*lambda*a[4]*alpha[0]^3*beta[0]^2-24*mu^2*a[3]*alpha[0]^2*alpha[1]^2-4*k^2*lambda*a[1]*beta[0]^2-8*lambda^2*a[5]*alpha[0]*beta[0]^2+7*lambda*mu^2*a[1]*alpha[1]^2+24*lambda*mu*a[2]*alpha[1]^2*beta[0]+12*lambda*mu*a[5]*alpha[0]^2*beta[0]+24*lambda*a[3]*alpha[0]^2*beta[0]^2-12*mu^2*a[2]*alpha[0]*alpha[1]^2-lambda^2*a[1]*beta[0]^2+6*lambda*mu*a[1]*alpha[0]*beta[0]+12*lambda*a[2]*alpha[0]*beta[0]^2+4*mu^2*w*alpha[1]^2-4*lambda*w*beta[0]^2 = 0, 'symbolic')

-40*(B[1]-B[2])*((a[4]*alpha[0]+(1/5)*a[3])*alpha[1]^2+(2/5)*a[5]*alpha[0]+(1/10)*a[1])*alpha[1]^2*(B[1]+B[2])*lambda^3+4*(-20*a[4]*beta[0]*alpha[1]^4*mu+(10*(B[1]^2-B[2]^2)*a[4]*alpha[0]^3+6*a[3]*(B[1]^2-B[2]^2)*alpha[0]^2+3*(B[1]^2*a[2]-B[2]^2*a[2]-10*a[4]*beta[0]^2)*alpha[0]-6*beta[0]^2*a[3]-7*a[5]*beta[0]*mu-(B[1]-B[2])*(B[1]+B[2])*(k^2*a[1]+w))*alpha[1]^2-2*(a[5]*alpha[0]+(1/8)*a[1])*beta[0]^2)*lambda^2+(120*(a[4]*alpha[0]+(1/5)*a[3])*mu^2*alpha[1]^4+(240*a[4]*beta[0]*alpha[0]^2*mu+32*(mu^2*a[5]+3*mu*a[3]*beta[0])*alpha[0]+24*beta[0]*mu*a[2]+7*mu^2*a[1])*alpha[1]^2-4*(-10*a[4]*beta[0]*alpha[0]^3+3*(-mu*a[5]-2*a[3]*beta[0])*alpha[0]^2+3*(-beta[0]*a[2]-(1/2)*mu*a[1])*alpha[0]+beta[0]*(k^2*a[1]+w))*beta[0])*lambda+4*alpha[1]^2*mu^2*(-10*a[4]*alpha[0]^3+k^2*a[1]-6*a[3]*alpha[0]^2-3*a[2]*alpha[0]+w) = 0

 

 

 

Error, (in collect) invalid input: collect uses a 2nd argument, x, which is missing

 

Q1 := collect(%, {B__1, B__2})

-40*(B[1]-B[2])*((a[4]*alpha[0]+(1/5)*a[3])*alpha[1]^2+(2/5)*a[5]*alpha[0]+(1/10)*a[1])*alpha[1]^2*(B[1]+B[2])*lambda^3+4*(-20*a[4]*beta[0]*alpha[1]^4*mu+(10*(B[1]^2-B[2]^2)*a[4]*alpha[0]^3+6*a[3]*(B[1]^2-B[2]^2)*alpha[0]^2+3*(B[1]^2*a[2]-B[2]^2*a[2]-10*a[4]*beta[0]^2)*alpha[0]-6*beta[0]^2*a[3]-7*a[5]*beta[0]*mu-(B[1]-B[2])*(B[1]+B[2])*(k^2*a[1]+w))*alpha[1]^2-2*(a[5]*alpha[0]+(1/8)*a[1])*beta[0]^2)*lambda^2+(120*(a[4]*alpha[0]+(1/5)*a[3])*mu^2*alpha[1]^4+(240*a[4]*beta[0]*alpha[0]^2*mu+32*(mu^2*a[5]+3*mu*a[3]*beta[0])*alpha[0]+24*beta[0]*mu*a[2]+7*mu^2*a[1])*alpha[1]^2-4*(-10*a[4]*beta[0]*alpha[0]^3+3*(-mu*a[5]-2*a[3]*beta[0])*alpha[0]^2+3*(-beta[0]*a[2]-(1/2)*mu*a[1])*alpha[0]+beta[0]*(k^2*a[1]+w))*beta[0])*lambda+4*alpha[1]^2*mu^2*(-10*a[4]*alpha[0]^3+k^2*a[1]-6*a[3]*alpha[0]^2-3*a[2]*alpha[0]+w) = 0

(3)

latex(Q1)

-40 \left(B_{1}-B_{2}\right) \left(\left(a_{4} \alpha_{0}+\frac{a_{3}}{5}\right) \alpha_{1}^{2}+\frac{2 a_{5} \alpha_{0}}{5}+\frac{a_{1}}{10}\right) \alpha_{1}^{2} \left(B_{1}+B_{2}\right) \lambda^{3}+4 \left(-20 a_{4} \beta_{0} \alpha_{1}^{4} \mu +\left(10 \left(B_{1}^{2}-B_{2}^{2}\right) a_{4} \alpha_{0}^{3}+6 a_{3} \left(B_{1}^{2}-B_{2}^{2}\right) \alpha_{0}^{2}+3 \left(B_{1}^{2} a_{2}-B_{2}^{2} a_{2}-10 a_{4} \beta_{0}^{2}\right) \alpha_{0}-6 \beta_{0}^{2} a_{3}-7 a_{5} \beta_{0} \mu -\left(B_{1}-B_{2}\right) \left(B_{1}+B_{2}\right) \left(k^{2} a_{1}+w \right)\right) \alpha_{1}^{2}-2 \left(a_{5} \alpha_{0}+\frac{a_{1}}{8}\right) \beta_{0}^{2}\right) \lambda^{2}+\left(120 \left(a_{4} \alpha_{0}+\frac{a_{3}}{5}\right) \mu^{2} \alpha_{1}^{4}+\left(240 a_{4} \beta_{0} \alpha_{0}^{2} \mu +32 \left(\mu^{2} a_{5}+3 \mu  a_{3} \beta_{0}\right) \alpha_{0}+24 \beta_{0} \mu  a_{2}+7 \mu^{2} a_{1}\right) \alpha_{1}^{2}-4 \left(-10 a_{4} \beta_{0} \alpha_{0}^{3}+3 \left(-\mu  a_{5}-2 a_{3} \beta_{0}\right) \alpha_{0}^{2}+3 \left(-\beta_{0} a_{2}-\frac{\mu  a_{1}}{2}\right) \alpha_{0}+\beta_{0} \left(k^{2} a_{1}+w \right)\right) \beta_{0}\right) \lambda +4 \alpha_{1}^{2} \mu^{2} \left(-10 a_{4} \alpha_{0}^{3}+k^{2} a_{1}-6 a_{3} \alpha_{0}^{2}-3 a_{2} \alpha_{0}+w \right)
 = 0

 
 

NULL

Download coment.mw

hi,

I would like help with 2 questions regarding complex plots and Euler's formula:

- I'm trying to plot a complex (simple) plot in Maple Flow (2024.2) but got into a problem:

does anyone would know how to fix/solve it?

- how could an complex exponential function be expanded with Euler's formula

Thanks very much in advance.

Where can I found details about Statistics:-Sample(..., method=envelope).

It would be nice to have a link to a description of the envelope method Sample uses.
For instance does it share some features of the Cuba library for numeric integration? Does it use the same envelope method evalf/Int(..., method=_CubaSuave)) uses?

Thanks in advance.

I'm having trouble solving this system of differential equations. I haven't solved systems of differential equations before but i tried defining the system and then using dsolve, but it couldn't solve all the equations.

Hope you can help.

NULL

diff(Q1(t), t) = -k1*Q1(t)

 

diff(Q2(t), t) = k1*Q1+k3/Q2(t)-k2*Q2(t)-k4*Q2(t)

 

diff(Q3(t), t) = k4*Q2

 

diff(Q4(t), t) = k2*Q2-k3/Q2

 

NULL

Download System_Of_Differential_Equations.mw

I'm trying to transform a partial differential equation (PDE) into an ordinary differential equation (ODE) as demonstrated in the paper. However, I find some steps confusing and difficult to follow. The process often feels chaotic, and managing the complexity of the equations is overwhelming. Could you suggest an effective and systematic method to handle such transformations more easily?

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(Omega(x, t)); declare(U(xi))

Omega(x, t)*`will now be displayed as`*Omega

 

U(xi)*`will now be displayed as`*U

(2)

tr := {t = tau, x = tau*c[0]+xi, Omega(x, t) = U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))}

{t = tau, x = tau*c[0]+xi, Omega(x, t) = U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))}

(3)

P1 := diff(Omega(x, t)^m, t)

Omega(x, t)^m*m*(diff(Omega(x, t), t))/Omega(x, t)

(4)

L1 := PDEtools:-dchange(tr, P1, [xi, tau, U])

(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*m*(-((diff(U(xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-I*U(xi)*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))*c[0]+I*U(xi)*(-k*c[0]+w+delta*(diff(W(tau), tau))-delta^2)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))/(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))

(5)
 

pde1 := I*(diff(Omega(x, t)^m, t))+alpha*(diff(Omega(x, t)^m, `$`(x, 2)))+I*beta*(diff(abs(Omega(x, t))^(2*n)*Omega(x, t)^m, x))+m*sigma*Omega(x, t)^m*(diff(W(t), t)) = I*gamma*abs(Omega(x, t))^(2*n)*(diff(Omega(x, t)^m, x))+delta*abs(Omega(x, t))^(4*n)*Omega(x, t)^m

I*Omega(x, t)^m*m*(diff(Omega(x, t), t))/Omega(x, t)+alpha*(Omega(x, t)^m*m^2*(diff(Omega(x, t), x))^2/Omega(x, t)^2+Omega(x, t)^m*m*(diff(diff(Omega(x, t), x), x))/Omega(x, t)-Omega(x, t)^m*m*(diff(Omega(x, t), x))^2/Omega(x, t)^2)+I*beta*(2*abs(Omega(x, t))^(2*n)*n*(diff(Omega(x, t), x))*abs(1, Omega(x, t))*Omega(x, t)^m/abs(Omega(x, t))+abs(Omega(x, t))^(2*n)*Omega(x, t)^m*m*(diff(Omega(x, t), x))/Omega(x, t))+m*sigma*Omega(x, t)^m*(diff(W(t), t)) = I*gamma*abs(Omega(x, t))^(2*n)*Omega(x, t)^m*m*(diff(Omega(x, t), x))/Omega(x, t)+delta*abs(Omega(x, t))^(4*n)*Omega(x, t)^m

(6)

NULL

L1 := PDEtools:-dchange(tr, pde1, [xi, tau, U])

I*(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*m*(-((diff(U(xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-I*U(xi)*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))*c[0]+I*U(xi)*(-k*c[0]+w+delta*(diff(W(tau), tau))-delta^2)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))/(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))+alpha*((U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*m^2*((diff(U(xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-I*U(xi)*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^2/(U(xi)^2*(exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^2)+(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*m*((diff(diff(U(xi), xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-(2*I)*(diff(U(xi), xi))*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-U(xi)*k^2*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))/(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))-(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*m*((diff(U(xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-I*U(xi)*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^2/(U(xi)^2*(exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^2))+I*beta*(2*(abs(U(xi))*exp(-Im(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^(2*n)*n*((diff(U(xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-I*U(xi)*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))*abs(1, U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))*(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m/(abs(U(xi))*exp(-Im(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))+(abs(U(xi))*exp(-Im(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^(2*n)*(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*m*((diff(U(xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-I*U(xi)*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))/(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))))+m*sigma*(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*(diff(W(tau), tau)) = I*gamma*(abs(U(xi))*exp(-Im(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^(2*n)*(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*m*((diff(U(xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-I*U(xi)*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))/(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))+delta*(abs(U(xi))*exp(-Im(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^(4*n)*(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m

(7)

``

``

(8)

Download transform-pde-to-ode-hard_example.mw

I have expected the opposite. Is exp already optimised that hardware floats do not make sense or does the conversion of the argument to hardware floast eats up all the benefit of using hardware floats?

restart;
CodeTools:-Usage( for i from 1 to 100 by 0.1 do exp(i) end do):
CodeTools:-Usage( for i from 1 to 100 by 0.1 do (evalhf@exp)(i) end do):
memory used=1.54MiB, alloc change=0 bytes, cpu time=16.00ms, real time=15.00ms, gc time=0ns
memory used=5.88MiB, alloc change=32.00MiB, cpu time=31.00ms, real time=33.00ms, gc time=0ns

Is there a way to determine how we can construct a system of equations from this complex PDE? Also, moderator, you mentioned I could create a new question using the branch option, but you deleted my previous question, which led me to delete my earlier post. don't delete this one.

Download PDE-Hard.mw

The output RealDomain:-solve(x**2 + 2*cos(x) = (Pi/3)**2 + 1, [x]) means that there is no real solution, but clearly, both x = -Pi/3 and x = +Pi/3 satisfy the original equation: 

So, why does `solve` lose the real solutions without any warning messages? 
Code: 

restart;
eq := 9*(x^2 + 2*cos(x)) = Pi^2 + 9;
RealDomain:-solve(eq, [x]);
                               []

:-solve({eq, x >= 0}, [x]); # as (lhs - rhs)(eq) is an even function 
                               []


this equation will be solve by changing variable but when  i found the function and substitute the ODE is not zero where  is mistake?

restart

with(PDEtools); _local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(phi(x, t)); declare(psi(x, t)); declare(U(xi))

phi(x, t)*`will now be displayed as`*phi

 

psi(x, t)*`will now be displayed as`*psi

 

U(xi)*`will now be displayed as`*U

(2)

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(3)

ode := (diff(diff(U(xi), xi), xi))*lambda^2+(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*lambda*k^3-6*(diff(diff(U(xi), xi), xi))*k^2*(diff(U(xi), xi))*lambda = 0

(diff(diff(U(xi), xi), xi))*lambda^2+(diff(diff(diff(diff(U(xi), xi), xi), xi), xi))*lambda*k^3-6*(diff(diff(U(xi), xi), xi))*k^2*(diff(U(xi), xi))*lambda = 0

(4)

W := diff(U(xi), xi) = T(xi)

diff(U(xi), xi) = T(xi)

(5)

ode1 := lambda^2*T(xi)+lambda*k^3*(diff(diff(T(xi), xi), xi))-3*k^2*lambda*T(xi)^2 = 0

lambda^2*T(xi)+lambda*k^3*(diff(diff(T(xi), xi), xi))-3*k^2*lambda*T(xi)^2 = 0

(6)

K := T(xi) = A[0]+A[1]*(exp(2*xi)-1)/(exp(2*xi)+1)+A[2]*(exp(2*xi)-1)^2/(exp(2*xi)+1)^2+B[1]*(exp(2*xi)+1)/(exp(2*xi)-1)+B[2]*(exp(2*xi)+1)/(exp(2*xi)-1)

T(xi) = A[0]+A[1]*(exp(2*xi)-1)/(exp(2*xi)+1)+A[2]*(exp(2*xi)-1)^2/(exp(2*xi)+1)^2+B[1]*(exp(2*xi)+1)/(exp(2*xi)-1)+B[2]*(exp(2*xi)+1)/(exp(2*xi)-1)

(7)

case1 := [k = (1/2)*A[2], lambda = -(1/2)*A[2]^3, A[0] = -A[2], A[1] = 0, A[2] = A[2], B[1] = -B[2], B[2] = B[2]]

[k = (1/2)*A[2], lambda = -(1/2)*A[2]^3, A[0] = -A[2], A[1] = 0, A[2] = A[2], B[1] = -B[2], B[2] = B[2]]

(8)

F1 := subs(case1, K)

T(xi) = -A[2]+A[2]*(exp(2*xi)-1)^2/(exp(2*xi)+1)^2

(9)

F2 := subs(case1, ode1)

(1/4)*A[2]^6*T(xi)-(1/16)*A[2]^6*(diff(diff(T(xi), xi), xi))+(3/8)*A[2]^5*T(xi)^2 = 0

(10)

odetest(F1, F2)

0

(11)

subs(F1, W)

diff(U(xi), xi) = -A[2]+A[2]*(exp(2*xi)-1)^2/(exp(2*xi)+1)^2

(12)

E := map(int, diff(U(xi), xi) = -A[2]+A[2]*(exp(2*xi)-1)^2/(exp(2*xi)+1)^2, xi)

U(xi) = A[2]*((1/2)*ln(exp(2*xi))+2/(exp(2*xi)+1))-A[2]*xi

(13)

odetest(E, ode)

32*A[2]*exp(8*xi)*lambda*k^3/(exp(2*xi)+1)^5-352*A[2]*exp(6*xi)*lambda*k^3/(exp(2*xi)+1)^5+192*A[2]^2*exp(6*xi)*lambda*k^2/(exp(2*xi)+1)^5+8*A[2]*exp(8*xi)*lambda^2/(exp(2*xi)+1)^5+352*A[2]*exp(4*xi)*lambda*k^3/(exp(2*xi)+1)^5-192*A[2]^2*exp(4*xi)*lambda*k^2/(exp(2*xi)+1)^5+8*A[2]*exp(6*xi)*lambda^2/(exp(2*xi)+1)^5-32*A[2]*exp(2*xi)*lambda*k^3/(exp(2*xi)+1)^5-8*A[2]*exp(4*xi)*lambda^2/(exp(2*xi)+1)^5-8*A[2]*exp(2*xi)*lambda^2/(exp(2*xi)+1)^5

(14)
 

NULL

Download problem.mw

I'm trying to solve system of ODE (Temperature changing with time) which are going to use the heat capacity obtained from thermophysical package (heat capacity is changing with temperature).

In the support page there is an example in which they were able to integrate the heat capacity from the package. So I wondering if it is possible to include it in an ODE system.

I used their same approach, I tried defining the call to the package as a function but I'm getting an error:

"Error, (in dsolve/numeric/process_input) input system must be an ODE system, found {ThermophysicalData:-CoolProp:-PropsSI(C,P,101325,T,T1(t),"hydrogen"), T1(t), T2(t), T3(t)}"

Attached question.mw

restart:
with(ThermophysicalData):
with(CoolProp):
with(plots):

#I would like to get the heat capacity from this package. Heat capacity is a function of temperature and pressure.
CP:=T1->PropsSI(C, P, 101325, T, T1, "hydrogen")/10000:

#Parameters
UA:=10:T0:=20:TS:=250:W:=100:M:=1000:

#The temperature is changing in this system of ODE with time. I would like to have the heat capacity value changing with temperature using the values obtained from the package.
EQ1:=diff(T1(t),t)=(W*CP(T1(t))*(T0-T1(t))+UA*(TS-T1(t)))/M/CP(T1(t)):
EQ2:=diff(T2(t),t)=(W*CP(T1(t))*(T1(t)-T2(t))+UA*(TS-T2(t)))/M/CP(T1(t)):
EQ3:=diff(T3(t),t)=(W*CP(T1(t))*(T2(t)-T3(t))+UA*(TS-T3(t)))/M/CP(T1(t)):

sol:=dsolve({EQ1,EQ2,EQ3,T1(0)=25,T2(0)=25,T3(0)=25},[T1(t),T2(t),T3(t)],numeric):
odeplot(sol,[[t,T1(t)],[t,T2(t)],[t,T3(t)]],t=0..140,legend=[T1,T2,T3],labels = ["time [min]", "Ti [C]"],axes=boxed)
sol(57.7);

Dear Maple user i want to extract the data from the given graph and store in excel file. where the first column contain the value of lambda in that substitude the values of delta2 ranging from 0.002 to 0.1 (atleast 20 values) and second column  contain Nb =0.1, third column Nb= 0.2 and third column Nb=0.3. Thanks in advance

restart:
h:=z->1-(delta2/2)*(1 + cos(2*(Pi/L1)*(z - d1 - L1))):
K1:=((4/h(z)^4)-(sin(alpha)/F)-h(z)^2+Nb*h(z)^4):
lambda:=Int(K1,z=0..1):
L1:=0.2: F:=10:
d1:=0.2:
alpha:=Pi/6:
plot( [seq(eval(lambda, Nb=j), j in [0.1,0.2,0.3])], delta2=0.02..0.1);

Hi,

I would like help on accessing an element of matrix which is itself  an element of another matrix, like:

how could I reference the element "1.0" or "6.0"?

Thanks in advance for any help.

I tried the latest Maple flow upgrade (2024.2) and noticed some strange behavior. When I enter units such as L/min or m/s^2, the program states: "invalid unit(s) Units:-Simple:-*" However, to my surprise, if I start the canvas by stating with(Units) everything works as it should. In the user manual however it is stated that the with() commands do not work within Flow. If someone would be so kind to explain what I am doing wrong.

First 49 50 51 52 53 54 55 Last Page 51 of 2426