MaplePrimes Questions

Hello everyone,

I'm currently exploring the properties of a sum in Maple, and I was wondering how to obtain the values of the following sum:

sum 1/(i*j*k*) such that 1<=i+j+k<= n 

I'm interested in the values of this sum for a given n. How can I express this efficiently in Maple?

Thanks in advance for your help!

Hi, I have an homework where I need to find the highest point and the lowest point on an ellipse form by the intersection of two equations wich are 4x-3y+8z=5 and z^2=x^2+y^2 and I have to use the LagrangeMultiplier command. I get how it works but I can't get the correct form. How should I do it ? 

Is it possible overlay one column graph on top of another ? And if, how do I do it?

Regards

I have here a function  
                           "sin(x)/x"

and suppose sin(x)/x = 0 
Can I now use MapleAI to retrieve the correct command for this in Maple..could I?

The intersection points with the x-axis are positive and negative multiples of Pi
I have put these in an ordered list, but Maple gives this:
For x domain = -20...20 
X := {x = Pi}, {x = 2*Pi}, {x = 3*Pi}, {x = 4*Pi}, {x = 5*Pi}, {x = 6*Pi}, {x = -6*Pi}, {x = -5*Pi}, {x = -4*Pi}, {x = -3*Pi}, {x = -2*Pi}, {x = -Pi};

 
X := sort(eval~(x, [X]));
 X := [, -6 Pi, -5 Pi, -4 Pi, -3 Pi, -2 Pi, -Pi, 2 Pi, 3 Pi, 4 Pi, 5 Pi, 6 Pi]


A strange ranking that Maple comes up with ? 

with(NaturalLanguage);
        [Explain, GetCommand, GetMath, Query, RawQuery]



GetCommand("give for Maple solve command all options?");
            "solve(equations, variables, options);"

Explain("give for Maple solve command all options?");

"Maple is a symbolic and numeric computing environment. Its 

   "solve" command is used to find solutions (roots) of a given 

   equation or a system of equations.
  

  There are a number of options (or "parameters") which can be 

   specified in this command to alter its behavior:

  

  1. `Allsolutions`: This option makes Maple to generate all 

   possible solutions of an equation.

  

  2. `Real`: This option only provides the real solutions. If 

   equations do not have real solutions, it will return an 

   empty set.

  

  3. `Positive`: It only includes positive solutions in the 

   output.

  

  4. `explicit`: If specified, Maple attempts to isolate roots 

   and provide an explicit solution for each variable.

  

  5. `assume = real`: This option restrict the solutions to 

   only real numbers.

  

  6. `parametric`: This option allows Maple to write the 

   solutions in a parametric form. 

  

  7. `avoid ={x = a}`: This option makes solve exclude the 

   possibility `x = a` as a solution.

  

  8. `MaxDegree = d`: This option allows you to limit the 

   degree of the polynomial equations to be considered.

  

  9. `maxdepth = d`: This sets a limit on recursive depth to 

   which the computation should go to seek a solution.

  

  10. `multiplicities`: This option reports multiplicity of the 

   roots.

  

  11. `solutions = vars`: This option tells Maple to look for 

   solutions for specific variables.

  

  12. `numeric`: This option makes solve find a numeric 

   solution to the equation.

  

  13. `symbolic`: This option makes solve find a symbolic 

   solution to the equation.

  

  14. `simplify`: This option simplifies the solutions returned 

   by solve.

  

  15. `sqrt`: This option allows square roots in the output.

  

  It is important to note that not all options are suited for 

   use with all types of equations. Also, the "solve" command 

   in Maple can be occasionally limited by the complexity of 

   the equation, and may sometimes fail to find solutions that 

   more specialized software or methods can find."



 

 

I am trying to solve the following set of equations, I am able to find solutions for a simplified case (b=0) using the command solve but cannot seem to solve it for general b.

Is there a better way to attempt to find a solution?
solve.mw

restart

eqn := [(2*((q*r*a3^2-(1/2)*b^2*a3^2-(1/2)*r^2*a3^2-(1/2)*a2^2)*b^4*cos(theta)^4+(2*((q*r-(1/4)*b^2-(1/4)*r^2)*(b^2+r^2)*a4^2*sin(theta)^2-(1/2)*r^4*a3^2+q*r^3*a3^2+(1/2)*(1/2-b^2*a3^2+(1/2)*a1^2-a2^2)*r^2-(1/2)*q*(a1^2+1)*r+(1/4)*b^2*(a1^2+1)))*b^2*cos(theta)^2+2*r*(q^2*sin(theta)^4*b^2*r*a4^2-2*a4*((1/8)*a4*r^5-(1/4)*q*a4*r^4+(1/4)*b^2*a4*r^3-(1/2)*q*b*a1*r^2+b*((1/8)*b^3*a4+q^2*a1)*r+(1/4)*q*b^3*(a4*b-2*a1))*sin(theta)^2-(1/4)*r^5*a3^2+(1/2)*q*r^4*a3^2+(1/4)*(-a3^2*b^2+a1^2-a2^2+1)*r^3+q*(-a1^2-1/2)*r^2+((1/4)*b^2*(a1^2+1)+q^2*a1^2)*r-(1/2)*q*b^2*a1^2)))/((r^2+b^2*cos(theta)^2)*(-b^2+2*q*r-r^2)), (2*((q*r*s3^2-(1/2)*b^2*s3^2-(1/2)*r^2*s3^2-(1/2)*s2^2)*b^4*cos(theta)^4+(2*((q*r-(1/4)*b^2-(1/4)*r^2)*(b^2+r^2)*s4^2*sin(theta)^2-(1/2)*r^4*s3^2+q*r^3*s3^2+(1/2)*(1/2-b^2*s3^2+(1/2)*s1^2-s2^2)*r^2-(1/2)*q*(s1^2+1)*r+(1/4)*b^2*(s1^2+1)))*b^2*cos(theta)^2+2*r*(q^2*sin(theta)^4*b^2*r*s4^2-2*s4*((1/8)*r^5*s4-(1/4)*q*r^4*s4+(1/4)*b^2*r^3*s4-(1/2)*q*b*r^2*s1+b*((1/8)*b^3*s4+q^2*s1)*r+(1/4)*q*b^3*(b*s4-2*s1))*sin(theta)^2-(1/4)*r^5*s3^2+(1/2)*q*r^4*s3^2+(1/4)*(-b^2*s3^2+s1^2-s2^2+1)*r^3+q*(-s1^2-1/2)*r^2+((1/4)*b^2*(s1^2+1)+q^2*s1^2)*r-(1/2)*q*b^2*s1^2)))/((r^2+b^2*cos(theta)^2)*(-b^2+2*q*r-r^2)), (2*((1/2)*s2*sqrt(b^4*cos(theta)^4+8*q*sin(theta)^2*b^2*r+2*b^2*cos(theta)^2*r^2+r^4)+(q*r-(1/2)*b^2-(1/2)*r^2)*(b*sin(theta)^2*s4+s1)))/(-b^2+2*q*r-r^2), (2*((1/2)*a2*sqrt(b^4*cos(theta)^4+8*q*sin(theta)^2*b^2*r+2*b^2*cos(theta)^2*r^2+r^4)+(q*r-(1/2)*b^2-(1/2)*r^2)*(b*sin(theta)^2*a4+a1)))/(-b^2+2*q*r-r^2), (sqrt(b^4*cos(theta)^4+8*q*sin(theta)^2*b^2*r+2*b^2*cos(theta)^2*r^2+r^4)*n2+(2*(1+sin(theta)^2*b*n4+n1))*(q*r-(1/2)*b^2-(1/2)*r^2))/(-b^2+2*q*r-r^2), (2*(b^4*(q*s3*r*a3-(1/2)*s3*b^2*a3-(1/2)*s3*r^2*a3-(1/2)*a2*s2)*cos(theta)^4+(2*((q*r-(1/4)*b^2-(1/4)*r^2)*(b^2+r^2)*s4*a4*sin(theta)^2-(1/2)*s3*r^4*a3+q*s3*r^3*a3+(1/2)*(-s3*b^2*a3+(1/2)*a1*s1-a2*s2)*r^2-(1/2)*q*r*a1*s1+(1/4)*b^2*a1*s1))*b^2*cos(theta)^2+(2*(q^2*s4*sin(theta)^4*b^2*r*a4+(-(1/4)*s4*r^5*a4+(1/2)*q*s4*r^4*a4-(1/2)*s4*b^2*r^3*a4+(1/2)*q*b*(a1*s4+a4*s1)*r^2-b*((1/4)*s4*b^3*a4+q^2*(a1*s4+a4*s1))*r-(1/2)*q*b^3*(a4*b*s4-a1*s4-a4*s1))*sin(theta)^2-(1/4)*s3*r^5*a3+(1/2)*q*s3*r^4*a3+(1/4)*(-a3*b^2*s3+a1*s1-a2*s2)*r^3-q*r^2*a1*s1+a1*s1*(q^2+(1/4)*b^2)*r-(1/2)*q*b^2*a1*s1))*r))/((r^2+b^2*cos(theta)^2)*(-b^2+2*q*r-r^2)), (2*((1/2)*a2*sqrt(b^4*cos(theta)^4+8*q*sin(theta)^2*b^2*r+2*b^2*cos(theta)^2*r^2+r^4)+(q*r-(1/2)*b^2-(1/2)*r^2)*(b*sin(theta)^2*a4+a1)))/(-b^2+2*q*r-r^2), (2*(b^4*(q*n3*r*a3-(1/2)*n3*b^2*a3-(1/2)*n3*r^2*a3-(1/2)*a2*n2)*cos(theta)^4+(2*((q*r-(1/4)*b^2-(1/4)*r^2)*(b^2+r^2)*n4*a4*sin(theta)^2-(1/2)*n3*r^4*a3+q*n3*r^3*a3+(1/2)*(-n3*b^2*a3+(1/2)*a1*n1-a2*n2)*r^2-(1/2)*q*r*a1*n1+(1/4)*b^2*a1*n1))*b^2*cos(theta)^2+(2*(q^2*n4*sin(theta)^4*b^2*r*a4+(-(1/4)*n4*r^5*a4+(1/2)*q*n4*r^4*a4-(1/2)*n4*b^2*r^3*a4+(1/2)*q*b*(a1*n4+a4*n1)*r^2-b*((1/4)*n4*b^3*a4+q^2*(a1*n4+a4*n1))*r-(1/2)*q*b^3*(a4*b*n4-a1*n4-a4*n1))*sin(theta)^2-(1/4)*n3*r^5*a3+(1/2)*q*n3*r^4*a3+(1/4)*(-a3*b^2*n3+a1*n1-a2*n2)*r^3-q*r^2*a1*n1+a1*n1*(q^2+(1/4)*b^2)*r-(1/2)*q*b^2*a1*n1))*r))/((r^2+b^2*cos(theta)^2)*(-b^2+2*q*r-r^2)), (2*(b^4*(q*s3*r*n3-(1/2)*s3*b^2*n3-(1/2)*s3*r^2*n3-(1/2)*n2*s2)*cos(theta)^4+(2*((q*r-(1/4)*b^2-(1/4)*r^2)*(b^2+r^2)*s4*n4*sin(theta)^2-(1/2)*s3*r^4*n3+q*s3*r^3*n3+(1/2)*(-s3*b^2*n3+(1/2)*n1*s1-n2*s2)*r^2-(1/2)*q*r*n1*s1+(1/4)*b^2*n1*s1))*b^2*cos(theta)^2+(2*(q^2*s4*sin(theta)^4*b^2*r*n4+(-(1/4)*s4*r^5*n4+(1/2)*q*s4*r^4*n4-(1/2)*s4*b^2*r^3*n4+(1/2)*q*b*(n1*s4+n4*s1)*r^2-b*((1/4)*s4*b^3*n4+q^2*(n1*s4+n4*s1))*r-(1/2)*q*b^3*(b*n4*s4-n1*s4-n4*s1))*sin(theta)^2-(1/4)*s3*r^5*n3+(1/2)*q*s3*r^4*n3+(1/4)*(-b^2*n3*s3+n1*s1-n2*s2)*r^3-q*r^2*n1*s1+n1*s1*(q^2+(1/4)*b^2)*r-(1/2)*q*b^2*n1*s1))*r))/((r^2+b^2*cos(theta)^2)*(-b^2+2*q*r-r^2)), (2*((q*r*n3^2-(1/2)*b^2*n3^2-(1/2)*r^2*n3^2-(1/2)*n2^2)*b^4*cos(theta)^4+(2*((q*r-(1/4)*b^2-(1/4)*r^2)*(b^2+r^2)*n4^2*sin(theta)^2-(1/2)*r^4*n3^2+q*r^3*n3^2+(1/2)*(-b^2*n3^2+(1/2)*n1^2-n2^2)*r^2-(1/2)*q*r*n1^2+(1/4)*b^2*n1^2))*b^2*cos(theta)^2+2*r*(q^2*sin(theta)^4*b^2*r*n4^2-2*n4*((1/8)*n4*r^5-(1/4)*q*n4*r^4+(1/4)*n4*b^2*r^3-(1/2)*q*b*r^2*n1+b*((1/8)*n4*b^3+q^2*n1)*r+(1/4)*q*b^3*(b*n4-2*n1))*sin(theta)^2-(1/4)*r^5*n3^2+(1/2)*q*r^4*n3^2+(1/4)*(-b^2*n3^2+n1^2-n2^2)*r^3-q*r^2*n1^2+n1^2*(q^2+(1/4)*b^2)*r-(1/2)*q*b^2*n1^2)))/((r^2+b^2*cos(theta)^2)*(-b^2+2*q*r-r^2)), -(32*(((1/8)*(b*(-a2*a4+s2*s4)*(q-r)*sin(theta)^2+q*(a1*a2-s1*s2))*(q*r-(1/2)*b^2-(1/2)*r^2)*b^6*cos(theta)^6-(1/4)*b^4*((q*b^2-(3/2)*q*r^2+(3/2)*r^3)*(q*r-(1/2)*b^2-(1/2)*r^2)*(-a2*a4+s2*s4)*b*sin(theta)^2+(a1*a2-s1*s2)*q*(q*b^2*r+(1/2)*q*r^3-(1/2)*b^4-(3/4)*b^2*r^2))*cos(theta)^4+(b*(-a3*a4+s3*s4)*sin(theta)^2-s3*s1+a3*a1)*r*q*(q*r-(1/2)*b^2-(1/2)*r^2)^2*b^4*sin(theta)*cos(theta)^3+(1/8)*(7*(((1/14)*(3*(-a2*a4+s2*s4))*r^3-13*q*(-a2*a4+s2*s4)*r^2*(1/14)+(q^2+3*b^2*(1/14))*(-a2*a4+s2*s4)*r-(1/2)*q*b*(b*(-a2*a4+s2*s4)+(1/7)*a2*a1-(1/7)*s1*s2))*b*sin(theta)^2-(1/7)*r*(a1*a2-s1*s2)*(q-(1/2)*r)*q))*r^4*b^2*cos(theta)^2+(b*(-a3*a4+s3*s4)*sin(theta)^2-s3*s1+a3*a1)*r^3*q*(q*r-(1/2)*b^2-(1/2)*r^2)^2*b^2*sin(theta)*cos(theta)+(1/4)*(((1/4)*(-a2*a4+s2*s4)*r^5-7*q*(-a2*a4+s2*s4)*r^4*(1/4)+(1/2)*(5*(q^2+(1/10)*b^2))*(-a2*a4+s2*s4)*r^3-7*q*b^2*(-a2*a4+s2*s4)*r^2*(1/4)+q^2*b^2*(-a2*a4+s2*s4)*r-(1/2)*q*(b*(-a2*a4+s2*s4)+a2*a1-s1*s2)*b^3)*b*sin(theta)^2+r*(a1*a2-s1*s2)*(q*b^2+(1/2)*q*r^2-(3/4)*b^2*r-(1/4)*r^3)*q)*r^4)*sqrt(b^4*cos(theta)^4+8*q*sin(theta)^2*b^2*r+2*b^2*cos(theta)^2*r^2+r^4)-(1/32)*q*b^10*(a2-s2)*(a2+s2)*cos(theta)^10+(1/8)*b^8*((2*((1/8)*(-a4^2+s4^2)*r^4+5*q*(a4^2-s4^2)*r^3*(1/8)+(s4-a4)*(s4+a4)*(q^2+(1/4)*b^2)*r^2-3*q*b^2*(s4-a4)*(s4+a4)*r*(1/4)+(1/8)*((-a4^2+s4^2)*b^2-a2^2+s2^2)*b^2))*r*sin(theta)^2+(1/4)*(-a3^2+s3^2)*r^5+(a3^2-s3^2)*q*r^4+((1/2)*b^2+q^2)*(s3-a3)*(s3+a3)*r^3-((-a3^2+s3^2)*b^2+7*a2^2*(1/4)-7*s2^2*(1/4))*q*r^2+(1/4)*b^4*(-a3^2+s3^2)*r+q*b^2*(a2-s2)*(a2+s2))*cos(theta)^8+(1/2)*r*q*(q*r-(1/2)*b^2-(1/2)*r^2)*b^8*sin(theta)*(-a2*a3+s2*s3)*cos(theta)^7+(1/8)*((s4-a4)*(s4+a4)*(q*r-(1/2)*b^2)^2*q*b^2*sin(theta)^4+((-a4^2+s4^2)*r^7+25*q*(a4^2-s4^2)*r^6*(1/4)+(15*(s4-a4))*(s4+a4)*(q^2+2*b^2*(1/15))*r^5-33*q*b*((-a4^2+s4^2)*b+2*s1*s4*(1/33)-2*a1*a4*(1/33))*r^4*(1/4)+((-a4^2+s4^2)*b^4+((12*(-a4^2+s4^2))*q^2-a2^2+s2^2)*b^2+2*q^2*(-a1*a4+s1*s4)*b)*r^3-(2*((1/8)*(7*(-a4^2+s4^2))*b^3+(1/2)*(-a1*a4+s1*s4)*b^2+q^2*(-a1*a4+s1*s4)))*q*b*r^2+2*q^2*b^3*(-a1*a4+s1*s4)*r-(1/2)*q*b^5*(-a1*a4+s1*s4))*sin(theta)^2+(-a3^2+s3^2)*r^7+(6*(a3^2-s3^2))*q*r^6+(12*(q^2+(1/6)*b^2))*(s3-a3)*(s3+a3)*r^5-(8*((-a3^2+s3^2)*b^2+(1/32)*a1^2+11*a2^2*(1/16)-(1/32)*s1^2-11*s2^2*(1/16)))*q*r^4+(b^4*(-a3^2+s3^2)+8*q^2*(-a3^2+s3^2)*b^2+q^2*(a1^2-s1^2))*r^3-(2*b^4*(-a3^2+s3^2)+((1/2)*a1^2-2*a2^2-(1/2)*s1^2+2*s2^2)*b^2+q^2*(a1^2-s1^2))*q*r^2+q^2*b^2*(a1-s1)*(a1+s1)*r-(1/4)*q*b^4*(a1^2+4*a2^2-s1^2-4*s2^2))*b^6*cos(theta)^6-r*q*(q*r-(1/2)*b^2-(1/2)*r^2)*(b^2-(1/2)*r^2)*b^6*sin(theta)*(-a2*a3+s2*s3)*cos(theta)^5+r*b^4*((s4-a4)*(s4+a4)*(q*b^2*r+(17/8)*q*r^3-(1/4)*b^4)*q^2*b^2*sin(theta)^4+((1/16)*(3*(-a4^2+s4^2))*r^8+39*q*(a4^2-s4^2)*r^7*(1/32)+(1/8)*(19*(s4-a4))*(s4+a4)*(q^2+3*b^2*(1/19))*r^6-45*q*b*((-a4^2+s4^2)*b+2*s1*s4*(1/45)-2*a1*a4*(1/45))*r^5*(1/32)-(1/4)*((1/4)*(3*(a4^2-s4^2))*b^2+(-a4^2+s4^2)*q^2+3*a2^2*(1/4)-3*s2^2*(1/4))*b^2*r^4+((1/32)*(3*(-a4^2+s4^2))*b^3+(1/8)*(a1*a4-s1*s4)*b^2+q^2*(-a3^2+s3^2)*b-9*q^2*(-a1*a4+s1*s4)*(1/4))*q*b*r^3-(1/8)*(19*((-a4^2+s4^2)*b^2+(1/19)*(10*(a1*a4-s1*s4))*b+4*a2^2*(1/19)-4*s2^2*(1/19)))*q^2*b^2*r^2-(2*((1/64)*(9*(a4^2-s4^2))*b^3+(1/32)*(-a1*a4+s1*s4)*b^2+q^2*(-a1*a4+s1*s4)))*q*b^3*r+(1/2)*q^2*b^5*(-a1*a4+s1*s4))*sin(theta)^2+(1/16)*(3*(-a3^2+s3^2))*r^8+5*q*(a3^2-s3^2)*r^7*(1/4)+(1/4)*(11*(q^2+3*b^2*(1/22)))*(s3-a3)*(s3+a3)*r^6-(1/2)*(3*((-a3^2+s3^2)*b^2+(1/48)*a1^2+13*a2^2*(1/24)-(1/48)*s1^2-13*s2^2*(1/24)))*q*r^5+(q^2+3*b^2*(1/16))*(s3-a3)*(s3+a3)*b^2*r^4-(1/8)*(9*((1/9)*((1/2)*a1^2-4*a2^2-(1/2)*s1^2+4*s2^2)*b^2+q^2*(a1^2-s1^2)))*q*r^3-((-a3^2+s3^2)*b^2-5*a1^2*(1/8)+5*s1^2*(1/8))*q^2*b^2*r^2-q*b^2*((1/4)*(a3^2-s3^2)*b^4+(1/8)*((1/4)*a1^2+a2^2-(1/4)*s1^2-s2^2)*b^2+q^2*(a1^2-s1^2))*r+(1/4)*q^2*b^4*(a1-s1)*(a1+s1))*cos(theta)^4-(2*(b^2+(1/4)*r^2))*r^3*q*(q*r-(1/2)*b^2-(1/2)*r^2)*b^4*sin(theta)*(-a2*a3+s2*s3)*cos(theta)^3+(q^4*b^4*r^2*(s4-a4)*(s4+a4)*sin(theta)^6-(2*(7*q*(a4^2-s4^2)*r^5*(1/16)+3*b*(-a1*a4+s1*s4)*r^4*(1/8)+q*b^2*(s4-a4)*(s4+a4)*r^3+q^2*(-a1*a4+s1*s4)*b*r^2+(1/2)*q*b^4*(s4-a4)*(s4+a4)*r+(1/8)*b^6*(a4^2-s4^2)))*q^2*b^2*sin(theta)^4+((1/8)*(-a4^2+s4^2)*r^10+23*q*(a4^2-s4^2)*r^9*(1/32)+(1/8)*(11*(s4-a4))*(s4+a4)*(q^2+2*b^2*(1/11))*r^8-(1/32)*(15*((-a4^2+s4^2)*b-2*s1*s4*(1/15)+2*a1*a4*(1/15)))*q*b*r^7-(1/2)*((1/4)*(a4^2-s4^2)*b^3+((-a4^2+s4^2)*q^2+(1/4)*a2^2-(1/4)*s2^2)*b+3*q^2*(-a1*a4+s1*s4)*(1/2))*b*r^6+(2*((1/64)*(23*(-a4^2+s4^2))*b^3+(1/16)*(-a1*a4+s1*s4)*b^2+q^2*(-a3^2+s3^2)*b+9*q^2*(-a1*a4+s1*s4)*(1/8)))*q*b*r^5-(1/8)*(5*((-a4^2+s4^2)*b^2+3*a1^2*(1/5)+8*a2^2*(1/5)-3*s1^2*(1/5)-8*s2^2*(1/5)))*q^2*b^2*r^4+4*q*((1/128)*(15*(-a4^2+s4^2))*b^3+(1/64)*(-a1*a4+s1*s4)*b^2+q^2*(-a1*a4+s1*s4))*b^3*r^3-((a4^2-s4^2)*b^4+(1/2)*(3*(-a1*a4+s1*s4))*b^3+q^2*(a1^2-s1^2))*q^2*b^2*r^2+2*q^3*b^5*(-a1*a4+s1*s4)*r-(1/2)*q^2*b^7*(-a1*a4+s1*s4))*sin(theta)^2+(1/8)*(-a3^2+s3^2)*r^10+3*q*(a3^2-s3^2)*r^9*(1/4)+(1/2)*(3*(q^2+(1/6)*b^2))*(s3-a3)*(s3+a3)*r^8-(1/2)*((-a3^2+s3^2)*b^2-(1/16)*a1^2+9*a2^2*(1/16)+(1/16)*s1^2-9*s2^2*(1/16))*q*r^7+((1/8)*b^4*(-a3^2+s3^2)+(a3^2-s3^2)*q^2*b^2+3*q^2*(-a1^2+s1^2)*(1/8))*r^6+9*q*(2*b^4*(-a3^2+s3^2)*(1/3)+(1/3)*((1/6)*a1^2+2*a2^2-(1/6)*s1^2-2*s2^2)*b^2+q^2*(a1^2-s1^2))*r^5*(1/8)+(2*(a3^2-s3^2))*q^2*b^4*r^4+2*q*((1/4)*b^4*(-a3^2+s3^2)+(1/16)*((1/4)*a1^2+a2^2-(1/4)*s1^2-s2^2)*b^2+q^2*(a1^2-s1^2))*b^2*r^3-3*q^2*b^4*(a1-s1)*(a1+s1)*r^2*(1/4)+q^3*b^4*(a1-s1)*(a1+s1)*r-(1/4)*q^2*b^6*(a1-s1)*(a1+s1))*r*b^2*cos(theta)^2-(b^2+(1/2)*r^2)*r^5*q*(q*r-(1/2)*b^2-(1/2)*r^2)*b^2*sin(theta)*(-a2*a3+s2*s3)*cos(theta)-r^3*(q^4*b^4*r^2*(s4-a4)*(s4+a4)*sin(theta)^6-2*r*(7*q*(-a4^2+s4^2)*r^4*(1/16)+(1/2)*q*b^2*(s4-a4)*(s4+a4)*r^2+(-a1*a4+s1*s4)*((1/2)*b^2+q^2)*b*r+(1/2)*q*b^4*(s4-a4)*(s4+a4))*q^2*b^2*sin(theta)^4+((1/32)*(a4^2-s4^2)*r^10+(1/8)*q*(-a4^2+s4^2)*r^9-(1/8)*(s4-a4)*(s4+a4)*((1/2)*b^2+q^2)*r^8-(1/32)*(3*((-a4^2+s4^2)*b+2*s1*s4*(1/3)-2*a1*a4*(1/3)))*q*b*r^7+(1/8)*(7*((1/28)*(a4^2-s4^2)*b^3+((-a4^2+s4^2)*q^2+(1/28)*a2^2-(1/28)*s2^2)*b+2*q^2*(-a1*a4+s1*s4)*(1/7)))*b*r^6-((1/16)*(7*(-a4^2+s4^2))*b^3+(1/8)*(-a1*a4+s1*s4)*b^2+q^2*(-a3^2+s3^2)*b+(1/4)*q^2*(-a1*a4+s1*s4))*q*b*r^5+(1/8)*(9*((-a4^2+s4^2)*b^2+(1/9)*(2*(a1*a4-s1*s4))*b+4*a2^2*(1/9)-4*s2^2*(1/9)))*q^2*b^2*r^4+(2*((1/64)*(7*(a4^2-s4^2))*b^3+(1/32)*(a1*a4-s1*s4)*b^2+q^2*(-a1*a4+s1*s4)))*q*b^3*r^3-q^2*b^2*((1/2)*(a4^2-s4^2)*b^4+(1/2)*(a1^2-s1^2)*b^2+q^2*(a1^2-s1^2))*r^2+2*q^3*b^5*(-a1*a4+s1*s4)*r+(1/4)*q^2*b^7*((-a4^2+s4^2)*b-2*s1*s4+2*a1*a4))*sin(theta)^2+(1/32)*(a3^2-s3^2)*r^10+(1/8)*q*(-a3^2+s3^2)*r^9-(1/8)*((1/2)*b^2+q^2)*(s3-a3)*(s3+a3)*r^8-(1/8)*((-a3^2+s3^2)*b^2+(1/4)*a1^2+(1/4)*a2^2-(1/4)*s1^2-(1/4)*s2^2)*q*r^7+((1/32)*(a3^2-s3^2)*b^4+q^2*(-a3^2+s3^2)*b^2+(1/8)*q^2*(a1^2-s1^2))*r^6-(1/8)*(4*b^4*(-a3^2+s3^2)+((1/2)*a1^2+3*a2^2-(1/2)*s1^2-3*s2^2)*b^2+q^2*(a1^2-s1^2))*q*r^5+q^2*((-a3^2+s3^2)*b^2+(1/8)*s1^2-(1/8)*a1^2)*b^2*r^4+((1/4)*(a3^2-s3^2)*b^4+(1/8)*(-a2^2+s2^2+(1/4)*s1^2-(1/4)*a1^2)*b^2+q^2*(a1^2-s1^2))*q*b^2*r^3+q^3*b^4*(a1-s1)*(a1+s1)*r-(1/4)*q^2*b^6*(a1-s1)*(a1+s1))))/(sqrt(b^4*cos(theta)^4+8*q*sin(theta)^2*b^2*r+2*b^2*cos(theta)^2*r^2+r^4)*(r^2+b^2*cos(theta)^2)^3*(-b^2+2*q*r-r^2)^2)]

solve(eqn, {a1, a2, a3, a4, n1, n2, n3, n4, s1, s2, s3, s4})

``

NULL


 

Download solve.mw

 

In many special cases, generalized hypergeometric functions can be transformed into other (possibly less general) functions, but sometimes Maple fails to convert some of them to other functions when possible.
For instance, 

4*hypergeom([1, 1], [2, 3, 7/2], -(x/2)**2) - 
 35*hypergeom([1, 1], [2, 5/2, 3], -(x/2)**2) - 
 2*hypergeom([1, 1], [3, 3, 7/2], -(x/2)**2) + 
 10*hypergeom([1, 1], [5/2, 3, 3], -(x/2)**2): # which is, in fact, “360*((Ci(x) - ln(x) + 19/18 - gamma)/x**2 - sin(x)/x**3 + (cos(x) + 5/3)/x**4 - 8/3*sin(x)/x**5)” 
expand(%);
 = 
RealDomain:-expand(4*hypergeom([1, 1], [2, 3, 7/2], -(x/2)**2) - 35*hypergeom([1, 1], [2, 5/2, 3], -(x/2)**2) - 2*hypergeom([1, 1], [3, 3, 7/2], -(x/2)**2) + 10*hypergeom([1, 1], [5/2, 3, 3], -(x/2)**2))


simplify(%);
RealDomain:-simplify(4*hypergeom([1, 1], [2, 3, 7/2], -(x/2)**2) - 35*hypergeom([1, 1], [2, 5/2, 3], -(x/2)**2) - 2*hypergeom([1, 1], [3, 3, 7/2], -(x/2)**2) + 10*hypergeom([1, 1], [5/2, 3, 3], -(x/2)**2))


Is it possible to obtain a non-hypergeometric form of it? E.g., 

Here are more examples that `simplify/hypergeom` (as well as expand) is unable to deal with: 

  1. hypergeom([1, 1, 3/2], [5/2, 5/2, 3, 3], -(x/2)**2):
  2. hypergeom([1, 1], [5/2, 3, 3], -(x/2)**2):
  3. hypergeom([1, 1], [3/2, 2, 2], -(x/2)**2):
  4. hypergeom([3/2], [5/2, 5/2], -(x/2)**2):
  5. … (to be continued) 

I have read something like How to simplify this hypergeometric function? - MaplePrimes, yet those tricks do not appear to work here. Is there any workaround? 

Edit. There seems to be a bug in `simplify/hypergeom`: 

'hypergeom([-1/3, 1/3, -1/2 - m, -m], [1/2, 1/3 - m, 2/3 - m], 1)':
simplify(`%`, hypergeom) assuming m::nonnegint;
 = 
                               -1
                               --
                               2 

simplify(eval(`%%`, m = 0), 'constant');
 = 
                               1

The expected result should be a piecewise function. 

I looked up 
https://www.maplesoft.com/Applications/TopApplications.aspx
and scrolled. Often, when a new batch of applications is loaded the scroll repositions arbitrarily. Is it my browser? How do I control this?

Hello. I'm trying to model the pharmacodynamics of salicylic acid with two body comportants, SA1 and SA2. At t=1, I wish to inject a single pulse of salicylic acid in the system, so that the variable Inj is equal to Dose for t=1 and equal to zero for any other time t.

But dsolve doesn't seem to take into account this "ifelse" nature of Inj, and as a result, it yields the wrong solution where SA1 and SA2 remain at the initial condition zero throughout. How can I fix this? Here's my code:

restart;

k12:=0.0452821;
k21:=0.0641682;
k1x:=0.00426118;
Dose:=484;
Inj:=ifelse(t=1,Dose,0);

ode_sys:=diff(SA2(t),t)=SA1(t)*k12-SA2(t)*k21,diff(SA1(t),t)=Inj-k1x*SA1(t);

ics:=SA2(0)=0,SA1(0)=0;

Solution1:=dsolve({ode_sys,ics},{SA1(t),SA2(t)},type=numeric);

plots:-odeplot(Solution1,[[t,SA1(t),color="red",thickness=1],[t,SA2(t),color="blue",thickness=1]],t=0..500,labels=["Time t","Salicylic acid"],labeldirections=[horizontal,vertical]);

It finds a solution where SA1 and SA2 remain zero throughout, whereas due to the single pulse of salicylic acid, they should be non-zero.

I also tried: Solution1:=dsolve({ode_sys,ics},{SA1(t),SA2(t)},type=numeric,parameters=[Inj=ifelse(t=1,Dose,0)]); but here I get an error message

Can you help? Many thanks. I'm still learning Maple with the book "Mathematische Probleme lösen mit Maple", and now also with the site gould.prof/learning-maple

 

Maple does not have full_simplify() command like with Mathematica.

So I figured why not make one? 

Here is a basic implementation. All what it does is blindly tries different simplifications methods I know about and learned from this forum then at the end sorts the result by leaf count and returns to the user the one with smallest leaf count.

I tried it on few inputs.

Advantage of full_simplify() is that user does not have to keep trying themselves. One disadvantage is that this can take longer time. timelimit can be added to this to make it not hang.

Can you see and make more improvement to this function?

May be we all together can make a better full_simplify() in Maple to use. Feel free to edit and change.

#version 1.0  
#increment version number each time when making changes.

full_simplify:=proc(e::anything)
   local result::list;
   local f:=proc(a,b)
      RETURN(MmaTranslator:-Mma:-LeafCount(a)<MmaTranslator:-Mma:-LeafCount(b))
   end proc;

   #add more methods as needed

   result:=[simplify(e),
            simplify(e,size),
            simplify(combine(e)),
            simplify(combine(e),size),
            radnormal(evala( combine(e) )),
            simplify(evala( combine(e) )),
            evala(radnormal( combine(e) )),
            simplify(radnormal( combine(e) )),
            evala(factor(e)),
            simplify(e,ln),
            simplify(e,power),
            simplify(e,RootOf),
            simplify(e,sqrt),
            simplify(e,trig),
            simplify(convert(e,trig)),
            simplify(convert(e,exp)),
            combine(e)
   ];   
   RETURN( sort(result,f)[1]);   

end proc:

worksheet below

 


 

204648

#version 1.0  
#increment version number each time when making changes.

full_simplify:=proc(e::anything)
   local result::list;
   local f:=proc(a,b)
      RETURN(MmaTranslator:-Mma:-LeafCount(a)<MmaTranslator:-Mma:-LeafCount(b))
   end proc;

   #add more methods as needed

   result:=[simplify(e),
            simplify(e,size),
            simplify(combine(e)),
            simplify(combine(e),size),
            radnormal(evala( combine(e) )),
            simplify(evala( combine(e) )),
            evala(radnormal( combine(e) )),
            simplify(radnormal( combine(e) )),
            evala(factor(e)),
            simplify(e,ln),
            simplify(e,power),
            simplify(e,RootOf),
            simplify(e,sqrt),
            simplify(e,trig),
            simplify(convert(e,trig)),
            simplify(convert(e,exp)),
            combine(e)
   ];   
   RETURN( sort(result,f)[1]);   

end proc:

#test cases
T:=[(-192*cos(t)^6 + 288*cos(t)^4 - 912*cos(t)^3 - 108*cos(t)^2 + 684*cos(t) - 54)/(4608*cos(t)^9 - 10368*cos(t)^7 + 6208*cos(t)^6 + 7776*cos(t)^5 - 9312*cos(t)^4 - 2440*cos(t)^3 + 3492*cos(t)^2 + 372*cos(t) - 1169),
(10*(5+sqrt(41)))/(sqrt(70+10*sqrt(41))*sqrt(130+10*sqrt(41))),
((6-4*sqrt(2))*ln(3-2*sqrt(2))+(3-2*sqrt(2))*ln(17-12*sqrt(2))+32-24*sqrt(2))/(48*sqrt(2)-72)*(ln(sqrt(2)+1)+sqrt(2))/3,
(1/2)*exp((1/2)*x)*(cosh((1/2)*x)-cosh((3/2)*x)+sinh((1/2)*x)+sinh((3/2)*x))
];

[(-192*cos(t)^6+288*cos(t)^4-912*cos(t)^3-108*cos(t)^2+684*cos(t)-54)/(4608*cos(t)^9-10368*cos(t)^7+6208*cos(t)^6+7776*cos(t)^5-9312*cos(t)^4-2440*cos(t)^3+3492*cos(t)^2+372*cos(t)-1169), 10*(5+41^(1/2))/((70+10*41^(1/2))^(1/2)*(130+10*41^(1/2))^(1/2)), (1/3)*((6-4*2^(1/2))*ln(3-2*2^(1/2))+(3-2*2^(1/2))*ln(17-12*2^(1/2))+32-24*2^(1/2))*(ln(1+2^(1/2))+2^(1/2))/(48*2^(1/2)-72), (1/2)*exp((1/2)*x)*(cosh((1/2)*x)-cosh((3/2)*x)+sinh((1/2)*x)+sinh((3/2)*x))]

full_simplify~(T)

[-6*(10+cos(6*t)+38*cos(3*t))/(-975+18*cos(9*t)-70*cos(3*t)+194*cos(6*t)), (1/2)*2^(1/2), (1/9)*(ln(1+2^(1/2))+2^(1/2))^2, (1/2)*exp(x)-(1/2)*exp(-x)]

 


 

Download full_simplify.mw

In a homework assignment on differential geometry, a student used Mathematica to calculate the torsion of a trefoil curve.  His result, using identical steps as mine, was significantly simpler than what I had gotten with Maple, although as we see in the attached workseet, they are mathematically equivalent.

Is there a way to coax Maple to reduce its result to something like my student has obtained?

My calculation

T1 := (-192*cos(t)^6 + 288*cos(t)^4 - 912*cos(t)^3 - 108*cos(t)^2 + 684*cos(t) - 54)/(4608*cos(t)^9 - 10368*cos(t)^7 + 6208*cos(t)^6 + 7776*cos(t)^5 - 9312*cos(t)^4 - 2440*cos(t)^3 + 3492*cos(t)^2 + 372*cos(t) - 1169);

(-192*cos(t)^6+288*cos(t)^4-912*cos(t)^3-108*cos(t)^2+684*cos(t)-54)/(4608*cos(t)^9-10368*cos(t)^7+6208*cos(t)^6+7776*cos(t)^5-9312*cos(t)^4-2440*cos(t)^3+3492*cos(t)^2+372*cos(t)-1169)

The student's calculation

T2 := 6*(10+38*cos(3*t)+cos(6*t))/(975+70*cos(3*t)-194*cos(6*t) -18*cos(9*t));

6*(10+38*cos(3*t)+cos(6*t))/(975+70*cos(3*t)-194*cos(6*t)-18*cos(9*t))

simplify(T1 - T2);

0

 

Download torsion2.mw

Is it possible to simplify the following relatively simple expression  (10*(5+sqrt(41)))/(sqrt(70+10*sqrt(41))*sqrt(130+10*sqrt(41)))  using 1-2 standard commands  simplify , combine, radnormal  and so on?   I was unable to do this in Maple 2018. Maybe newer versions of Maple will be able to handle this. I managed to simplify it in 3 steps:

expr:=(10*(5+sqrt(41)))/(sqrt(70+10*sqrt(41))*sqrt(130+10*sqrt(41)));
sqrt(simplify(expr^2));

                              

 

WHY DOES THE TRANSPOSE OF Vt DETERMINED BY THE FUNCTION SingularValues NOT AGREE WITH THE evectors CALCULATED BY THE FUNCTION Eigenvectors?

 

restart:
with(LinearAlgebra):

X := Matrix([[8.79,9.93,9.83,5.45,3.16],
           [6.11,6.91,5.04,-0.27,7.98],
           [-9.15,-7.93,4.86,4.85,3.01],
           [9.57,1.64,8.83,0.74,5.80],
           [-3.49,4.02,9.80,10.00,4.27],
           [9.84,0.15,-8.99,-6.02,-5.31]],
           datatype=float[8],order=Fortran_order);

Matrix(6, 5, {(1, 1) = 8.79, (1, 2) = 9.93, (1, 3) = 9.83, (1, 4) = 5.45, (1, 5) = 3.16, (2, 1) = 6.11, (2, 2) = 6.91, (2, 3) = 5.04, (2, 4) = -.27, (2, 5) = 7.98, (3, 1) = -9.15, (3, 2) = -7.93, (3, 3) = 4.86, (3, 4) = 4.85, (3, 5) = 3.01, (4, 1) = 9.57, (4, 2) = 1.64, (4, 3) = 8.83, (4, 4) = .74, (4, 5) = 5.8, (5, 1) = -3.49, (5, 2) = 4.02, (5, 3) = 9.8, (5, 4) = 10.0, (5, 5) = 4.27, (6, 1) = 9.84, (6, 2) = .15, (6, 3) = -8.99, (6, 4) = -6.02, (6, 5) = -5.31})

(1)

U,S,Vt:= SingularValues(X, output = ['U', 'S', 'Vt'],thin=true)

U, S, Vt := Matrix(6, 5, {(1, 1) = -.591142376412437, (1, 2) = .263167814714055, (1, 3) = .355430173862827, (1, 4) = .314264362726927, (1, 5) = .229938315364748, (2, 1) = -.397566794202426, (2, 2) = .243799027926330, (2, 3) = -.222390000685446, (2, 4) = -.753466150953458, (2, 5) = -.363589686697497, (3, 1) = -0.334789690624459e-1, (3, 2) = -.600272580693583, (3, 3) = -.450839268922308, (3, 4) = .233449657244714, (3, 5) = -.305475732747932, (4, 1) = -.429706903137018, (4, 2) = .236166806281125, (4, 3) = -.685862863873811, (4, 4) = .331860018200310, (4, 5) = .164927634884511, (5, 1) = -.469747921566658, (5, 2) = -.350891398883703, (5, 3) = .387444603099673, (5, 4) = .158735559582156, (5, 5) = -.518257437353535, (6, 1) = .293358758464403, (6, 2) = .576262119133891, (6, 3) = -0.208529179808710e-1, (6, 4) = .379077667060160, (6, 5) = -.652551600592398}), Vector(6, {(1) = 27.4687324182218, (2) = 22.6431850097747, (3) = 8.55838822848258, (4) = 5.98572320151213, (5) = 2.01489965871576, (6) = 0.}), Matrix(5, 5, {(1, 1) = -.251382792720498, (1, 2) = -.396845551776930, (1, 3) = -.692151007470363, (1, 4) = -.366170444772230, (1, 5) = -.407635238653352, (2, 1) = .814836686086339, (2, 2) = .358661500188002, (2, 3) = -.248888011159285, (2, 4) = -.368593537944618, (2, 5) = -0.979625692668875e-1, (3, 1) = -.260618505584221, (3, 2) = .700768209407253, (3, 3) = -.220811446720437, (3, 4) = .385938483188542, (3, 5) = -.493250142851024, (4, 1) = .396723777130597, (4, 2) = -.450711241216643, (4, 3) = .251321149693754, (4, 4) = .434248601436671, (4, 5) = -.622684072035804, (5, 1) = -.218027763686546, (5, 2) = .140209949871121, (5, 3) = .589119449239943, (5, 4) = -.626528250364817, (5, 5) = -.439551692342332})

(2)

SDM:= DiagonalMatrix(S[1..5],5,5)

Matrix(5, 5, {(1, 1) = 27.46873241822184, (1, 2) = 0., (1, 3) = 0., (1, 4) = 0., (1, 5) = 0., (2, 1) = 0., (2, 2) = 22.643185009774694, (2, 3) = 0., (2, 4) = 0., (2, 5) = 0., (3, 1) = 0., (3, 2) = 0., (3, 3) = 8.558388228482578, (3, 4) = 0., (3, 5) = 0., (4, 1) = 0., (4, 2) = 0., (4, 3) = 0., (4, 4) = 5.985723201512132, (4, 5) = 0., (5, 1) = 0., (5, 2) = 0., (5, 3) = 0., (5, 4) = 0., (5, 5) = 2.014899658715757})

(3)

THIS EQUALS TO ORIGINAL X MATRIX

 

U.SDM.Vt

Matrix(6, 5, {(1, 1) = 8.789999999999997, (1, 2) = 9.93, (1, 3) = 9.829999999999995, (1, 4) = 5.449999999999993, (1, 5) = 3.159999999999998, (2, 1) = 6.1099999999999985, (2, 2) = 6.9099999999999975, (2, 3) = 5.0399999999999965, (2, 4) = -.26999999999999996, (2, 5) = 7.980000000000001, (3, 1) = -9.14999999999999, (3, 2) = -7.930000000000001, (3, 3) = 4.859999999999987, (3, 4) = 4.849999999999992, (3, 5) = 3.009999999999995, (4, 1) = 9.569999999999997, (4, 2) = 1.6399999999999977, (4, 3) = 8.82999999999999, (4, 4) = .7399999999999956, (4, 5) = 5.799999999999994, (5, 1) = -3.489999999999992, (5, 2) = 4.019999999999998, (5, 3) = 9.799999999999985, (5, 4) = 9.999999999999988, (5, 5) = 4.269999999999993, (6, 1) = 9.83999999999999, (6, 2) = .15000000000000033, (6, 3) = -8.989999999999982, (6, 4) = -6.0199999999999925, (6, 5) = -5.309999999999993})

(4)

X -~ U.SDM.Vt

Matrix(6, 5, {(1, 1) = 0.1776356839e-14, (1, 2) = 0., (1, 3) = 0.5329070518e-14, (1, 4) = 0.7105427358e-14, (1, 5) = 0.2220446049e-14, (2, 1) = 0.1776356839e-14, (2, 2) = 0.2664535259e-14, (2, 3) = 0.3552713679e-14, (2, 4) = -0.5551115123e-16, (2, 5) = -0.8881784197e-15, (3, 1) = -0.1065814104e-13, (3, 2) = 0.8881784197e-15, (3, 3) = 0.1332267630e-13, (3, 4) = 0.7993605777e-14, (3, 5) = 0.4884981308e-14, (4, 1) = 0.3552713679e-14, (4, 2) = 0.2220446049e-14, (4, 3) = 0.1065814104e-13, (4, 4) = 0.4440892099e-14, (4, 5) = 0.6217248938e-14, (5, 1) = -0.7993605777e-14, (5, 2) = 0.1776356839e-14, (5, 3) = 0.1598721155e-13, (5, 4) = 0.1243449788e-13, (5, 5) = 0.6217248938e-14, (6, 1) = 0.1065814104e-13, (6, 2) = -0.3330669074e-15, (6, 3) = -0.1776356839e-13, (6, 4) = -0.7105427358e-14, (6, 5) = -0.6217248938e-14})

(5)

EIGENVALUES

 

S*~S

Vector(6, {(1) = 754.5312606638714, (2) = 512.7138273868854, (3) = 73.24600906942915, (4) = 35.82888224512065, (5) = 4.059820634692874, (6) = 0.})

(6)

EIGENVECTORS

 

Transpose(Vt)

Matrix(5, 5, {(1, 1) = -.2513827927204978, (1, 2) = .8148366860863387, (1, 3) = -.2606185055842209, (1, 4) = .39672377713059703, (1, 5) = -.21802776368654583, (2, 1) = -.3968455517769299, (2, 2) = .35866150018800186, (2, 3) = .7007682094072526, (2, 4) = -.45071124121664313, (2, 5) = .1402099498711206, (3, 1) = -.6921510074703628, (3, 2) = -.2488880111592855, (3, 3) = -.22081144672043732, (3, 4) = .2513211496937536, (3, 5) = .5891194492399427, (4, 1) = -.3661704447722298, (4, 2) = -.3685935379446182, (4, 3) = .3859384831885419, (4, 4) = .434248601436671, (4, 5) = -.6265282503648171, (5, 1) = -.4076352386533523, (5, 2) = -0.979625692668875e-1, (5, 3) = -.4932501428510237, (5, 4) = -.6226840720358041, (5, 5) = -.4395516923423325})

(7)

COMPARE LINE (6) AND THE evalues OF  LINE  (8), IN AGREEMENT.

 

COMPARE LINE (7) AND THE evectors OF LINE (8), NOT IN AGREEMENT.

 

evalues, evectors:= Eigenvectors(Transpose(X).X)

evalues, evectors := Vector(5, {(1) = 754.531260663872+0.*I, (2) = 512.713827386885+0.*I, (3) = 73.2460090694292+0.*I, (4) = 35.8288822451207+0.*I, (5) = 4.05982063469289+0.*I}), Matrix(5, 5, {(1, 1) = -.251382792720496+0.*I, (1, 2) = -.814836686086340+0.*I, (1, 3) = -.260618505584220+0.*I, (1, 4) = .396723777130597+0.*I, (1, 5) = .218027763686546+0.*I, (2, 1) = -.396845551776929+0.*I, (2, 2) = -.358661500188003+0.*I, (2, 3) = .700768209407252+0.*I, (2, 4) = -.450711241216643+0.*I, (2, 5) = -.140209949871121+0.*I, (3, 1) = -.692151007470364+0.*I, (3, 2) = .248888011159284+0.*I, (3, 3) = -.220811446720437+0.*I, (3, 4) = .251321149693753+0.*I, (3, 5) = -.589119449239943+0.*I, (4, 1) = -.366170444772231+0.*I, (4, 2) = .368593537944617+0.*I, (4, 3) = .385938483188543+0.*I, (4, 4) = .434248601436671+0.*I, (4, 5) = .626528250364817+0.*I, (5, 1) = -.407635238653353+0.*I, (5, 2) = 0.979625692668865e-1+0.*I, (5, 3) = -.493250142851024+0.*I, (5, 4) = -.622684072035804+0.*I, (5, 5) = .439551692342333+0.*I})

(8)

sdm:= DiagonalMatrix(evalues[1..5],5,5)

Matrix(5, 5, {(1, 1) = 754.5312606638715+0.*I, (1, 2) = 0.*I, (1, 3) = 0.*I, (1, 4) = 0.*I, (1, 5) = 0.*I, (2, 1) = 0.*I, (2, 2) = 512.7138273868852+0.*I, (2, 3) = 0.*I, (2, 4) = 0.*I, (2, 5) = 0.*I, (3, 1) = 0.*I, (3, 2) = 0.*I, (3, 3) = 73.2460090694292+0.*I, (3, 4) = 0.*I, (3, 5) = 0.*I, (4, 1) = 0.*I, (4, 2) = 0.*I, (4, 3) = 0.*I, (4, 4) = 35.82888224512066+0.*I, (4, 5) = 0.*I, (5, 1) = 0.*I, (5, 2) = 0.*I, (5, 3) = 0.*I, (5, 4) = 0.*I, (5, 5) = 4.0598206346928905+0.*I})

(9)

THIS SHOULD EQUAL TO THE ORIGINAL X MATRIX??

 

U.sdm.Transpose(evectors)

Matrix(6, 5, {(1, 1) = 0.6552908001635141e-1+0.*I, (1, 2) = 141.65095872384822+0.*I, (1, 3) = 338.83755003799257+0.*I, (1, 4) = 228.5810832324622+0.*I, (1, 5) = 175.59568314998398+0.*I, (2, 1) = -33.23139659260195+0.*I, (2, 2) = 75.17135144556929+0.*I, (2, 3) = 236.421687561631+0.*I, (2, 4) = 136.98207278415265+0.*I, (2, 5) = 158.72195870452097+0.*I, (3, 1) = 268.7849531650388+0.*I, (3, 2) = 93.67237457619457+0.*I, (3, 3) = -48.99100376421241+0.*I, (3, 4) = -114.08088481922744+0.*I, (3, 5) = -9.317711776596651+0.*I, (4, 1) = .7955765643196264+0.*I, (4, 2) = 44.582065761106776+0.*I, (4, 3) = 268.23773062231106+0.*I, (4, 4) = 149.54848119026994+0.*I, (4, 5) = 161.6981236670314+0.*I, (5, 1) = 230.09623253311864+0.*I, (5, 2) = 222.80201293072588+0.*I, (5, 3) = 196.9514995697131+0.*I, (5, 4) = 75.57668964466434+0.*I, (5, 5) = 108.39382140065305+0.*I, (6, 1) = -291.18409102891843+0.*I, (6, 2) = -200.6307865795955+0.*I, (6, 3) = -74.35923030344051+0.*I, (6, 4) = 31.501149679670085+0.*I, (6, 5) = -70.1539507795088+0.*I})

(10)

X -~ U.sdm.Transpose(evectors)

Matrix(6, 5, {(1, 1) = 8.724470919983649+0.*I, (1, 2) = -131.7209587238482+0.*I, (1, 3) = -329.0075500379926+0.*I, (1, 4) = -223.1310832324622+0.*I, (1, 5) = -172.435683149984+0.*I, (2, 1) = 39.34139659260195+0.*I, (2, 2) = -68.26135144556929+0.*I, (2, 3) = -231.381687561631+0.*I, (2, 4) = -137.25207278415266+0.*I, (2, 5) = -150.74195870452098+0.*I, (3, 1) = -277.9349531650388+0.*I, (3, 2) = -101.60237457619456+0.*I, (3, 3) = 53.85100376421241+0.*I, (3, 4) = 118.93088481922743+0.*I, (3, 5) = 12.32771177659665+0.*I, (4, 1) = 8.774423435680374+0.*I, (4, 2) = -42.942065761106775+0.*I, (4, 3) = -259.4077306223111+0.*I, (4, 4) = -148.80848119026993+0.*I, (4, 5) = -155.8981236670314+0.*I, (5, 1) = -233.58623253311865+0.*I, (5, 2) = -218.78201293072587+0.*I, (5, 3) = -187.15149956971308+0.*I, (5, 4) = -65.57668964466434+0.*I, (5, 5) = -104.12382140065306+0.*I, (6, 1) = 301.0240910289184+0.*I, (6, 2) = 200.7807865795955+0.*I, (6, 3) = 65.36923030344052+0.*I, (6, 4) = -37.52114967967009+0.*I, (6, 5) = 64.8439507795088+0.*I})

(11)

 

Download SVD_test.mw

I started a thread about maplev-mode on March 1, 2024.

Joe Riel replied.

A couple days later, I attempted to reply to Joe's question. The blue 'Submit' bar continued to flash, never stopping.

I asked this question a few days ago, but, it was deleted as 'Spam'.

This is not spam.

Tom Dean

One can use the "|" character to combine vectors to create a matrix. Is there a slick way to separate a matrix into a list of column vectors besides using the LinearAlgebra:-Column procedure? 

I asked maple to solve a basic log inequality.
solve(log[2](0.7*x)<=log[3](3*x-1));


This is what happened.

Here is a link to the document to replicate this behavior.

log_inequality.mw

I know there is a solution , if you look at the [graph](https://www.desmos.com/calculator/3n7uzwrak4).

I also tried fsolve, but you have to narrow down the solution interval to look for a solution, and use an equality instead of an inequality.

First 123 124 125 126 127 128 129 Last Page 125 of 2428