MaplePrimes Questions

hellow can we draw the figure like this

How can I install GeM software from the link http://cpc.cs.qub.ac.uk/?

I have tried many times but I didn't get.

 

@mskalsi

I was trying the direct method for conservation law of wave equation.But the fluxes and conserved density are not coming correct in eq.(4)(see attached file) because (1) and (6) are not same.What mistake have I done?

 

 

wave_eq_3.mws

Dear friends~I knew that I can copy each function's code into one worksheet bue it's tedious if I need to call many functions.So I want to find another approach with maple's statement.

Thank you ~

Hi,

I have problem with plot of the function ( See attachment)
 

Chargement plots

plot((x^3-x^2)^(1/3), x)

 

``

 

 

``

``

``


 

Download PlotProblème.mw

I dont fully understand the principle of a global variable for example _Z in RootOf expressions. Can someone please explain this to me.

Hi I've been trying to solve these set of PDEs below and have been at it for very long

My codes are below

I tried solving the first equation by using:

sys_ode := 2*(diff(T(eta), eta, eta, eta))+T(eta)*(diff(T(eta), eta, eta)) = 0

ics := T(0) = 0, (D(T))(0) = 1, (D(T))(20) = 0

Digits := 10

sol1 := dsolve({ics, sys_ode}, numeric, output = operator)

{q(eta) = rhs(sol1[2](eta)), w(eta) = rhs(sol1[3](eta))}

Then inputting into the subsequent two equations:

PDE1 := eval([2/P . (diff(g(x, eta), eta, eta))+q(eta)*(diff(g(x, eta), eta))-g(x, eta)*w(eta) = 2*x*w(eta)*(diff(g(x, eta), x)), 2/S . (diff(phi(x, eta), eta, eta))+q(eta)*(diff(phi(x, eta), eta)) = 2*x*w(eta)*(diff(phi(x, eta), x))])

subBC1 := -phi(x, 0)*exp(g(x, 0)*sqrt(x)/(1+varepsilon*g(x, 0)*sqrt(x)))

subBC2 := alpha . ((phi(x, 0))(sqrt(x)))(exp(g(x, 0)*sqrt(x)/(1+varepsilon*g(x, 0)*sqrt(x))))

BC := {diff(g(0, eta), eta, eta) = 0, diff(phi(0, eta), eta, eta) = 0, g(0, eta) = 0, g(x, 20) = 0, phi(0, eta) = 1, phi(x, 20) = 1, (D[2](g))(x, 0) = subBC1, (D[2](phi))(x, 0) = subBC2}

P = 1

S = 1

pds := pdsolve(PDE, {BC}, numeric, spacestep = .25)

but always end up with :Error, (in pdsolve/numeric/process_PDEs) number of dependent variables and number of PDE must be the same

I know my BC conditions might probably have some major errors too but i really cant proceed on cos i always end up with this same error. I really hope anyone would be able to help me on this 

help please

Thought it would be a neat way to create identation for loops and if branches in a text editor and copy the code into Maple. But Maple inserts a new prompt at the beginning of every line.

Is there a solution in 2018?

Hi, Is there any way to set the tolerances in

LinearAlgebra[Rank]

I'm evaluating a matrix which is singular, except the singular values come back as 1 and 10^(-9).  I'd like Maple to compute this as rank 1 rather than rank 2.

Thanks

If I input 3^665 the whole number is displayed. How to display only last few digits?

When I make the input 2*pi*440 the output is pi880.

How to come to the result 2764,6 radians?

Coding_Basic_Reproduction_Number_2.mw

Anybody know how to simplify the equation?

Hi,

Some ideas to plot ( animate) tangents at corner point or cusp point?

For examples : f(x)=sqrt(abs(x-1)) , g(x)=sqrt(abs(x^2-4))

Thanks

factor_problem.mw

I want to factor the following polynomial:

Teller := 2*i1^4*i2*i3+2*i1^4*i2*i4+2*i1^4*i2*i5+2*i1^4*i3*i4+2*i1^4*i3*i5+2*i1^4*i4*i5+4*i1^3*i2^2*i3+4*i1^3*i2^2*i4+4*i1^3*i2^2*i5+4*i1^3*i2*i3^2+6*i1^3*i2*i3*i4+6*i1^3*i2*i3*i5+4*i1^3*i2*i4^2+6*i1^3*i2*i4*i5+4*i1^3*i2*i5^2+4*i1^3*i3^2*i4+4*i1^3*i3^2*i5+4*i1^3*i3*i4^2+6*i1^3*i3*i4*i5+4*i1^3*i3*i5^2+4*i1^3*i4^2*i5+4*i1^3*i4*i5^2+2*i1^2*i2^3*i3+2*i1^2*i2^3*i4+2*i1^2*i2^3*i5+4*i1^2*i2^2*i3^2+6*i1^2*i2^2*i3*i4+6*i1^2*i2^2*i3*i5+4*i1^2*i2^2*i4^2+6*i1^2*i2^2*i4*i5+4*i1^2*i2^2*i5^2+2*i1^2*i2*i3^3+6*i1^2*i2*i3^2*i4+6*i1^2*i2*i3^2*i5+6*i1^2*i2*i3*i4^2+24*i1^2*i2*i3*i4*i5+6*i1^2*i2*i3*i5^2+2*i1^2*i2*i4^3+6*i1^2*i2*i4^2*i5+6*i1^2*i2*i4*i5^2+2*i1^2*i2*i5^3+2*i1^2*i3^3*i4+2*i1^2*i3^3*i5+4*i1^2*i3^2*i4^2+6*i1^2*i3^2*i4*i5+4*i1^2*i3^2*i5^2+2*i1^2*i3*i4^3+6*i1^2*i3*i4^2*i5+6*i1^2*i3*i4*i5^2+2*i1^2*i3*i5^3+2*i1^2*i4^3*i5+4*i1^2*i4^2*i5^2+2*i1^2*i4*i5^3+2*i1*i2^3*i3*i4+2*i1*i2^3*i3*i5+2*i1*i2^3*i4*i5+4*i1*i2^2*i3^2*i4+4*i1*i2^2*i3^2*i5+4*i1*i2^2*i3*i4^2+6*i1*i2^2*i3*i4*i5+4*i1*i2^2*i3*i5^2+4*i1*i2^2*i4^2*i5+4*i1*i2^2*i4*i5^2+2*i1*i2*i3^3*i4+2*i1*i2*i3^3*i5+4*i1*i2*i3^2*i4^2+6*i1*i2*i3^2*i4*i5+4*i1*i2*i3^2*i5^2+2*i1*i2*i3*i4^3+6*i1*i2*i3*i4^2*i5+6*i1*i2*i3*i4*i5^2+2*i1*i2*i3*i5^3+2*i1*i2*i4^3*i5+4*i1*i2*i4^2*i5^2+2*i1*i2*i4*i5^3+2*i1*i3^3*i4*i5+4*i1*i3^2*i4^2*i5+4*i1*i3^2*i4*i5^2+2*i1*i3*i4^3*i5+4*i1*i3*i4^2*i5^2+2*i1*i3*i4*i5^3+4*i1^3*i2*i3+4*i1^3*i2*i4+4*i1^3*i2*i5+4*i1^3*i3*i4+4*i1^3*i3*i5+4*i1^3*i4*i5+8*i1^2*i2^2*i3+8*i1^2*i2^2*i4+8*i1^2*i2^2*i5+8*i1^2*i2*i3^2+12*i1^2*i2*i3*i4+12*i1^2*i2*i3*i5+8*i1^2*i2*i4^2+12*i1^2*i2*i4*i5+8*i1^2*i2*i5^2+8*i1^2*i3^2*i4+8*i1^2*i3^2*i5+8*i1^2*i3*i4^2+12*i1^2*i3*i4*i5+8*i1^2*i3*i5^2+8*i1^2*i4^2*i5+8*i1^2*i4*i5^2+4*i1*i2^3*i3+4*i1*i2^3*i4+4*i1*i2^3*i5+8*i1*i2^2*i3^2+12*i1*i2^2*i3*i4+12*i1*i2^2*i3*i5+8*i1*i2^2*i4^2+12*i1*i2^2*i4*i5+8*i1*i2^2*i5^2+4*i1*i2*i3^3+12*i1*i2*i3^2*i4+12*i1*i2*i3^2*i5+12*i1*i2*i3*i4^2+48*i1*i2*i3*i4*i5+12*i1*i2*i3*i5^2+4*i1*i2*i4^3+12*i1*i2*i4^2*i5+12*i1*i2*i4*i5^2+4*i1*i2*i5^3+4*i1*i3^3*i4+4*i1*i3^3*i5+8*i1*i3^2*i4^2+12*i1*i3^2*i4*i5+8*i1*i3^2*i5^2+4*i1*i3*i4^3+12*i1*i3*i4^2*i5+12*i1*i3*i4*i5^2+4*i1*i3*i5^3+4*i1*i4^3*i5+8*i1*i4^2*i5^2+4*i1*i4*i5^3+4*i2^3*i3*i4+4*i2^3*i3*i5+4*i2^3*i4*i5+8*i2^2*i3^2*i4+8*i2^2*i3^2*i5+8*i2^2*i3*i4^2+12*i2^2*i3*i4*i5+8*i2^2*i3*i5^2+8*i2^2*i4^2*i5+8*i2^2*i4*i5^2+4*i2*i3^3*i4+4*i2*i3^3*i5+8*i2*i3^2*i4^2+12*i2*i3^2*i4*i5+8*i2*i3^2*i5^2+4*i2*i3*i4^3+12*i2*i3*i4^2*i5+12*i2*i3*i4*i5^2+4*i2*i3*i5^3+4*i2*i4^3*i5+8*i2*i4^2*i5^2+4*i2*i4*i5^3+4*i3^3*i4*i5+8*i3^2*i4^2*i5+8*i3^2*i4*i5^2+4*i3*i4^3*i5+8*i3*i4^2*i5^2+4*i3*i4*i5^3+i1^4+3*i1^3*i2+3*i1^3*i3+3*i1^3*i4+3*i1^3*i5+3*i1^2*i2^2+6*i1^2*i2*i3+6*i1^2*i2*i4+6*i1^2*i2*i5+3*i1^2*i3^2+6*i1^2*i3*i4+6*i1^2*i3*i5+3*i1^2*i4^2+6*i1^2*i4*i5+3*i1^2*i5^2+i1*i2^3+3*i1*i2^2*i3+3*i1*i2^2*i4+3*i1*i2^2*i5+3*i1*i2*i3^2+10*i1*i2*i3*i4+10*i1*i2*i3*i5+3*i1*i2*i4^2+10*i1*i2*i4*i5+3*i1*i2*i5^2+i1*i3^3+3*i1*i3^2*i4+3*i1*i3^2*i5+3*i1*i3*i4^2+10*i1*i3*i4*i5+3*i1*i3*i5^2+i1*i4^3+3*i1*i4^2*i5+3*i1*i4*i5^2+i1*i5^3+4*i2^2*i3*i4+4*i2^2*i3*i5+4*i2^2*i4*i5+4*i2*i3^2*i4+4*i2*i3^2*i5+4*i2*i3*i4^2+4*i2*i3*i5^2+4*i2*i4^2*i5+4*i2*i4*i5^2+4*i3^2*i4*i5+4*i3*i4^2*i5+4*i3*i4*i5^2

What is the best strategy using Maple(latest version)? In a previous, less complicated example, the polynomial could be not be factored in a single expression, but I was succesfull to factor it in multiple factors.

kind regards,

Harry Garst


 

restart

with(PDEtools)

with(plots)

P__r := .71; lambda := 1.0; K__r := 1.0; S__r := .5; m := .5; M := sqrt(10.0); `ϰ` := .5; Omega := sqrt(5.0); Gr := 6.0; Gm := 5.0; S__c := .22

PDE := {diff(phi(x, t), t) = (diff(phi(x, t), x, x))/S__c-K__r*phi(x, t)+S__r*(diff(theta(x, t), x, x)), diff(theta(x, t), t) = lambda*(diff(theta(x, t), x, x))/P__r, diff(u(x, t), t) = diff(u(x, t), x, x)-M^2*(u(x, t)-m*w(x, t))/(m^2+1)-u(x, t)/`ϰ`-2*Omega^2*w(x, t)+Gr*theta(x, t)+Gm*phi(x, t), diff(w(x, t), t) = diff(w(x, t), x, x)+M^2*(m*u(x, t)-w(x, t))/(m^2+1)-w(x, t)/`ϰ`+2*Omega^2*u(x, t)}

{diff(phi(x, t), t) = 4.545454545*(diff(diff(phi(x, t), x), x))-1.0*phi(x, t)+.5*(diff(diff(theta(x, t), x), x)), diff(theta(x, t), t) = 1.408450704*(diff(diff(theta(x, t), x), x)), diff(u(x, t), t) = diff(diff(u(x, t), x), x)-9.999999999*u(x, t)-5.999999996*w(x, t)+6.0*theta(x, t)+5.0*phi(x, t), diff(w(x, t), t) = diff(diff(w(x, t), x), x)+14.00000000*u(x, t)-9.999999999*w(x, t)}

(1)

``

IBC := {phi(0, t) = 1, phi(9, t) = 0, phi(x, 0) = 0, theta(0, t) = 1, theta(9, t) = 0, theta(x, 0) = 0, u(0, t) = t, u(9, t) = 0, u(x, 0) = 0, w(0, t) = 0, w(9, t) = 0, w(x, 0) = 0}

sol := pdsolve(PDE, IBC, numeric, spacestep = 0.1e-1)

_m2167514531200

(2)

p1 := sol:-plot(t = .3, color = red); p2 := sol:-plot(t = .5, color = gold); p3 := sol:-plot(t = .7, color = purple); p4 := sol:-plot(t = 1., color = green); plots[display]({p1, p2, p3, p4})

 

q1, q2, q3, q4 := seq(eval(u(x, t), sol:-value(t = t0, output = listprocedure)), t0 = [.3, .5, .7, 1]); plot([q1, q2, q3, q4], 0 .. 10, color = [red, gold, purple, green])

 

p1 := sol:-plot(t = 1, S__c = .1, color = red); p2 := sol:-plot(t = 1, S__c = .2, color = gold); p3 := sol:-plot(t = 1, S__c = .3, color = purple); p4 := sol:-plot(t = 1, S__c = .4, color = green); plots[display]({p1, p2, p3, p4})

Error, (in plot/options2d) unexpected option: .22 = .1

 

Error, (in plot/options2d) unexpected option: .22 = .2

 

Error, (in plot/options2d) unexpected option: .22 = .3

 

Error, (in plot/options2d) unexpected option: .22 = .4

 

 

q1, q2, q3, q4 := seq(eval(diff(u(0, t), t), sol:-value(t = t0, output = listprocedure)), t0 = [.3, .5, .7, 1]); plot([q1, q2, q3, q4], 0 .. 10, color = [red, gold, purple, green])

Error, (in plot) procedure expected, as range contains no plotting variable

 

``


 

Download pde_baru.mwpde_baru.mw

Dear Prof DRs ,Please see the attachments

how to PLOT PDE IBCS for different  Sc , Pr, Gr, Gm at fixed t? Also for Nusselt (theta prime)  ,skin friction (f double prime)?

First 861 862 863 864 865 866 867 Last Page 863 of 2433